1
|
Zhang S, Wu M, Rong J, Zhang X, Han W, Zhao T, Chen X, Naito K, Yu X, Zhang Q. Synthesis and Characterization of Pyrimidine‐Based Novel Phthalonitrile Resins with Excellent Processing Performance and High Glass Transition Temperature. ChemistrySelect 2023. [DOI: 10.1002/slct.202204876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Shuo Zhang
- Hebei Key Laboratory of Functional Polymers School of Chemical Engineering and Technology Hebei University of Technology Tianjin 300401 China
| | - Minjie Wu
- Hebei Key Laboratory of Functional Polymers School of Chemical Engineering and Technology Hebei University of Technology Tianjin 300401 China
| | - Jianxin Rong
- Hebei Key Laboratory of Functional Polymers School of Chemical Engineering and Technology Hebei University of Technology Tianjin 300401 China
| | - Xinyang Zhang
- Hebei Key Laboratory of Functional Polymers School of Chemical Engineering and Technology Hebei University of Technology Tianjin 300401 China
| | - Wenshuang Han
- Hebei Key Laboratory of Functional Polymers School of Chemical Engineering and Technology Hebei University of Technology Tianjin 300401 China
| | - Tao Zhao
- Hebei Key Laboratory of Functional Polymers School of Chemical Engineering and Technology Hebei University of Technology Tianjin 300401 China
| | - Xinggang Chen
- School of Materials Science and Engineering North China University of Science and Technology Tangshan 063210 China
| | - Kimiyoshi Naito
- National Institute for Materials Science (NIMS) Hybrid Materials Unit, Composite Materials Group 1-2-1 Sengen Tsukuba 305-0047 Japan
| | - Xiaoyan Yu
- Hebei Key Laboratory of Functional Polymers School of Chemical Engineering and Technology Hebei University of Technology Tianjin 300401 China
| | - Qingxin Zhang
- Hebei Key Laboratory of Functional Polymers School of Chemical Engineering and Technology Hebei University of Technology Tianjin 300401 China
| |
Collapse
|
2
|
A new bio-based thermosetting with amorphous state, sub-zero softening point and high curing efficiency. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Pu Y, Xie H, He X, Lv J, Zhu Z, Hong J, Zeng K, Hu J, Yang G. The curing reaction of phthalonitrile promoted by sulfhydryl groups with high curing activity. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
4
|
Xie H, He X, Pu Y, Lv J, Chen M, Zeng K, Yang G. Synthesis of oligomeric phthalonitrile resins containing imide units and study of the methylene-cyano thermal synergistic polymerization effect. HIGH PERFORM POLYM 2022. [DOI: 10.1177/09540083211073658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The meta- and para-catenated methylene-containing phthalonitrile oligomers were prepared from the reaction of an excess amount of 4,4′-(4,4′-isopropylidenediphenoxy) bis-(phthalic anhydride) (BPADA) with 4,4′-Methylenedianiline (MDA) in a N, N-dimethylformamide/ toluene solvent mixture, followed by end-capping agent with 4-nitrophthalonitrile or 4-phenoxyaniline in a two-step, one-pot reaction. Differential scanning calorimetry (DSC) showed that both PN oligomers exhibited low softening points. The self-catalyzed curing reactivity of the PN oligomers was confirmed by the isothermal rheological measurements. Fourier transform infrared spectroscopy (FTIR) and ultraviolet and visible spectrophotometry (UV–Vis) data of the pre-curing resins were employed to investigate the chemical structure of the pre-cured resins, suggesting that oligomers generated crosslinking sites, including triazine, isoindoline, and phthalocyanine. The results further confirmed the self-catalyzed curing reactivity of the oligomers. Thermal properties were investigated by dynamic mechanical analysis (DMA) and thermal gravimetric analysis (TGA), demonstrating good thermal properties of the cured resins. The glass transition temperatures (Tgs) of PIPN-1-325, PIPN-1-350, PIPN-1-375 were in the range of 285–345°C, the 5% weight loss temperature (T5%) was observed at 482°C. The PIPN-2-325, PIPN-2-350, PIPN-2-375 showed Tgs ranging from 293 to 370°C, and T5% of the resins were in the range of 481–501°C. Then the isothermal rheological results of model compound and PN oligomers implied that the curing process of PN oligomers was closely related to the methylene-cyano radical thermal synergistic polymerization (TSP) effect proposed in our previous research, and then a revised curing mechanism (radical TSP mechanism) was proposed.
Collapse
Affiliation(s)
- Huanxin Xie
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, P. R. China
| | - Xian He
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, P. R. China
| | - Yu Pu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, P. R. China
| | - Jiangbo Lv
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, P. R. China
| | - Menghao Chen
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, P. R. China
| | - Ke Zeng
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, P. R. China
| | - Gang Yang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
5
|
Zhang H, Li M, Wang C, Huang G, Liu M, Sun J, Fang Q. A highly heat-resistant phthalocyanine resin based on a bio-based anethole. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Weng Z, Song L, Qi Y, Li J, Cao Q, Liu C, Zhang S, Wang J, Jian X. Natural magnolol derivatives as platform chemicals for bio-based phthalonitrile thermoset: Achieving high performances without an external curing agent. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
7
|
Ning Y, Li D, Wang M, Jiang L. Bio‐resourced eugenol derived phthalonitrile resin for high temperature composite. J Appl Polym Sci 2021. [DOI: 10.1002/app.50721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yi Ning
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry Beihang University Beijing China
| | - Dian‐sen Li
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry Beihang University Beijing China
- Beijing Advanced Innovation Center for Biomedical Engineering Beihang University Beijing China
| | - Ming‐cun Wang
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry Beihang University Beijing China
| | - Lei Jiang
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry Beihang University Beijing China
| |
Collapse
|
8
|
He X, Chen M, Wu H, Liao S, Luo Y, Hu J, Zeng K, Yang G. A novel, facile and straightforward approach to achieve high-performance and efficient utilization of sustainable tyrosine cyclic peptide. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Chen M, He X, Guo Y, Hu J, Liang B, Zeng K, Yang G. A new molecular design platform for high-performance polymers from versatile bio-based tyramine: a case study of tyramine-derived phthalonitrile resin. Polym Chem 2021. [DOI: 10.1039/d0py01322f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tyramine was first introduced into high-performance polymers as a promising monomer platform; the derived phthalonitrile resin exhibits excellent thermal stability and a high Tg value.
Collapse
Affiliation(s)
- Menghao Chen
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering Sichuan University
- Chengdu
- P. R. China
| | - Xian He
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering Sichuan University
- Chengdu
- P. R. China
| | - Yuhang Guo
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering Sichuan University
- Chengdu
- P. R. China
| | - Jianghuai Hu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering Sichuan University
- Chengdu
- P. R. China
| | - Bo Liang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering Sichuan University
- Chengdu
- P. R. China
| | - Ke Zeng
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering Sichuan University
- Chengdu
- P. R. China
| | - Gang Yang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering Sichuan University
- Chengdu
- P. R. China
| |
Collapse
|
10
|
Promoting effect of methyne/methylene moiety of bisphenol E/F on phthalonitrile resin curing: Expanding the structural design route of phthalonitrile resin. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.123001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Study on the phthalonitrile cured via bio-tyrosine cyclic peptide: Achieving good thermal properties under low post-curing temperature. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Hu J, Yang W, Tan W, Liang B, Xiao H, Li R, Lv J, Zeng K, Yang G. A novel development route for cyano-based high performance thermosetting resins via the strategy of functional group design-dicyanoimidazole resins. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|