1
|
Cunha DALV, Marega FM, Pinto LA, Backes EH, Steffen TT, Klok LA, Hammer P, Pessan LA, Becker D, Costa LC. Controlling Plasma-Functionalized Fillers for Enhanced Properties of PLA/ZnO Biocomposites: Effects of Excess l-Lactic Acid and Biomedical Implications. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17965-17978. [PMID: 40072032 PMCID: PMC11955939 DOI: 10.1021/acsami.4c20196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Plasma surface treatment of ceramic particles has emerged as a promising approach for developing biocomposites intended for use in tissue engineering applications. Introducing functional groups on particle surfaces promotes changes in material surface properties, enhancing adhesion, biocompatibility, and reactivity. It can also mitigate degradation during the processing of polymer matrices in composite materials. Therefore, carefully choosing the functionalizing agent responsible for generating the functional groups and selecting appropriate functionalization parameters are significant steps in the plasma surface treatment process. However, in a tissue engineering context, an excess of the functionalizing agent can be harmful, increasing cell toxicity and inhibiting the stimulation of cell growth, consequently delaying or even hindering tissue regeneration. This article examines how the functionalizing agent excess of l-lactic acid (LA) applied in the plasma surface treatment of the filler affects the thermal, rheological, biological, and wettability properties of poly(lactic acid) (PLA) and zinc oxide (ZnO) biocomposites. The investigation reveals that the surface treatment effectively mitigated the catalytic effects of ZnO on PLA degradation during melt processing, regardless of the excess functionalizing agent. There was minimal impact on the material's rheological, thermal, and wettability characteristics, but the LA residue significantly influenced cell proliferation and the biological response. These findings show the importance of removing excess functionalizing agents to obtain biocomposites suitable for tissue engineering applications.
Collapse
Affiliation(s)
- Daniel A. L. V. Cunha
- Graduate
Program in Materials Science and Engineering, Federal University of Sao Carlos, Sao Carlos, 13565-905, Brazil
| | - Felippe M. Marega
- Graduate
Program in Materials Science and Engineering, Federal University of Sao Carlos, Sao Carlos, 13565-905, Brazil
| | - Leonardo A. Pinto
- Graduate
Program in Materials Science and Engineering, Federal University of Sao Carlos, Sao Carlos, 13565-905, Brazil
| | - Eduardo H. Backes
- Graduate
Program in Materials Science and Engineering, Federal University of Sao Carlos, Sao Carlos, 13565-905, Brazil
- Department
of Materials Engineering, Federal University
of Sao Carlos, Sao Carlos, Sao
Paulo 13565-905, Brazil
| | - Teresa T. Steffen
- Graduate
Program in Materials Science and Engineering, State University of Santa Catarina (UDESC), Joinville 88.035-901, Brazil
| | - Larissa A. Klok
- Graduate
Program in Materials Science and Engineering, State University of Santa Catarina (UDESC), Joinville 88.035-901, Brazil
| | - Peter Hammer
- Institute
of Chemistry, Sao Paulo State University, Araraquara 14800-900, Brazil
| | - Luiz A. Pessan
- Graduate
Program in Materials Science and Engineering, Federal University of Sao Carlos, Sao Carlos, 13565-905, Brazil
- Department
of Materials Engineering, Federal University
of Sao Carlos, Sao Carlos, Sao
Paulo 13565-905, Brazil
| | - Daniela Becker
- Graduate
Program in Materials Science and Engineering, State University of Santa Catarina (UDESC), Joinville 88.035-901, Brazil
| | - Lidiane C. Costa
- Graduate
Program in Materials Science and Engineering, Federal University of Sao Carlos, Sao Carlos, 13565-905, Brazil
- Department
of Materials Engineering, Federal University
of Sao Carlos, Sao Carlos, Sao
Paulo 13565-905, Brazil
- Center
for Characterization and Development of Materials, Federal University of Sao Carlos, Sao Paulo 13565-905, Brazil
| |
Collapse
|
2
|
Dehghan-Toranposhti S, Bakhshi R, Alizadeh R, Bohlouli M. Fabrication, characterization and evaluating properties of 3D printed PLA-Mn scaffolds. Sci Rep 2024; 14:16592. [PMID: 39025973 PMCID: PMC11258323 DOI: 10.1038/s41598-024-67478-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
Polylactic acid (PLA) based scaffolds have attained considerable attention in recent years for being used as biodegradable implants in bone tissue engineering (BTE), owing to their suitable biocompatibility and processability. Nevertheless, the mechanical properties, bioactivity and biodegradation rate of PLA need to be improved for practical application. In this investigation, PLA-xMn composite filaments (x = 0, 1, 3, 5 and 7 wt%) were fabricated, characterized, and used for 3D printing of scaffolds by the fused deposition modeling process. The effect of Mn addition on the thermal, physical, mechanical, and structural properties, as well as the degradability and cell viability of 3D printed scaffolds were investigated in details. The obtained results indicate that the PLA-Mn composite filaments exhibit higher chain mobility and melt flow index values, with lower cold crystallization temperature and a higher degree of crystallinity. This higher flowability led to lower dimensional accuracy of 3D printed scaffolds, but resulted in higher interlayer adhesion. It was found that the mechanical properties of composite scaffolds were remarkably enhanced with the addition of Mn particles. The incorporation of Mn particles also caused higher surface roughness and hydrophilicity, a superior biodegradation rate of the scaffolds as well as better biocompatibility, indicating a promising candidate for (BTE) applications.
Collapse
Affiliation(s)
- Sina Dehghan-Toranposhti
- Department of Materials Science and Engineering, Sharif University of Technology, Azadi Ave., Tehran, 11155-9466, Iran
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, USA
| | - Rasoul Bakhshi
- Department of Materials Science and Engineering, Sharif University of Technology, Azadi Ave., Tehran, 11155-9466, Iran
| | - Reza Alizadeh
- Department of Materials Science and Engineering, Sharif University of Technology, Azadi Ave., Tehran, 11155-9466, Iran.
| | - Mahboubeh Bohlouli
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Ghosh A, Orasugh JT, Ray SS, Chattopadhyay D. Integration of 3D Printing-Coelectrospinning: Concept Shifting in Biomedical Applications. ACS OMEGA 2023; 8:28002-28025. [PMID: 37576662 PMCID: PMC10413848 DOI: 10.1021/acsomega.3c03920] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023]
Abstract
Porous structures with sizes between the submicrometer and nanometer scales can be produced using efficient and adaptable electrospinning technology. However, to approximate desirable structures, the construction lacks mechanical sophistication and conformance and requires three-dimensional solitary or multifunctional structures. The diversity of high-performance polymers and blends has enabled the creation of several porous structural conformations for applications in advanced materials science, particularly in biomedicine. Two promising technologies can be combined, such as electrospinning with 3D printing or additive manufacturing, thereby providing a straightforward yet flexible technique for digitally controlled shape-morphing fabrication. The hierarchical integration of configurations is used to imprint complex shapes and patterns onto mesostructured, stimulus-responsive electrospun fabrics. This technique controls the internal stresses caused by the swelling/contraction mismatch in the in-plane and interlayer regions, which, in turn, controls the morphological characteristics of the electrospun membranes. Major innovations in 3D printing, along with additive manufacturing, have led to the production of materials and scaffold systems for tactile and wearable sensors, filtration structures, sensors for structural health monitoring, tissue engineering, biomedical scaffolds, and optical patterning. This review discusses the synergy between 3D printing and electrospinning as a constituent of specific microfabrication methods for quick structural prototypes that are expected to advance into next-generation constructs. Furthermore, individual techniques, their process parameters, and how the fabricated novel structures are applied holistically in the biomedical field have never been discussed in the literature. In summary, this review offers novel insights into the use of electrospinning and 3D printing as well as their integration for cutting-edge applications in the biomedical field.
Collapse
Affiliation(s)
- Adrija Ghosh
- Department
of Polymer Science and Technology, University
of Calcutta, Kolkata 700009, India
| | - Jonathan Tersur Orasugh
- Centre
for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology
Innovation Centre, Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
- Department
of Chemical Sciences, University of Johannesburg, Doorfontein, Johannesburg 2028, South Africa
| | - Suprakas Sinha Ray
- Centre
for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology
Innovation Centre, Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
- Department
of Chemical Sciences, University of Johannesburg, Doorfontein, Johannesburg 2028, South Africa
| | - Dipankar Chattopadhyay
- Department
of Polymer Science and Technology, University
of Calcutta, Kolkata 700009, India
- Center
for Research in Nanoscience and Nanotechnology, Acharya Prafulla Chandra
Roy Sikhsha Prangan, University of Calcutta, JD-2, Sector-III, Saltlake City, Kolkata 700098, India
| |
Collapse
|
4
|
Siripongpreda T, Hoven VP, Narupai B, Rodthongku N. Emerging 3D printing based on polymers and nanomaterial additives: Enhancement of properties and potential applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
5
|
Lupu (Luchian) AM, Zaharescu T, Râpă M, Mariș M, Iovu H. Availability of PLA/SIS blends for packaging and medical applications.Part II: Contribution of stabilizer agents. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
6
|
Liu X, Jiang Z, Xing D, Yang Y, Li Z, Sun Z. Recent progress in nanocomposites of carbon dioxide fixation derived reproducible biomedical polymers. Front Chem 2022; 10:1035825. [PMID: 36277338 PMCID: PMC9585172 DOI: 10.3389/fchem.2022.1035825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
In recent years, the environmental problems accompanying the extensive application of biomedical polymer materials produced from fossil fuels have attracted more and more attentions. As many biomedical polymer products are disposable, their life cycle is relatively short. Most of the used or overdue biomedical polymer products need to be burned after destruction, which increases the emission of carbon dioxide (CO2). Developing biomedical products based on CO2 fixation derived polymers with reproducible sources, and gradually replacing their unsustainable fossil-based counterparts, will promote the recycling of CO2 in this field and do good to control the greenhouse effect. Unfortunately, most of the existing polymer materials from renewable raw materials have some property shortages, which make them unable to meet the gradually improved quality and property requirements of biomedical products. In order to overcome these shortages, much time and effort has been dedicated to applying nanotechnology in this field. The present paper reviews recent advances in nanocomposites of CO2 fixation derived reproducible polymers for biomedical applications, and several promising strategies for further research directions in this field are highlighted.
Collapse
Affiliation(s)
- Xin Liu
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhiwen Jiang
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Zhiwen Jiang, ; Zhiying Li,
| | - Dejun Xing
- Tumor Hospital of Jilin Province, Changchun, China
| | - Yan Yang
- Tumor Hospital of Jilin Province, Changchun, China
| | - Zhiying Li
- Tumor Hospital of Jilin Province, Changchun, China
- *Correspondence: Zhiwen Jiang, ; Zhiying Li,
| | - Zhiqiang Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
7
|
Oliveira LRD, Nonato RC, Bonse BC, Morales AR. Effect of amine‐reactive elastomer on the properties of poly(lactic acid) films obtained by solvent‐cast
3D
printing. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lucas R. D. Oliveira
- Department of Materials Engineering, School of Chemical Engineering Universidade de Campinas Campinas Brazil
| | - Renato C. Nonato
- Department of Materials Engineering, School of Chemical Engineering Universidade de Campinas Campinas Brazil
| | - Baltus C. Bonse
- Department of Materials Engineering Centro Universitário da FEI São Bernardo do Campo Brazil
| | - Ana R. Morales
- Department of Materials Engineering, School of Chemical Engineering Universidade de Campinas Campinas Brazil
| |
Collapse
|
8
|
Nonato RC, Mei LHI, Bonse BC, Leal CV, Levy CE, Oliveira FA, Delarmelina C, Duarte MCT, Morales AR. Nanocomposites of
PLA
/
ZnO
nanofibers for medical applications: Antimicrobial effect, thermal, and mechanical behavior under cyclic stress. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Renato C. Nonato
- Department of Materials Engineering, School of Chemical Engineering University of Campinas Campinas Brazil
| | - Lucia H. I. Mei
- Department of Materials Engineering, School of Chemical Engineering University of Campinas Campinas Brazil
| | - Baltus C. Bonse
- Department of Materials Engineering Centro Universitário da FEI São Bernardo do Campo Brazil
| | - Claudenete V. Leal
- Department of Materials Engineering, School of Chemical Engineering University of Campinas Campinas Brazil
| | - Carlos E. Levy
- Department of Materials Engineering, School of Chemical Engineering University of Campinas Campinas Brazil
| | - Flavio A. Oliveira
- Department of Materials Engineering, School of Chemical Engineering University of Campinas Campinas Brazil
| | - Camila Delarmelina
- Department of Materials Engineering, School of Chemical Engineering University of Campinas Campinas Brazil
| | - Marta C. T. Duarte
- Department of Materials Engineering, School of Chemical Engineering University of Campinas Campinas Brazil
| | - Ana R. Morales
- Department of Materials Engineering, School of Chemical Engineering University of Campinas Campinas Brazil
| |
Collapse
|
9
|
Sarabia-Vallejos MA, Rodríguez-Umanzor FE, González-Henríquez CM, Rodríguez-Hernández J. Innovation in Additive Manufacturing Using Polymers: A Survey on the Technological and Material Developments. Polymers (Basel) 2022; 14:1351. [PMID: 35406226 PMCID: PMC9003383 DOI: 10.3390/polym14071351] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/10/2022] [Accepted: 03/20/2022] [Indexed: 12/30/2022] Open
Abstract
This review summarizes the most recent advances from technological and physico-chemical perspectives to improve several remaining issues in polymeric materials' additive manufacturing (AM). Without a doubt, AM is experimenting with significant progress due to technological innovations that are currently advancing. In this context, the state-of-the-art considers both research areas as working separately and contributing to developing the different AM technologies. First, AM techniques' advantages and current limitations are analyzed and discussed. A detailed overview of the efforts made to improve the two most extensively employed techniques, i.e., material extrusion and VAT-photopolymerization, is presented. Aspects such as the part size, the possibility of producing parts in a continuous process, the improvement of the fabrication time, the reduction of the use of supports, and the fabrication of components using more than one material are analyzed. The last part of this review complements these technological advances with a general overview of the innovations made from a material perspective. The use of reinforced polymers, the preparation of adapted high-temperature materials, or even the fabrication of metallic and ceramic parts using polymers as supports are considered. Finally, the use of smart materials that enable the fabrication of shape-changing 3D objects and sustainable materials will also be explored.
Collapse
Affiliation(s)
| | - Fernando E. Rodríguez-Umanzor
- Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Departamento de Química, Universidad Tecnológica Metropolitana, Santiago 7800003, Chile;
- Programa Doctorado en Ciencia de Materiales e Ingeniería de Procesos, Universidad Tecnológica Metropolitana, Santiago 8940000, Chile
| | - Carmen M. González-Henríquez
- Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Departamento de Química, Universidad Tecnológica Metropolitana, Santiago 7800003, Chile;
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago 8940000, Chile
| | - Juan Rodríguez-Hernández
- Polymer Functionalization Group, Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), 28006 Madrid, Spain;
| |
Collapse
|
10
|
Tan MA, Yeoh CK, Teh PL, Abdul Rahim NA, Song CC, Mansor NSS. Effect of combination printing parameter (infill density and raster angle) on the mechanical and electrical properties of 3D printed PLA/ZnO and cPLA/ZnO composites. JOURNAL OF POLYMER ENGINEERING 2022. [DOI: 10.1515/polyeng-2021-0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
3D printed polylactic acid (PLA) composites reinforced with zinc oxide (ZnO) were successfully fabricated by attaching a ZnO dispenser beside a MendelMax RepRap Printer. Mechanical and electrical testings were performed to characterize the properties of PLA/ZnO and cPLA/ZnO composites. PLA polymer filament is a biodegradable material with the same strength and modulus as other plastic materials. This work emphasizes the effects of printing parameters (infill density and raster angle) on the mechanical properties and electrical conductivity of PLA/ZnO composites. The combination of 100% infill density and 0° raster angle resulted in a substantial increase in the tensile strength and Young’s modulus, but reduction in break elongation. As the infill density increased and shifted from 90° to 0° raster angle, the storage modulus was enhanced but the damping factor declined. Scanning electron microscope images proved ZnO was dispersed in the PLA matrix. Optical measurements showed a large air gap across the 35% compared to the 100% infill density. Conductive PLA composites (cPLA/ZnO) enhanced electrical conductivity when increasing infill density compared to PLA composites. Therefore, optimizing printing parameters could help manufacturers provide superior quality structure and cPLA composites for electrical and electronic applications due to good electrical conductivity.
Collapse
Affiliation(s)
- Mei Ai Tan
- Faculty of Chemical Engineering Technology , University Malaysia Perlis , Taman Muhibbah, Jejawi , Arau , Perlis 02600 , Malaysia
| | - Cheow Keat Yeoh
- Faculty of Chemical Engineering Technology , University Malaysia Perlis , Taman Muhibbah, Jejawi , Arau , Perlis 02600 , Malaysia
| | - Pei Leng Teh
- Faculty of Chemical Engineering Technology , University Malaysia Perlis , Taman Muhibbah, Jejawi , Arau , Perlis 02600 , Malaysia
| | - Nor Azura Abdul Rahim
- Faculty of Chemical Engineering Technology , University Malaysia Perlis , Taman Muhibbah, Jejawi , Arau , Perlis 02600 , Malaysia
| | - Cheah Chie Song
- Faculty of Chemical Engineering Technology , University Malaysia Perlis , Taman Muhibbah, Jejawi , Arau , Perlis 02600 , Malaysia
| | - Nor Shahira Shahkila Mansor
- Faculty of Chemical Engineering Technology , University Malaysia Perlis , Taman Muhibbah, Jejawi , Arau , Perlis 02600 , Malaysia
| |
Collapse
|
11
|
Sepúlveda FA, Rivera F, Loyo C, Canales D, Moreno‐Serna V, Benavente R, Rivas LM, Ulloa MT, Gil‐Castell O, Ribes‐Greus A, Ortiz JA, Zapata PA. Poly (lactic acid)/D‐limonene/
ZnO bio‐nanocomposites
with antimicrobial properties. J Appl Polym Sci 2022. [DOI: 10.1002/app.51542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Francesca Antonella Sepúlveda
- Universidad de Santiago de Chile (USACH) Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Grupo Polímeros Chile
| | - Francisca Rivera
- Universidad de Santiago de Chile (USACH) Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Grupo Polímeros Chile
| | - Carlos Loyo
- Universidad de Santiago de Chile (USACH) Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Grupo Polímeros Chile
| | - Daniel Canales
- Universidad de Santiago de Chile (USACH) Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Grupo Polímeros Chile
| | - Viviana Moreno‐Serna
- Universidad de Santiago de Chile (USACH) Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Grupo Polímeros Chile
| | | | - Lina María Rivas
- Programa de Microbiología y Micología ICBM‐Facultad de Medicina Universidad de Chile Chile
| | - María Teresa Ulloa
- Programa de Microbiología y Micología ICBM‐Facultad de Medicina Universidad de Chile Chile
| | - Oscar Gil‐Castell
- Instituto de Tecnología de Materiales (ITM) Universitat Politècnica de València (UPV) Spain
| | - Amparo Ribes‐Greus
- Instituto de Tecnología de Materiales (ITM) Universitat Politècnica de València (UPV) Spain
| | - J. Andrés Ortiz
- Universidad de Santiago de Chile (USACH) Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Grupo Polímeros Chile
- Departamento de Ingeniería Química, Biotecnología y Materiales Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile Chile
| | - Paula A. Zapata
- Universidad de Santiago de Chile (USACH) Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Grupo Polímeros Chile
| |
Collapse
|
12
|
Taherimehr M, YousefniaPasha H, Tabatabaeekoloor R, Pesaranhajiabbas E. Trends and challenges of biopolymer-based nanocomposites in food packaging. Compr Rev Food Sci Food Saf 2021; 20:5321-5344. [PMID: 34611989 DOI: 10.1111/1541-4337.12832] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 07/11/2021] [Accepted: 08/03/2021] [Indexed: 01/14/2023]
Abstract
The ultimate goal of new food packaging technologies, in addition to maintaining the quality and safety of food for the consumer, is to consider environmental concerns and reduce its impacts. In this regard, one of the solutions is to use eco-friendly biopolymers instead of conventional petroleum-based polymers. However, the challenges of using biopolymers in the food packaging industry should be carefully evaluated, and techniques to eliminate or minimize their disadvantages should be investigated. Many studies have been conducted to improve the properties of biopolymer-based packaging materials to produce a favorable product for the food industry. This article reviews the structure of biopolymer-based materials and discusses the trends and challenges of using these materials in food packaging technologies with the focus on nanotechnology and based on recent studies.
Collapse
Affiliation(s)
- Masoumeh Taherimehr
- Department of Chemistry, Faculty of Basic Sciences, Babol Noshirvani University of Technology, Babol, Iran
| | - Hassan YousefniaPasha
- Department of Agricultural Machinery Engineering, Faculty of Agriculture Engineering and Technology, College of Agriculture and Natural Resource, University of Tehran, Karaj, Iran
| | - Reza Tabatabaeekoloor
- Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | | |
Collapse
|
13
|
Singh R, Kumar R, Singh M, Kumar P, preet P. On Mechanical, Thermal, Morphological and Shape Memory Effect of Sol-Gel Prepared ZnO Nanoparticle Reinforced PLA Composites Materials. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES 2021. [DOI: 10.1007/s40010-021-00750-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Ranjbar-Mohammadi M, Shakoori P, Arab-Bafrani Z. Design and characterization of keratin/PVA-PLA nanofibers containing hybrids of nanofibrillated chitosan/ZnO nanoparticles. Int J Biol Macromol 2021; 187:554-565. [PMID: 34333003 DOI: 10.1016/j.ijbiomac.2021.07.160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/04/2021] [Accepted: 07/23/2021] [Indexed: 11/18/2022]
Abstract
In this paper, designing electrospun composite nanofibers containing poly (lactic acid) (PLA) and keratin/poly (vinyl alcohol) (K/PVA) as the major components and natural nanofibrillated chitosan (CHNF)/ZnO nanoparticles (ZnONPs) (CSZ) combination as the nanofiller ingredient, has been investigated. PLA solution from one syringe and K/PVA from another one with incorporation of CHNF (CS), CSZ (2:1), (1:1) and (1:2) were electrospun and produced nanofibers were formed on the rotating collector. Addition of CHNF and ZnONPs amounts in CSZ combination resulted in reduction of the diameter of nanofibers. The highest hydrophilicity was reported for K/PVA/CS-PLA/CS sample with the contact angle of about 43 ± 3°. AFM results for K/PVA-PLA, K/PVA/CS-PLA/CS and K/PVA/CSZ(2:1)-PLA/CSZ(2:1), K/PVA/CSZ(1:2)-PLA/CSZ(1:2) samples indicated that the surface roughness factor for these nanofibers was about 708, 277, 378 and 658 nm, respectively. DSC analysis for K/PVA/CSZ(1:2)-PLA/CSZ(1:2) structure exhibited that the peaks related to the melting points of PLA and PVA shifted to higher temperatures. Overally, K/PVA/CSZ(2:1)-PLA/CSZ(2:1) nanofiber with diameter of 352.50 ± 31 nm, contact angle of 48 ± 3°, tensile strength of 0.96 ± 0.18 MPa is suggested as a proper wound healing scaffold that has highest antibacterial as well as potential to increase cell proliferation.
Collapse
Affiliation(s)
| | - Parinaz Shakoori
- Textile Group, Faculty of Engineering, University of Bonab, Bonab, Iran
| | - Zahra Arab-Bafrani
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Biochemistry and Biophysics, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
15
|
Fan T, Daniels R. Preparation and Characterization of Electrospun Polylactic Acid (PLA) Fiber Loaded with Birch Bark Triterpene Extract for Wound Dressing. AAPS PharmSciTech 2021; 22:205. [PMID: 34286391 PMCID: PMC8292269 DOI: 10.1208/s12249-021-02081-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022] Open
Abstract
Drug-loaded electrospun fibers have attracted increasing attention as a promising wound dressing material due to their capability of preventing from infections and inflammation and maintaining an appropriate environment for wound healing. In this study, polylactic acid (PLA), which is widely used in wound management, was chosen as electrospinnable polymer. A triterpene extract (TE) from the outer bark of birch known for its anti-inflammatory, antiviral, antibacterial, and wound healing effects was chosen to produce TE-loaded PLA electrospun fibers for wound dressing. A binary solvent system of dichloromethane (DCM) and dimethyl sulfoxide (DMSO) was employed, and the ratio of the solvents was optimized for preparing smooth and uniform fibers. The morphology of TE-loaded PLA electrospun fibers was investigated by scanning electron microscopy (SEM). The entrapment of TE in PLA fibers was confirmed by confocal laser scanning microscopy (CLSM). Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) were used to analyze the solid state of TE in PLA fibers. The release behavior of TE was assayed by a shaking flask method for a period of 96 h. The results revealed that TE-loaded electrospun PLA microfibers could be reliably prepared and are promising future candidates in wound therapy.
Collapse
|
16
|
Adding Value in Production of Multifunctional Polylactide (PLA)-ZnO Nanocomposite Films through Alternative Manufacturing Methods. Molecules 2021; 26:molecules26072043. [PMID: 33918508 PMCID: PMC8038199 DOI: 10.3390/molecules26072043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 01/21/2023] Open
Abstract
Due to the added value conferred by zinc oxide (ZnO) nanofiller, e.g., UV protection, antibacterial action, gas-barrier properties, poly(lactic acid) (PLA)–ZnO nanocomposites show increased interest for utilization as films, textile fibers, and injection molding items. The study highlights the beneficial effects of premixing ZnO in PLA under given conditions and its use as masterbatch (MB), a very promising alternative manufacturing technique. This approach allows reducing the residence time at high processing temperature of the thermo-sensitive PLA matrix in contact of ZnO nanoparticles known for their aptitude to promote degradation effects onto the polyester chains. Various PLA–ZnO MBs containing high contents of silane-treated ZnO nanoparticles (up to 40 wt.% nanofiller specifically treated with triethoxycaprylylsilane) were produced by melt-compounding using twin-screw extruders. Subsequently, the selected MBs were melt blended with pristine PLA to produce nanocomposite films containing 1–3 wt.% ZnO. By comparison to the more traditional multi-step process, the MB approach allowed the production of nanocomposites (films) having improved processing and enhanced properties: PLA chains displaying higher molecular weights, improved thermal stability, fine nanofiller distribution, and thermo-mechanical characteristic features, while the UV protection was confirmed by UV-vis spectroscopy measurements. The MB alternative is viewed as a promising flexible technique able to open new perspectives to produce more competitive multifunctional PLA–ZnO nanocomposites.
Collapse
|
17
|
|
18
|
Brounstein Z, Yeager CM, Labouriau A. Development of Antimicrobial PLA Composites for Fused Filament Fabrication. Polymers (Basel) 2021; 13:polym13040580. [PMID: 33671918 PMCID: PMC7918987 DOI: 10.3390/polym13040580] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/31/2022] Open
Abstract
In addition to possessing the desirable properties of being a biodegradable and biocompatible polymer fabricated from renewable resources, poly (lactic acid) (PLA) has useful mechanical and thermal attributes that has enabled it to be one of the most widely-used plastics for medicine, manufacturing, and agriculture. Yet, PLA composites have not been heavily explored for use in 3D-printing applications, and the range of feasible materials for the technology is limited, which inhibits its potential growth and industry adoption. In this study, tunable, multifunctional antimicrobial PLA composite filaments for 3D-printing have been fabricated and tested via chemical, thermal, mechanical, and antimicrobial experiments. Thermally stable antimicrobial ceramics, ZnO and TiO2, were used as fillers up to 30 wt%, and poly (ethylene glycol) (PEG) was used as a plasticizer to tune the physical material properties. Results demonstrate that the PLA composite filaments exhibit the thermal phase behaviors and thermal stability suitable for 3D-printing. Additionally, PEG can be used to tune the mechanical properties while not affecting the antimicrobial efficacy that ZnO and TiO2 imbue.
Collapse
Affiliation(s)
- Zachary Brounstein
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (Z.B.); (C.M.Y.)
- Department of Nanoscience and Microsystems Engineering, University of New Mexico, Albuquerque, NM 87131, USA
| | - Chris M. Yeager
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (Z.B.); (C.M.Y.)
| | - Andrea Labouriau
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (Z.B.); (C.M.Y.)
- Correspondence:
| |
Collapse
|
19
|
Arapey sweet potato peel waste as renewable source of antioxidant: extraction, nanoencapsulation and nanoadditive potential in films. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-020-02346-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Koo JW, Ho JS, An J, Zhang Y, Chua CK, Chong TH. A review on spacers and membranes: Conventional or hybrid additive manufacturing? WATER RESEARCH 2021; 188:116497. [PMID: 33075598 DOI: 10.1016/j.watres.2020.116497] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/11/2020] [Accepted: 10/03/2020] [Indexed: 05/27/2023]
Abstract
Over the past decade, 3D printing or additive manufacturing (AM) technology has seen great advancement in many aspects such as printing resolution, speed and cost. Membranes for water treatment experienced significant breakthroughs owing to the unique benefits of additive manufacturing. In particular, 3D printing's high degree of freedom in various aspects such as material and prototype design has helped to fabricate innovative spacers and membranes. However, there were conflicting reports on the feasibility of 3D printing, especially for membranes. Some research groups stated that technology limitations today made it impossible to 3D print membranes, but others showed that it was possible by successfully fabricating prototypes. This paper will provide a critical and comprehensive discussion on 3D printing specifically for spacers and membranes. Various 3D printing techniques will be introduced, and their suitability for membrane and spacer fabrication will be discussed. It will be followed by a review of past studies associated with 3D-printed spacers and membranes. A new category of additive manufacturing in the membrane water industry will be introduced here, known as hybrid additive manufacturing, to address the controversies of 3D printing for membrane. As AM technology continues to advance, its possibilities in the water treatment is limitless. Some insightful future trends will be provided at the end of the paper.
Collapse
Affiliation(s)
- Jing Wee Koo
- Interdisciplinary Graduate Programme, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798; Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One #06-08, Singapore 637141; Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Jia Shin Ho
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One #06-08, Singapore 637141
| | - Jia An
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Yi Zhang
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Chee Kai Chua
- Engineering Product Development Pillar, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372
| | - Tzyy Haur Chong
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One #06-08, Singapore 637141; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798.
| |
Collapse
|
21
|
Abudula T, Gauthaman K, Mostafavi A, Alshahrie A, Salah N, Morganti P, Chianese A, Tamayol A, Memic A. Sustainable drug release from polycaprolactone coated chitin-lignin gel fibrous scaffolds. Sci Rep 2020; 10:20428. [PMID: 33235239 PMCID: PMC7686307 DOI: 10.1038/s41598-020-76971-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 09/08/2020] [Indexed: 01/03/2023] Open
Abstract
Non-healing wounds have placed an enormous stress on both patients and healthcare systems worldwide. Severe complications induced by these wounds can lead to limb amputation or even death and urgently require more effective treatments. Electrospun scaffolds have great potential for improving wound healing treatments by providing controlled drug delivery. Previously, we developed fibrous scaffolds from complex carbohydrate polymers [i.e. chitin-lignin (CL) gels]. However, their application was limited by solubility and undesirable burst drug release. Here, a coaxial electrospinning is applied to encapsulate the CL gels with polycaprolactone (PCL). Presence of a PCL shell layer thus provides longer shelf-life for the CL gels in a wet environment and sustainable drug release. Antibiotics loaded into core–shell fibrous platform effectively inhibit both gram-positive and -negative bacteria without inducting observable cytotoxicity. Therefore, PCL coated CL fibrous gel platforms appear to be good candidates for controlled drug release based wound dressing applications.
Collapse
Affiliation(s)
| | - Kalamegam Gauthaman
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Faculty of Medicine, AIMST University, Semeling, Bedong, Kedah, Malaysia
| | - Azadeh Mostafavi
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE, USA
| | - Ahmed Alshahrie
- Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Numan Salah
- Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | | | - Ali Tamayol
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE, USA.,Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
22
|
Cao Y, Xu P, Lv P, Lemstra PJ, Cai X, Yang W, Dong W, Chen M, Liu T, Du M, Ma P. Excellent UV Resistance of Polylactide by Interfacial Stereocomplexation with Double-Shell-Structured TiO 2 Nanohybrids. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49090-49100. [PMID: 33074663 DOI: 10.1021/acsami.0c14423] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The durable application of polylactide (PLA) under atmospheric conditions is restricted by its poor ultraviolet (UV) stability. To improve the UV stability of polymers, titanium dioxide (TiO2) is often used as a UV light capture agent. However, TiO2 is also a photocatalytic agent, with detrimental effects on the polymer properties. To overcome these two conflicting issues, we used the following approach. TiO2 nanoparticles were first coated with silicon dioxide (SiO2) (with a SiO2 shell content of 5.3 wt %). Subsequently, poly(d-lactide) (PDLA) was grafted onto TiO2@SiO2 nanoparticles, approximately 20 wt %, via a ring-opening polymerization of d-lactide to obtain well-designed double-shell TiO2@SiO2-g-PDLA nanohybrids. These double-shell nanoparticles could be well dispersed in a poly(l-lactide) (PLLA) matrix making use of the stereocomplexation between the two enantiomers. In our concept, the inner SiO2 shell on the TiO2 nanoparticles prevents the direct contact between TiO2 and the PLLA matrix and hence considerably restricts the detrimental photocatalytic effect of TiO2 on PLLA degradation. Additionally, the outer PDLA shell facilitates an improved dispersion of these nanohybrid particles by interfacial stereocomplexation with its enantiomer PLLA. As a consequence, the PLLA/TiO2@SiO2-g-PDLA nanocomposites simultaneously possess excellent UV-shielding property, high(er) tensile strength (>60 MPa), and superior UV resistance, for example, the mechanical properties remain at a level of >90% after 72 h of UV irradiation. In our view, this work provides a novel strategy to make advanced PLA nanocomposites with improved mechanical properties and excellent UV resistance, which enables potential application of PLA in more critical areas such as in durable packaging and fiber/textile applications.
Collapse
Affiliation(s)
- Ying Cao
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Pengwu Xu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Pei Lv
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Pieter Jan Lemstra
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- PlemPolco B. V., De Zicht 11, HV Veldhoven 5502, The Netherlands
| | - Xiaoxia Cai
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Weijun Yang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Weifu Dong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Mingqing Chen
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Tianxi Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Mingliang Du
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Piming Ma
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
23
|
Abudula T, Qurban RO, Bolarinwa SO, Mirza AA, Pasovic M, Memic A. 3D Printing of Metal/Metal Oxide Incorporated Thermoplastic Nanocomposites With Antimicrobial Properties. Front Bioeng Biotechnol 2020; 8:568186. [PMID: 33042969 PMCID: PMC7523645 DOI: 10.3389/fbioe.2020.568186] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022] Open
Abstract
Three-dimensional (3D) printing has experienced a steady increase in popularity for direct manufacturing, where complex geometric items can be produced without the aid of templating tools, and manufacturing waste can be remarkably reduced. While customized medical devices and daily life items can be made by 3D printing of thermoplastics, microbial contamination has been a serious obstacle during their usage. A very clever approaches to overcome this challenge is to incorporate antimicrobial metal or metal oxide (M/MO) nanoparticles within the thermoplastics during or prior to 3D printing. Many M/MO nanoparticles can prevent contamination from a wide range of microorganism, including antibiotic-resistant bacteria via various antimicrobial mechanisms. Additionally, they can be easily printed with thermoplastic without losing their integrity and functionality. In this mini review, we summarize recent advancements and discuss future trends related to the development of 3D printed antimicrobial thermoplastic nanocomposites by addition of M/MO nanoparticles.
Collapse
Affiliation(s)
| | - Rayyan O Qurban
- Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sherifdeen O Bolarinwa
- Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed A Mirza
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mirza Pasovic
- Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
24
|
Bodkhe S, Ermanni P. 3D printing of multifunctional materials for sensing and actuation: Merging piezoelectricity with shape memory. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109738] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Ghilan A, Chiriac AP, Nita LE, Rusu AG, Neamtu I, Chiriac VM. Trends in 3D Printing Processes for Biomedical Field: Opportunities and Challenges. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2020; 28:1345-1367. [PMID: 32435165 PMCID: PMC7224028 DOI: 10.1007/s10924-020-01722-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Alina Ghilan
- “Petru Poni” Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, Iasi, 700487 Romania
| | - Aurica P. Chiriac
- “Petru Poni” Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, Iasi, 700487 Romania
| | - Loredana E. Nita
- “Petru Poni” Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, Iasi, 700487 Romania
| | - Alina G. Rusu
- “Petru Poni” Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, Iasi, 700487 Romania
| | - Iordana Neamtu
- “Petru Poni” Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, Iasi, 700487 Romania
| | - Vlad Mihai Chiriac
- “Gh. Asachi” Technical University, Faculty of Electronics, Telecommunications and Information Technology, Bd. Carol I, 11A, Iasi, 700506 Romania
| |
Collapse
|
26
|
Development of Bionanocomposites Based on PLA, Collagen and AgNPs and Characterization of Their Stability and In Vitro Biocompatibility. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bionanocomposites including poly(lactic acid) (PLA), collagen, and silver nanoparticles (AgNPs) were prepared as biocompatible and stable films. Thermal properties of the PLA-based bionanocomposites indicated an increase in the crystallinity of PLA plasticized due to a small quantity of AgNPs. The results on the stability study indicate the promising contribution of the AgNPs on the durability of PLA-based bionanocomposites. In vitro biocompatibility conducted on the mouse fibroblast cell line NCTC, clone 929, using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed high values of cell viability (>80%) after cell cultivation in the presence of bionanocomposite formulations for 48 h, while the percentages of lactate dehydrogenase (LDH) released in the culture medium were reduced (<15%), indicating no damages of the cell membranes. In addition, cell cycle analysis assessed by flow cytometry indicated that all tested bionanocomposites did not affect cell proliferation and maintained the normal growth rate of cells. The obtained results recommend the potential use of PLA-based bionanocomposites for biomedical coatings.
Collapse
|
27
|
Jiang Y, Zhang Y, Ding L, De La Cruz JA, Wang B, Feng X, Chen Z, Mao Z, Sui X. Regenerated cellulose-dispersed polystyrene composites enabled via Pickering emulsion polymerization. Carbohydr Polym 2019; 223:115079. [DOI: 10.1016/j.carbpol.2019.115079] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022]
|
28
|
Xu X, Zhou J, Feng C, Jiang Y, Zhang Q, Shi H. 3D printing algorithm of anisotropic biological scaffold with oxidized nanocellulose and gelatin. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:1260-1275. [DOI: 10.1080/09205063.2019.1627651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xiaodong Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Yangzhou Polytechnic Institute, Yangzhou, China
| | - Jiping Zhou
- College of Mechanical Engineering, Yangzhou University, Yangzhou, China
| | - Chen Feng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Yangzhou Polytechnic Institute, Yangzhou, China
| | - Yani Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Qi Zhang
- College of Mechanical Engineering, Yangzhou University, Yangzhou, China
| | - Hongcan Shi
- Medical College of Yangzhou University, Yangzhou, China
| |
Collapse
|