1
|
Kuram E, Karadeli HH. Fabrication of Shape Memory Polymer Endovascular Thrombectomy Device for Treating Ischemic Stroke. Macromol Rapid Commun 2024; 45:e2400146. [PMID: 38704791 DOI: 10.1002/marc.202400146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/28/2024] [Indexed: 05/07/2024]
Abstract
Stroke is the second result for death and ischemic stroke constitutes most of all stroke cases. Ischemic stroke takes place when blood clot or embolus blocks cerebral vessel and interrupts blood flow, which often leads to brain damage, permanent disability, or death. There is a 4.5-h (golden hour) treatment window to restore blood flow prior to permanent neurological impairment results. Current stroke treatments consist mechanical system or thrombolytic drug therapy to disrupt or dissolve thrombus. Promising method for stroke treatment is mechanical retrieving of thrombi employing device deployed endovascularly. Advent of smart materials has led to research fabrication of several minimally invasive endovascular devices that take advantage of new materials capabilities. One of these capabilities is shape memory, is capability of material to store temporary form, then activate to primary shape as subjected to stimuli. Shape memory polymers (SMPs) are employed as good materials for thrombectomy device fabrication. Therefore, current review presents thrombectomy device development and fabrication with SMPs. Design, performance, limitations, and in vitro or in vivo clinical results of SMP-based thrombectomy devices are identified. Review also sheds light on SMP's future outlook and recommendations for thrombectomy device application, opening a new era for advanced materials in materials science.
Collapse
Affiliation(s)
- Emel Kuram
- Department of Mechanical Engineering, Gebze Technical University, Kocaeli, 41400, Turkey
| | - Hasan Hüseyin Karadeli
- Department of Neurology, Istanbul Medeniyet University Göztepe Prof. Dr. Süleyman Yalçın City Hospital, Istanbul, 34722, Turkey
| |
Collapse
|
2
|
Li Z, Mei S, Luo L, Li S, Chen X, Zhang Y, Zhao W, Zhang X, Shi G, He Y, Cui Z, Fu P, Pang X, Liu M. Multiple/Two-Way Shape Memory Poly(urethane-urea-amide) Elastomers. Macromol Rapid Commun 2023; 44:e2200693. [PMID: 36250510 DOI: 10.1002/marc.202200693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/10/2022] [Indexed: 11/07/2022]
Abstract
Multiple and two-way reversible shape memory polymers (M/2W-SMPs) are highly promising for many fields due to large deformation, lightweight, strong recovery stress, and fast response rates. Herein, a semi-crystalline block poly(urethane-urea-amide) elastomers (PUUAs) are prepared by the copolymerization of isocyanate-terminated polyurethane (OPU) and amino-terminated oligomeric polyamide-1212 (OPA). PUUAs, composed of OPA as stationary phase and PTMEG as reversible phase, exhibit excellent rigidity, flexibility, and resilience, and cPUUA-C7 -S25 exhibits the best tensile property with strength of 10.3 MPa and elongation at break of 360.2%. Besides, all the PUUAs possess two crystallization/melting temperatures and a glass transition temperature, which endow PUUAs with multiple and reversible two-way shape memory effect (M/2W-SME). Physically crosslinked PUUA-C0 -S25 exhibits excellent dual and triple shape memory, and micro chemically crosslinked cPUUA-C7 -S25 further shows quadruple shape memory behavior. Additionally, both PUUA-C0 -S25 and cPUUA-C7 -S25 have 2W-SME. Intriguingly, cPUUA-C7 -S25 can achieve a higher temperature (up to 165 °C) SME, which makes it suitable for more complex and changeable applications. Based on the advantages of M/2W-SME, a temperature-responsive application scenario where PUUAs can transform spontaneously among different shapes is designed. These unique M/2W-SME and high-temperature SME will enable the applications of high-temperature sensors, actuators, and aerospace equipment.
Collapse
Affiliation(s)
- Zhen Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuxiang Mei
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Lu Luo
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Siyuan Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaoyin Chen
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuancheng Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| | - Wei Zhao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| | - Xiaomeng Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| | - Ge Shi
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| | - Yanjie He
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| | - Zhe Cui
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| | - Peng Fu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| | - Xinchang Pang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| | - Minying Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| |
Collapse
|
3
|
Salaeh S, Nobnop S, Thongnuanchan B, Das A, Wießner S. Thermo-responsive programmable shape memory polymer based on amidation cured natural rubber grafted with poly(methyl methacrylate). POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Qi F, Gao J, Wu B, Yang H, Qi F, Zhao N, Zhang B, Ouyang X. Study on Mechanical Properties and High-Speed Impact Resistance of Carbon Nanofibers/Polyurethane Composites Modified by Polydopamine. Polymers (Basel) 2022; 14:polym14194177. [PMID: 36236125 PMCID: PMC9571742 DOI: 10.3390/polym14194177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022] Open
Abstract
Polyurethane elastomers (PUE), with superior mechanical properties and excellent corrosion resistance, are applied widely to the protective capability of structures under low-speed impact. However, they are prone to instantaneous phase transition, irreversible deformation and rupture even arising from holes under high-speed impact. In this paper, mussel adhesion proteins were applied to modify carbon nanofibers (CNFs) in a non-covalent way, and creatively mixed with PUE. This can improve the dispersity and interfacial compatibility of nanofillers in the PUE matrix. In addition, the homogeneous dispersion of modified nanofillers can serve as "reinforcing steel bars". The nanofillers and PUE matrix can form "mud and brick" structures, which show superb mechanical properties and impact resistance. Specifically, the reinforcement of 1.0 wt.% modified fillers in PUE is 103.51%, 95.12% and 119.85% higher than the neat PUE in compression modulus, storage modulus and energy absorption capability, respectively. The results have great implications in the design of composite parts for aerospace and army vehicles under extreme circumstances.
Collapse
Affiliation(s)
- Feng Qi
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
- Qingdao Green World New Material Technology, Qingdao 266100, China
| | - Jun Gao
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan 411105, China
- Correspondence: (J.G.); (F.Q.); (N.Z.)
| | - Bolun Wu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan 411105, China
| | - Hongyan Yang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan 411105, China
| | - Fugang Qi
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan 411105, China
- Correspondence: (J.G.); (F.Q.); (N.Z.)
| | - Nie Zhao
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan 411105, China
- Correspondence: (J.G.); (F.Q.); (N.Z.)
| | - Biao Zhang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan 411105, China
| | - Xiaoping Ouyang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
5
|
Gupta K BNVSG, Patnaik S, Ray BC, Rai RK, Prusty RK. Elevated temperature mechanical behavior of nano Al
2
O
3
embedded interpenetrating polymer network/glass fiber composites. J Appl Polym Sci 2022. [DOI: 10.1002/app.52991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- B. N. V. S. Ganesh Gupta K
- FRP Composite Laboratory, Department of Metallurgical and Materials Engineering National Institute of Technology Rourkela India
| | - Satyaroop Patnaik
- FRP Composite Laboratory, Department of Metallurgical and Materials Engineering National Institute of Technology Rourkela India
| | - Bankim Chandra Ray
- FRP Composite Laboratory, Department of Metallurgical and Materials Engineering National Institute of Technology Rourkela India
| | - Rajesh Kumar Rai
- Department of Metallurgical & Materials Engineering Malaviya National Institute of Technology Jaipur India
| | - Rajesh Kumar Prusty
- FRP Composite Laboratory, Department of Metallurgical and Materials Engineering National Institute of Technology Rourkela India
- Centre for Nanomaterials National Institute of Technology, Rourkela Rourkela India
| |
Collapse
|
6
|
Luo L, Zhang F, Leng J. Shape Memory Epoxy Resin and Its Composites: From Materials to Applications. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9767830. [PMID: 35360647 PMCID: PMC8949802 DOI: 10.34133/2022/9767830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/06/2022] [Indexed: 01/14/2023]
Abstract
Shape memory polymers (SMPs) have historically attracted attention for their unique stimulation-responsive and variable stiffness and have made notable progress in aerospace, civil industry, and other fields. In particular, epoxy resin (EP) has great potential due to its excellent mechanical properties, fatigue resistance, and radiation resistance. Herein, we focus on the molecular design and network construction of shape memory epoxy resins (SMEPs) to provide opportunities for performance and functional regulation. Multifunctional and high-performance SMEPs are introduced in detail, including multiple SMEPs, two-way SMEPs, outstanding toughness, and temperature resistance. Finally, emerging applications of SMEPs and their composites in aerospace, four-dimensional printing, and self-healing are demonstrated. Based on this, we point out the challenges ahead and how SMEPs can integrate performance and versatility to meet the needs of technological development.
Collapse
Affiliation(s)
- Lan Luo
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), Harbin 150080, China
| | - Fenghua Zhang
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), Harbin 150080, China
| | - Jinsong Leng
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), Harbin 150080, China
| |
Collapse
|
7
|
Teleky BE, Vodnar DC. Recent Advances in Biotechnological Itaconic Acid Production, and Application for a Sustainable Approach. Polymers (Basel) 2021; 13:3574. [PMID: 34685333 PMCID: PMC8539575 DOI: 10.3390/polym13203574] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022] Open
Abstract
Intense research has been conducted to produce environmentally friendly biopolymers obtained from renewable feedstock to substitute fossil-based materials. This is an essential aspect for implementing the circular bioeconomy strategy, expressly declared by the European Commission in 2018 in terms of "repair, reuse, and recycling". Competent carbon-neutral alternatives are renewable biomass waste for chemical element production, with proficient recyclability properties. Itaconic acid (IA) is a valuable platform chemical integrated into the first 12 building block compounds the achievement of which is feasible from renewable biomass or bio-wastes (agricultural, food by-products, or municipal organic waste) in conformity with the US Department of Energy. IA is primarily obtained through fermentation with Aspergillus terreus, but nowadays several microorganisms are genetically engineered to produce this organic acid in high quantities and on different substrates. Given its trifunctional structure, IA allows the synthesis of various novel biopolymers, such as drug carriers, intelligent food packaging, antimicrobial biopolymers, hydrogels in water treatment and analysis, and superabsorbent polymers binding agents. In addition, IA shows antimicrobial, anti-inflammatory, and antitumor activity. Moreover, this biopolymer retains qualities like environmental effectiveness, biocompatibility, and sustainability. This manuscript aims to address the production of IA from renewable sources to create a sustainable circular economy in the future. Moreover, being an essential monomer in polymer synthesis it possesses a continuous provocation in the biopolymer chemistry domain and technologies, as defined in the present review.
Collapse
Affiliation(s)
- Bernadette-Emőke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăstur 3-5, 400372 Cluj-Napoca, Romania;
| | - Dan Cristian Vodnar
- Faculty of Food Science and Technology, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Ajaz N, Khan IU, Asghar S, Khalid SH, Irfan M, Asif M, Chatha SAS. Assessing the pH responsive and mucoadhesive behavior of dexamethasone sodium phosphate loaded itaconic acid-grafted-poly(acrylamide)/carbopol semi-interpenetrating networks. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02643-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Affiliation(s)
- Subrata Mondal
- Department of Mechanical Engineering, National Institute of Technical Teachers’ Training and Research (NITTTR) Kolkata, Kolkata, India
| |
Collapse
|
10
|
Amornkitbamrung L, Srisaard S, Jubsilp C, Bielawski CW, Um SH, Rimdusit S. Near-infrared light responsive shape memory polymers from bio-based benzoxazine/epoxy copolymers produced without using photothermal filler. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122986] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Wang TX, Chen HM, Salvekar AV, Lim J, Chen Y, Xiao R, Huang WM. Vitrimer-Like Shape Memory Polymers: Characterization and Applications in Reshaping and Manufacturing. Polymers (Basel) 2020; 12:E2330. [PMID: 33053813 PMCID: PMC7601385 DOI: 10.3390/polym12102330] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/26/2022] Open
Abstract
The shape memory effect (SME) refers to the ability of a material to recover its original shape, but only in the presence of a right stimulus. Most polymers, either thermo-plastic or thermoset, can have the SME, although the actual shape memory performance varies according to the exact material and how the material is processed. Vitrimer, which is between thermoset and thermo-plastic, is featured by the reversible cross-linking. Vitrimer-like shape memory polymers (SMPs) combine the vitrimer-like behavior (associated with dissociative covalent adaptable networks) and SME, and can be utilized to achieve many novel functions that are difficult to be realized by conventional polymers. In the first part of this paper, a commercial polymer is used to demonstrate how to characterize the vitrimer-like behavior based on the heating-responsive SME. In the second part, a series of cases are presented to reveal the potential applications of vitrimer-like SMPs and their composites. It is concluded that the vitrimer-like feature not only enables many new ways in reshaping polymers, but also can bring forward new approaches in manufacturing, such as, rapid 3D printing in solid state on space/air/sea missions.
Collapse
Affiliation(s)
- Tao Xi Wang
- College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, China;
| | - Hong Mei Chen
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Abhijit Vijay Salvekar
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (A.V.S.); (J.L.)
| | - Junyi Lim
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (A.V.S.); (J.L.)
| | - Yahui Chen
- School of Physical Science and Technology, Soochow University, Suzhou 215006, China;
| | - Rui Xiao
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China;
| | - Wei Min Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (A.V.S.); (J.L.)
| |
Collapse
|