1
|
Xie J, Shi AC. Phase Behavior of Binary Blends of Diblock Copolymers: Progress and Opportunities. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11491-11509. [PMID: 37535849 DOI: 10.1021/acs.langmuir.3c01175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The phase behavior of binary blends of diblock copolymers has been examined extensively in the past decades. Experimental and theoretical studies have demonstrated that mixing two different block copolymers provides an efficient and versatile route to regulate their self-assembled morphologies. A good understanding of the principles governing the self-assembly of block copolymer blends has been obtained from the study of A1B1/A2B2 diblock copolymer blends. The second (A2B2) diblocks could act synergistically as fillers and cosurfactants to regulate the domain size and interfacial properties, resulting in the formation of ordered phases not found in the parent (A1B1 or A2B2) diblock copolymer melts. The study of A1B1/A2B2 block copolymer blends further provides a solid foundation for future research on more complex block copolymer blends.
Collapse
Affiliation(s)
- Jiayu Xie
- Department of Physics & Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - An-Chang Shi
- Department of Physics & Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
2
|
Surfactant Mediated Microphase Separation in Miscible Block Copolymer of Poly(4-vinyl pyridine-b-hydroxybutylacrylate). CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2876-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
3
|
Hydrogen bonding induced microphase and macrophase separations in binary block copolymer blends. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Kulshreshtha A, Hayward RC, Jayaraman A. Impact of Composition and Placement of Hydrogen-Bonding Groups along Polymer Chains on Blend Phase Behavior: Coarse-Grained Molecular Dynamics Simulation Study. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Arjita Kulshreshtha
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Ryan C. Hayward
- Department of Chemical and Biological Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- Department of Materials Science and Engineering, University of Delaware, 201 Dupont Hall, Newark, Delaware 19716, United States
| |
Collapse
|
5
|
Competitive hydrogen bonding induced phase separation in supramolecular comb-shaped diblock copolymer. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Du WT, Kuo SW. Varying the Sequence Distribution and Hydrogen Bonding Strength Provides Highly Heat-Resistant PMMA Copolymers. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Huang YS, Huang CF. Synthesis of well-defined PMMA-b-PDMS-b-PMMA triblock copolymer and study of its self-assembly behaviors in epoxy resin. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Kuo S. Hydrogen bonding mediated
self‐assembled
structures from block copolymer mixtures to mesoporous materials. POLYM INT 2021. [DOI: 10.1002/pi.6264] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shiao‐Wei Kuo
- Department of Materials and Optoelectronic Science Center of Crystal Research, National Sun Yat‐Sen University Kaohsiung Taiwan
| |
Collapse
|
9
|
Anderson ER, Daga VK, Gido SP, Watkins JJ. Hydrogen bond mediated self‐assembly of two diblock copolymers. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Eric R. Anderson
- Department of Polymer Science and Engineering University of Massachusetts Amherst Amherst Massachusetts USA
| | - Vikram K. Daga
- Department of Chemical Engineering University of Massachusetts Amherst Amherst Massachusetts USA
| | - Samuel P. Gido
- Department of Polymer Science and Engineering University of Massachusetts Amherst Amherst Massachusetts USA
| | - James J. Watkins
- Department of Polymer Science and Engineering University of Massachusetts Amherst Amherst Massachusetts USA
| |
Collapse
|
10
|
Construction Hierarchically Mesoporous/Microporous Materials Based on Block Copolymer and Covalent Organic Framework. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.06.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
High-Molecular-Weight PLA- b-PEO- b-PLA Triblock Copolymer Templated Large Mesoporous Carbons for Supercapacitors and CO 2 Capture. Polymers (Basel) 2020; 12:polym12051193. [PMID: 32456231 PMCID: PMC7284743 DOI: 10.3390/polym12051193] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 11/23/2022] Open
Abstract
High-molecular-weight PLA440-b-PEO454-b-PLA440 (LEL) triblock copolymer was synthesized through simple ring-opening polymerization (ROP) by using the commercial homopolymer HO-PEO454-OH as the macro-initiator. The material acted as a single template to prepare the large mesoporous carbons by using resol-type phenolic resin as a carbon source. Self-assembled structures of phenolic/LEL blends mediated by hydrogen bonding interaction were determined by FTIR and SAXS analyses. Through thermal curing and carbonization procedures, large mesoporous carbons (>50 nm) with a cylindrical structure and high surface area (>600 m2/g) were obtained because the OH units of phenolics prefer to interact with PEO block rather than PLA block, as determined by FTIR spectroscopy. Furthermore, higher CO2 capture and good energy storage performance were observed for this large mesoporous carbon, confirming that the proposed approach provides an easy method for the preparation of large mesoporous materials.
Collapse
|
12
|
Hung WS, Ahmed MMM, Mohamed MG, Kuo SW. Competing hydrogen bonding produces mesoporous/macroporous carbons templated by a high-molecular-weight poly(caprolactone–b–ethylene oxide–b–caprolactone) triblock copolymer. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02154-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
13
|
Chen WC, Tsao YH, Wang CF, Huang CF, Dai L, Chen T, Kuo SW. Main Chain-Type Block Copolymers through Atom Transfer Radical Polymerization from Double-Decker-Shaped Polyhedral Oligomeric Silsesquioxane Hybrids. Polymers (Basel) 2020; 12:E465. [PMID: 32079321 PMCID: PMC7077682 DOI: 10.3390/polym12020465] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 01/27/2023] Open
Abstract
In this study, we synthesized two main chain-type block copolymers featuring hydrogen bond donor and acceptor segments through atom transfer radical polymerization (ATRP) using a bifunctionalized polyhedral oligomeric silsesquioxane (POSS) nanoparticle as the initiator. Hydrosilylation of vinylbenzyl chloride at the two corners of a double-decker silsesquioxane (DDSQ) provided the bifunctionalized benzyl chloride initiator VBC-DDSQ-VBC, which we applied as a platform to prepare a main chain-type polystyrene homopolymer (PS-DDSQ-PS), the diblock copolymer poly(styrene-b-4-vinylpyridine) (P4VP-b-PS-DDSQ-PS-b-P4VP), and the diblock copolymer poly(styrene-b-tert-butoxystyrene) (PtBuOS-b-PS-DDSQ-PS-b-PtBuOS) through sequential ATRP. Selective hydrolysis of the tert-butoxyl units of PtBuOS-b-PS-DDSQ-PS-b-PtBuOS yielded the strongly hydrogen bonding diblock copolymer poly (styrene-b-vinylphenol) (PVPh-b-PS-DDSQ-PS-b-PVPh). We used Fourier transfer infrared spectroscopy, nuclear magnetic resonance spectroscopy, size exclusion chromatography, differential scanning calorimetry, mass-analyzed laser desorption ionization mass spectrometry, and transmission electron microscopy to investigate the chemical structures, thermal behavior, and self-assembled nanostructures formed by these main chain-type block copolymers based on DDSQ.
Collapse
Affiliation(s)
- Wei-Cheng Chen
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan; (W.-C.C.); (Y.-H.T.)
| | - Yu-Hsuan Tsao
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan; (W.-C.C.); (Y.-H.T.)
| | - Chih-Feng Wang
- Advanced Membrane Materials Research Center, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan;
| | - Chih-Feng Huang
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung 402-27, Taiwan;
| | - Lizong Dai
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen 361005, China;
| | - Tao Chen
- Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Zhongguan West Road 1219, Ningbo 315201, China;
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan; (W.-C.C.); (Y.-H.T.)
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
14
|
Tsou CT, Kuo SW. Competing Hydrogen Bonding Interaction Creates Hierarchically Ordered Self-Assembled Structures of PMMA-b-P4VP/PVPh-b-PS Mixtures. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01829] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Cheng-Tai Tsou
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
15
|
Urakawa O, Yasue A. Glass Transition Behaviors of Poly (Vinyl Pyridine)/Poly (Vinyl Phenol) Revisited. Polymers (Basel) 2019; 11:E1153. [PMID: 31284499 PMCID: PMC6680477 DOI: 10.3390/polym11071153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 11/23/2022] Open
Abstract
We examined the composition and molecular weight dependence of the glass transition temperature in detail for two types of hydrogen bonding miscible blends: poly (2-vinyl pyridine)/poly (vinyl phenol) (2VPy/VPh) and poly (4-vinyl pyridine)/poly (vinyl phenol) (4VPy/VPh). Regarding the functional form of the glass transition temperature, Tg, as a function of the weight fraction, we found a weak deviation from the Kwei equation for 2VPy/VPh blends. In contrast, such a deviation was not observed for the 4VPy/VPh blend. By relating the difference in the functional forms of Tg between the two blend systems to the difference in hydrogen bonding ability, we proposed a modified version of the Kwei equation. As for the interaction parameter, q in the Kwei equation, clear molecular weight dependence was observed for 2VPy/VPh blends: the lower the VPh molecular weight in the oligomer level, the higher the q values, suggesting the higher hydrogen bonding formability near the polymer chain ends than the middle part of a polymer chain.
Collapse
Affiliation(s)
- Osamu Urakawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| | - Ayaka Yasue
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|