1
|
Kim SY, Muthuramalingam K, Lee HJ. Effects of fragmented polycaprolactone electrospun nanofiber in a hyaluronic acid hydrogel on fibroblasts. Tissue Cell 2024; 91:102582. [PMID: 39413457 DOI: 10.1016/j.tice.2024.102582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/18/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Hyaluronic acid (HA) hydrogels have shown promise as biomaterials for soft tissue engineering applications due to their biocompatibility and ability to mimic the extracellular matrix (ECM). However, their limited cell adhesion properties and the need for improved crosslinking methods have hindered their widespread use. In this study, we developed an ECM-mimicking HA hydrogel reinforced with alkaline hydrolyzed (1 M NaOH) fragmented (1.5 cm×1.5 cm) electrospun polycaprolactone (PCL) fibers to enhance cell adhesion and mechanical properties of HA hydrogel. Formation of HA hydrogel was achieved through a thiol-ene click reaction, which is initiated by exposure to visible blue light-activated biocompatible photoinitiator, riboflavin phosphate. The incorporation of alkaline hydrolyzed PCL fiber fragments (PFF) (0 %, 0.1 %, and 1 % w/v) into HA hydrogel precursor solution significantly increased the mechanical stiffness of the HA hydrogel, with the storage modulus ranging from 18.6 ± 0.7 Pa to 216.0 ± 38.2 Pa. The cytocompatibility of the PCL fiber-reinforced HA hydrogel was evaluated using NIH/3T3 fibroblasts. The results demonstrated improved cell adhesion, proliferation, and enhanced cellular functions, including increased production of glycosaminoglycans (GAGs) and collagen, in the PCL fiber-reinforced HA hydrogel compared to the control HA hydrogel. These findings suggest that the developed PCL fiber-reinforced HA hydrogel system, with tunable mechanical properties and excellent cytocompatibility, has potential applications in soft tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Seo Young Kim
- School of Chemical, Biological and Battery Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Karthika Muthuramalingam
- School of Chemical, Biological and Battery Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| | - Hyun Jong Lee
- School of Chemical, Biological and Battery Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|
2
|
Wendland RJ, Conway MT, Worthington KS. Evaluating the polymerization effectiveness and biocompatibility of bio-sourced, visible light-based photoinitiator systems. J Biomed Mater Res A 2024; 112:1662-1674. [PMID: 38572856 DOI: 10.1002/jbm.a.37715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/06/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
The use of photopolymerization is expanding across a multitude of biomedical applications, from drug delivery to bioprinting. Many of these current and emerging photopolymerization systems employ visible light, as motivated by safety and energy efficiency considerations. However, the "library" of visible light initiators is limited compared with the wealth of options available for UV polymerization. Furthermore, the synthesis of traditional photoinitiators relies on diminishing raw materials, and several traditional photoinitiators are considered emerging environmental contaminants. As such, there has been recent focus on identifying and characterizing biologically sourced, visible light-based photoinitiator systems that can be effectively used in photopolymerization applications. In this regard, several bio-sourced molecules have been shown to act as photoinitiators, primarily through Type II photoinitiation mechanisms. However, whether bio-sourced molecules can also act as effective synergists in these reactions remains unknown. In this study, we evaluated the effectiveness of bio-sourced synergist candidates, with a focus on amino acids, due to their amine functional groups, in combination with two bio-sourced photoinitiator molecules: riboflavin and curcumin. We tested the effectiveness of these photoinitiator systems under both violet (405 nm) and blue (460-475 nm) light using photo-rheology. We found that several synergist candidates, namely lysine, arginine, and histidine, increased the polymerization effectiveness of riboflavin when used with both violet and blue light. With curcumin, we found that almost all tested synergist candidates slightly decreased the polymerization effectiveness compared with curcumin alone under both light sources. These results show that bio-sourced molecules have the potential to be used as synergists with bio-sourced photoinitiators in visible light photopolymerization. However, more work must be done to fully characterize these reactions and to investigate more synergist candidates. Ultimately, this information is expected to expand the range of available visible light-based photoinitiator systems and increase their sustainability.
Collapse
Affiliation(s)
- Rion J Wendland
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
| | - Matthew T Conway
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
| | - Kristan S Worthington
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
3
|
Espinoza-Espinoza LA, Muñoz-More HD, Nole-Jaramillo JM, Ruiz-Flores LA, Arana-Torres NM, Moreno-Quispe LA, Valdiviezo-Marcelo J. Microencapsulation of vitamins: A review and meta-analysis of coating materials, release and food fortification. Food Res Int 2024; 187:114420. [PMID: 38763670 DOI: 10.1016/j.foodres.2024.114420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Vitamins are responsible for providing biological properties to the human body; however, their instability under certain environmental conditions limits their utilization in the food industry. The objective was to conduct a systematic review on the use of biopolymers and lipid bases in microencapsulation processes, assessing their impact on the stability, controlled release, and viability of fortified foods with microencapsulated vitamins. The literature search was conducted between the years 2013-2023, gathering information from databases such as Scopus, PubMed, Web of Science and publishers including Taylor & Francis, Elsevier, Springer and MDPI; a total of 49 articles were compiled The results were classified according to the microencapsulation method, considering the following information: core, coating material, solvent, formulation, process conditions, particle size, efficiency, yield, bioavailability, bioaccessibility, in vitro release, correlation coefficient and references. It has been evidenced that gums are the most frequently employed coatings in the protection of vitamins (14.04%), followed by alginate (10.53%), modified chitosan (9.65%), whey protein (8.77%), lipid bases (8.77%), chitosan (7.89%), modified starch (7.89%), starch (7.02%), gelatin (6.14%), maltodextrin (5.26%), zein (3.51%), pectin (2.63%) and other materials (7.89%). The factors influencing the release of vitamins include pH, modification of the coating material and crosslinking agents; additionally, it was determined that the most fitting mathematical model for release values is Weibull, followed by Zero Order, Higuchi and Korsmeyer-Peppas; finally, foods commonly fortified with microencapsulated vitamins were described, with yogurt, bakery products and gummy candies being notable examples.
Collapse
Affiliation(s)
| | - Henry Daniel Muñoz-More
- Laboratorio de Alimentos Funcionales y Bioprocesos - Facultad de Ingeniería de Industrias alimentarias, Universidad Nacional de Frontera, Sullana 20100, Peru.
| | - Juliana Maricielo Nole-Jaramillo
- Laboratorio de Alimentos Funcionales y Bioprocesos - Facultad de Ingeniería de Industrias alimentarias, Universidad Nacional de Frontera, Sullana 20100, Peru
| | - Luis Alberto Ruiz-Flores
- Laboratorio de Alimentos Funcionales y Bioprocesos - Facultad de Ingeniería de Industrias alimentarias, Universidad Nacional de Frontera, Sullana 20100, Peru
| | - Nancy Maribel Arana-Torres
- Laboratorio de Alimentos Funcionales y Bioprocesos - Facultad de Ingeniería de Industrias alimentarias, Universidad Nacional de Frontera, Sullana 20100, Peru
| | - Luz Arelis Moreno-Quispe
- Facultad de Ciencias empresariales y Turismo, Universidad Nacional de Frontera, Sullana 20100, Peru
| | - Jaime Valdiviezo-Marcelo
- Laboratorio de Alimentos Funcionales y Bioprocesos - Facultad de Ingeniería de Industrias alimentarias, Universidad Nacional de Frontera, Sullana 20100, Peru
| |
Collapse
|
4
|
Lopez-Larrea N, Gallastegui A, Lezama L, Criado-Gonzalez M, Casado N, Mecerreyes D. Fast Visible-Light 3D Printing of Conductive PEDOT:PSS Hydrogels. Macromol Rapid Commun 2024; 45:e2300229. [PMID: 37357826 DOI: 10.1002/marc.202300229] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/01/2023] [Indexed: 06/27/2023]
Abstract
Functional inks for light-based 3D printing are actively being searched for being able to exploit all the potentialities of additive manufacturing. Herein, a fast visible-light photopolymerization process is showed of conductive PEDOT:PSS hydrogels. For this purpose, a new Type II photoinitiator system (PIS) based on riboflavin (Rf), triethanolamine (TEA), and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is investigated for the visible light photopolymerization of acrylic monomers. PEDOT:PSS has a dual role by accelerating the photoinitiation process and providing conductivity to the obtained hydrogels. Using this PIS, full monomer conversion is achieved in less than 2 min using visible light. First, the PIS mechanism is studied, proposing that electron transfer between the triplet excited state of the dye (3 Rf*) and the amine (TEA) is catalyzed by PEDOT:PSS. Second, a series of poly(2-hydroxyethyl acrylate)/PEDOT:PSS hydrogels with different compositions are obtained by photopolymerization. The presence of PEDOT:PSS negatively influences the swelling properties of hydrogels, but significantly increases its mechanical modulus and electrical properties. The new PIS is also tested for 3D printing in a commercially available Digital Light Processing (DLP) 3D printer (405 nm wavelength), obtaining high resolution and 500 µm hole size conductive scaffolds.
Collapse
Affiliation(s)
- Naroa Lopez-Larrea
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia-San Sebastian, Guipuzcoa, 20018, Spain
| | - Antonela Gallastegui
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia-San Sebastian, Guipuzcoa, 20018, Spain
| | - Luis Lezama
- Departamento de Química Orgánica e Inorgánica, University of the Basque Country UPV/EHU, Barrio Sarriena s/n, Leioa, Bizkaia, 48940, Spain
| | - Miryam Criado-Gonzalez
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia-San Sebastian, Guipuzcoa, 20018, Spain
| | - Nerea Casado
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia-San Sebastian, Guipuzcoa, 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao, 48009, Spain
| | - David Mecerreyes
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia-San Sebastian, Guipuzcoa, 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao, 48009, Spain
| |
Collapse
|
5
|
Zaborniak I, Pieńkowska N, Chmielarz P, Bartosz G, Dziedzic A, Sadowska-Bartosz I. Nitroxide-containing amphiphilic polymers prepared by simplified electrochemically mediated ATRP as candidates for therapeutic antioxidants. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
6
|
Zaborniak I, Chmielarz P. How we can improve ARGET ATRP in an aqueous system: Honey as an unusual solution for polymerization of (meth)acrylates. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2022.111735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Zaborniak I, Sroka M, Chmielarz P. Lemonade as a rich source of antioxidants: Polymerization of 2-(dimethylamino)ethyl methacrylate in lemon extract. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Ma X, Chen Z, Sun Y, Cai Z, Cheng F, Ma W. Effect on kinetics and energy distribution of riboflavin adsorption from magnetic nano-carbon composites with adsorbed water layer. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Application and Multi-Stage Optimization of Daylight Polymer 3D Printing of Personalized Medicine Products. Pharmaceutics 2022; 14:pharmaceutics14040843. [PMID: 35456677 PMCID: PMC9029863 DOI: 10.3390/pharmaceutics14040843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 01/27/2023] Open
Abstract
Additive technologies have undoubtedly become one of the most intensively developing manufacturing methods in recent years. Among the numerous applications, the interest in 3D printing also includes its application in pharmacy for production of small batches of personalized drugs. For this reason, we conducted multi-stage pre-formulation studies to optimize the process of manufacturing solid dosage forms by photopolymerization with visible light. Based on tests planned and executed according to the design of the experiment (DoE), we selected the optimal quantitative composition of photocurable resin made of PEG 400, PEGDA MW 575, water, and riboflavin, a non-toxic photoinitiator. In subsequent stages, we adjusted the printer set-up and process parameters. Moreover, we assessed the influence of the co-initiators ascorbic acid or triethanolamine on the resin’s polymerization process. Next, based on an optimized formulation, we printed and analyzed drug-loaded tablets containing mebeverine hydrochloride, characterized by a gradual release of active pharmaceutical ingredient (API), reaching 80% after 6 h. We proved the possibility of reusing the drug-loaded resin that was not hardened during printing and determined the linear correlation between the volume of the designed tablets and the amount of API, confirming the possibility of printing personalized modified-release tablets.
Collapse
|
10
|
Flejszar M, Chmielarz P, Gießl M, Wolski K, Smenda J, Zapotoczny S, Cölfen H. A new opportunity for the preparation of PEEK-based bone implant materials: From SARA ATRP to photo-ATRP. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Pierau L, Elian C, Akimoto J, Ito Y, Caillol S, Versace DL. Bio-sourced Monomers and Cationic Photopolymerization: The Green combination towards Eco-Friendly and Non-Toxic Materials. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Zaborniak I, Chmielarz P. Comestible curcumin: From kitchen to polymer chemistry as a photocatalyst in metal-free ATRP of (meth)acrylates. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|