1
|
Torlopov MA, Martakov IS, Mikhaylov VI, Cherednichenko KA, Sitnikov PА. Synthesis and properties of thiol-modified CNC via surface tosylation. Carbohydr Polym 2023; 319:121169. [PMID: 37567709 DOI: 10.1016/j.carbpol.2023.121169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/08/2023] [Accepted: 06/29/2023] [Indexed: 08/13/2023]
Abstract
SH-containing polymers and nanoparticles are a significant direction in the creation of novel materials. The aim of this work is the synthesis of cellulose nanocrystals (CNC) with a surface modified by tosyl functions (CNC-Ts) and their further modification into SH-containing nanocrystals (CNC-SH). CNC-Ts were synthesized in an aqueous-organic emulsion from never-dried particles, while maintaining the size and supramolecular structure of CNC; the content of Ts-functions is up to 2.5 mmol·g-1. Structure of the derivatives was analyzed by TEM, XRD, CP/MAS 13C NMR and FTIR spectroscopies. Nucleophilic substitution and hydrolysis of the obtained thioisouronium salts leads to the production of CNC-SH. To quantify SH-groups we used elemental analysis, potentiometric titration and Folin-Ciocalteu and Ellman's reagents. It is shown that SH-groups on the surface are partially oxidized and are involved in a dense network of hydrogen bonds. Rheological properties of CNC-SH hydrosols are close to those of CNC, addition of H2O2 at acidic pH leads to an increase in viscosity of the system; H2O2 added at neutral pH causes opposite effect - viscosity decreases. CNC-SH have a high capacity for sorption of Cr(VI) in acidic environments and exhibit photoreductive properties under UV irradiation.
Collapse
Affiliation(s)
- Mikhail A Torlopov
- Institute of Chemistry of Federal Research Centre "Komi Science Centre, the Ural Branch, Russian Academy of Sciences", 167982, 48 Pervomayskaya st., Syktyvkar, Russian Federation
| | - Ilia S Martakov
- Institute of Chemistry of Federal Research Centre "Komi Science Centre, the Ural Branch, Russian Academy of Sciences", 167982, 48 Pervomayskaya st., Syktyvkar, Russian Federation.
| | - Vasily I Mikhaylov
- Institute of Chemistry of Federal Research Centre "Komi Science Centre, the Ural Branch, Russian Academy of Sciences", 167982, 48 Pervomayskaya st., Syktyvkar, Russian Federation
| | | | - Petr А Sitnikov
- Institute of Chemistry of Federal Research Centre "Komi Science Centre, the Ural Branch, Russian Academy of Sciences", 167982, 48 Pervomayskaya st., Syktyvkar, Russian Federation
| |
Collapse
|
2
|
Mikhaylov VI, Torlopov MA, Vaseneva IN, Legki PV, Paderin NM, Martakov IS, Sitnikov PA. Anti-Alzheimer Drug Delivery via Pickering Emulsions Stabilized by Plate-like Cellulose Nanocrystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11769-11781. [PMID: 37556390 DOI: 10.1021/acs.langmuir.3c01420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
In this work, we studied for the first time the formation of olive oil emulsions in water stabilized by plate-like nanocrystals with the supramolecular structure of cellulose II (pCNC). Effects of storage, pCNC concentration, and NaCl on the stability and properties of Pickering emulsions, including the creaming index, droplet size, zeta potential, acid-base surface properties, and rheology, were studied. A significant influence of the shape of nanoparticles (compared to the classical rod-like shape) on the stability parameters and rheological characteristics of emulsions is shown. Plate-like cellulose nanocrystals at a concentration of 16 g/L are able to form delamination-resistant emulsions without added electrolytes. The viscosity of pCNC-stabilized emulsions tends to decrease with increasing electrolyte concentration in the system, which is not characteristic of rod-like CNC-stabilized emulsions. This effect in pCNC-stabilized emulsions assumedly can be associated both with weak mechanical engagement between drops due to the shape of stabilizer particles and with an insignificant participation of background electrolyte cations in the formation of interdroplet interactions. Therefore, the resulting aggregates are unstable and easily destroyed, even under weak mechanical stress. As a consequence, the acid-base properties of the pCNC surface are practically independent of the emulsion preparation method (with or without electrolyte) as well as the concentration of the background electrolyte. The reduced viscosity of pCNC-stabilized emulsions in the presence of an electrolyte, coupled with the absence of acute toxicity, allows us to recommend them as a convenient oral delivery system for fat-soluble, biologically active substances. Our emulsions carrying donepezil (an anti-Alzheimer drug) showed better performance than a solution of donepezil hydrochloride in preventing memory impairment tested on laboratory mice.
Collapse
Affiliation(s)
- Vasily I Mikhaylov
- Institute of Chemistry of Federal Research Centre "Komi Science Centre of the Ural Branch of the Russian Academy of Sciences", 48 Pervomayskaya St., 167000 Syktyvkar, Russia
| | - Mikhail A Torlopov
- Institute of Chemistry of Federal Research Centre "Komi Science Centre of the Ural Branch of the Russian Academy of Sciences", 48 Pervomayskaya St., 167000 Syktyvkar, Russia
| | - Irina N Vaseneva
- Institute of Chemistry of Federal Research Centre "Komi Science Centre of the Ural Branch of the Russian Academy of Sciences", 48 Pervomayskaya St., 167000 Syktyvkar, Russia
| | - Philipp V Legki
- Institute of Chemistry of Federal Research Centre "Komi Science Centre of the Ural Branch of the Russian Academy of Sciences", 48 Pervomayskaya St., 167000 Syktyvkar, Russia
| | - Nikita M Paderin
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Ural Branch of the Russian Academy of Sciences", 50 Pervomayskaya St., 167982 Syktyvkar, Russia
| | - Ilia S Martakov
- Institute of Chemistry of Federal Research Centre "Komi Science Centre of the Ural Branch of the Russian Academy of Sciences", 48 Pervomayskaya St., 167000 Syktyvkar, Russia
| | - Petr A Sitnikov
- Institute of Chemistry of Federal Research Centre "Komi Science Centre of the Ural Branch of the Russian Academy of Sciences", 48 Pervomayskaya St., 167000 Syktyvkar, Russia
| |
Collapse
|
3
|
Geißler D, Nirmalananthan-Budau N, Scholtz L, Tavernaro I, Resch-Genger U. Analyzing the surface of functional nanomaterials-how to quantify the total and derivatizable number of functional groups and ligands. Mikrochim Acta 2021; 188:321. [PMID: 34482449 PMCID: PMC8418596 DOI: 10.1007/s00604-021-04960-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/08/2021] [Indexed: 12/04/2022]
Abstract
Functional nanomaterials (NM) of different size, shape, chemical composition, and surface chemistry are of increasing relevance for many key technologies of the twenty-first century. This includes polymer and silica or silica-coated nanoparticles (NP) with covalently bound surface groups, semiconductor quantum dots (QD), metal and metal oxide NP, and lanthanide-based NP with coordinatively or electrostatically bound ligands, as well as surface-coated nanostructures like micellar encapsulated NP. The surface chemistry can significantly affect the physicochemical properties of NM, their charge, their processability and performance, as well as their impact on human health and the environment. Thus, analytical methods for the characterization of NM surface chemistry regarding chemical identification, quantification, and accessibility of functional groups (FG) and surface ligands bearing such FG are of increasing importance for quality control of NM synthesis up to nanosafety. Here, we provide an overview of analytical methods for FG analysis and quantification with special emphasis on bioanalytically relevant FG broadly utilized for the covalent attachment of biomolecules like proteins, peptides, and oligonucleotides and address method- and material-related challenges and limitations. Analytical techniques reviewed include electrochemical titration methods, optical assays, nuclear magnetic resonance and vibrational spectroscopy, as well as X-ray based and thermal analysis methods, covering the last 5-10 years. Criteria for method classification and evaluation include the need for a signal-generating label, provision of either the total or derivatizable number of FG, need for expensive instrumentation, and suitability for process and production control during NM synthesis and functionalization.
Collapse
Affiliation(s)
- Daniel Geißler
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division Biophotonics (BAM-1.2), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Nithiya Nirmalananthan-Budau
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division Biophotonics (BAM-1.2), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Lena Scholtz
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division Biophotonics (BAM-1.2), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Isabella Tavernaro
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division Biophotonics (BAM-1.2), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Ute Resch-Genger
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division Biophotonics (BAM-1.2), Richard-Willstätter-Str. 11, 12489, Berlin, Germany.
| |
Collapse
|
4
|
Mikhaylov VI, Torlopov MA, Vaseneva IN, Sitnikov PA. Magnetically controlled liquid paraffin oil-in-water Pickering emulsion stabilized by magnetite/cellulose nanocrystals: Formation and Cr(VI) adsorption. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Torlopov MA, Drozd NN, Paderin NM, Tarabukin DV, Udoratina EV. Hemocompatibility, biodegradability and acute toxicity of acetylated cellulose nanocrystals of different types in comparison. Carbohydr Polym 2021; 269:118307. [PMID: 34294324 DOI: 10.1016/j.carbpol.2021.118307] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022]
Abstract
Promotion of promising cellulose nanocrystals (CNC) is largely dependent on the relationship between their morphology, surface chemical composition, and supramolecular structure with toxicity, hemocompatibility, and biodegradability. This paper outlines comparative and integrated analysis of the mentioned biocompatibility aspects of partially acetylated rod-, and disc-lake morphology of CNC with crystalline cellulose allomorphs I and II. These data have also included the study of CNC obtained from the sulfuric acid solutions. The aqueous solution of all types of tested CNC has not been toxic to mice after oral administration. Morphology of internal organs has not changed. However, in case of disc-like particles, the kidney mass coefficient noticeably changed. CNC have neither triggered platelet aggregation nor destroyed the red cell membrane. Intravenous administration to rabbits has not affected the plasma clotting time. Rod-like CNC are more resistant, and the disc-like particles are more susceptible to degradation under the influence of cellulases.
Collapse
Affiliation(s)
- Mikhail A Torlopov
- Institute of Chemistry of Federal Research Center "Komi Science Centre of the Ural Branch of the Russian Academy of Sciences", 167000, Pervomayskaya str., 48, Syktyvkar, Komi, Russian Federation
| | - Natalya N Drozd
- National Research Center for Hematology, 125167, Novy Zykovsky proyezd, 4, Moscow, Russian Federation
| | - Nikita M Paderin
- Institute of Physiology of Federal Research Center "Komi Science Centre of the Ural Branch of the Russian Academy of Sciences", 167982, Pervomayskaya str., 50, Syktyvkar, Komi, Russian Federation
| | - Dmitriy V Tarabukin
- Institute of Biology of Federal Research Centre "Komi Science Centre of the Ural Branch of Russian Academy of Sciences", 167982, Kommunisticheskaya str., 28, Syktyvkar, Komi, Russian Federation
| | - Elena V Udoratina
- Institute of Chemistry of Federal Research Center "Komi Science Centre of the Ural Branch of the Russian Academy of Sciences", 167000, Pervomayskaya str., 48, Syktyvkar, Komi, Russian Federation.
| |
Collapse
|
6
|
Tracey CT, Torlopov MA, Martakov IS, Vdovichenko EA, Zhukov M, Krivoshapkin PV, Mikhaylov VI, Krivoshapkina EF. Hybrid cellulose nanocrystal/magnetite glucose biosensors. Carbohydr Polym 2020; 247:116704. [DOI: 10.1016/j.carbpol.2020.116704] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/15/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022]
|
7
|
Koroleva MS, Tracey C, Sidunets YA, Torlopov MA, Mikhaylov VI, Krivoshapkin PV, Martakov IS, Krivoshapkina EF. Environmentally friendly Au@CNC hybrid systems as prospective humidity sensors. RSC Adv 2020; 10:35031-35038. [PMID: 35515643 PMCID: PMC9056851 DOI: 10.1039/d0ra07300h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/14/2020] [Indexed: 11/21/2022] Open
Abstract
Cellulose nanocrystals are a “green” support for nanogold. Hybrid films quickly and autonomously respond to changes in humidity and can be used in sensing applications.
Collapse
Affiliation(s)
- Maria S. Koroleva
- Institute of Chemistry of Federal Research Centre “Komi Science Centre of the Ural Branch of the Russian Academy of Sciences”
- Syktyvkar
- Russia
| | - Chantal Tracey
- ITMO University
- Saint Petersburg 191002
- Russian Federation
| | | | - Mikhail A. Torlopov
- Institute of Chemistry of Federal Research Centre “Komi Science Centre of the Ural Branch of the Russian Academy of Sciences”
- Syktyvkar
- Russia
| | - Vasily I. Mikhaylov
- Institute of Chemistry of Federal Research Centre “Komi Science Centre of the Ural Branch of the Russian Academy of Sciences”
- Syktyvkar
- Russia
| | | | - Ilia S. Martakov
- Institute of Chemistry of Federal Research Centre “Komi Science Centre of the Ural Branch of the Russian Academy of Sciences”
- Syktyvkar
- Russia
| | - Elena F. Krivoshapkina
- Institute of Chemistry of Federal Research Centre “Komi Science Centre of the Ural Branch of the Russian Academy of Sciences”
- Syktyvkar
- Russia
- ITMO University
- Saint Petersburg 191002
| |
Collapse
|
8
|
Torlopov MA, Martakov IS, Mikhaylov VI, Golubev YA, Sitnikov PA, Udoratina EV. A Fenton-like System (Cu(II)/H 2O 2) for the Preparation of Cellulose Nanocrystals with a Slightly Modified Surface. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mikhail A. Torlopov
- Institute of Chemistry of Federal Research Center “Komi Science Centre of the Ural Branch of the Russian Academy of Sciences”, Pervomayskaya str., 48, Syktyvkar, Komi 167000, Russian Federation
| | - Ilia S. Martakov
- Institute of Chemistry of Federal Research Center “Komi Science Centre of the Ural Branch of the Russian Academy of Sciences”, Pervomayskaya str., 48, Syktyvkar, Komi 167000, Russian Federation
| | - Vasily I. Mikhaylov
- Institute of Chemistry of Federal Research Center “Komi Science Centre of the Ural Branch of the Russian Academy of Sciences”, Pervomayskaya str., 48, Syktyvkar, Komi 167000, Russian Federation
| | - Yevgeny A. Golubev
- Institute of Geology of Federal Research Center “Komi Science Centre of the Ural Branch of the Russian Academy of Sciences”, Pervomayskaya str., 54, Syktyvkar, Komi 167000, Russian Federation
| | - Petr A. Sitnikov
- Institute of Chemistry of Federal Research Center “Komi Science Centre of the Ural Branch of the Russian Academy of Sciences”, Pervomayskaya str., 48, Syktyvkar, Komi 167000, Russian Federation
| | - Elena V. Udoratina
- Institute of Chemistry of Federal Research Center “Komi Science Centre of the Ural Branch of the Russian Academy of Sciences”, Pervomayskaya str., 48, Syktyvkar, Komi 167000, Russian Federation
| |
Collapse
|