1
|
Kopyra J, Bancer A, Abdoul-Carime H. Low energy electron induced fragmentation of hot asparagine and aspartic acid molecules. J Chem Phys 2025; 162:174305. [PMID: 40314270 DOI: 10.1063/5.0254082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/17/2025] [Indexed: 05/03/2025] Open
Abstract
Asparagine (Asn) and aspartic acid (Asp) are not only amino acids found in proteins but also building blocks for synthesis of eco-friendly polymers with techniques such those in which electrons play a role. In this contribution, we present a comparative study of dissociative electron attachment (DEA) to Asn and Asp under gas-phase conditions by means of DEA spectroscopy. In contrast to a number of amino acids studied so far, the formation of the dehydrogenated parent anion, (M - H)-, at about 1.2 eV from both investigated compounds is not the most intense dissociation channel. On the other hand, prominent negative ion resonances are observed peaking below 0.5 eV, resulting in the formation of fragment anions generated from a loss of a neutral -COOH group or neutral H2O2 molecule or leading to the production of HCOO- from both asparagine and aspartic acid. It should be stressed here that the surrogation of one hydroxyl group by an amino group in aspartic acid, which results in the formation of asparagine, sensitizes the latter compound for the loss of an entire neutral carboxyl group. Indeed, the formation of the (Asn - COOH)- anion from DEA to asparagine is more efficient by about an order of magnitude than the formation of the (Asp - COOH)- anion from DEA to aspartic acid.
Collapse
Affiliation(s)
- Janina Kopyra
- Faculty of Sciences, Siedlce University, 3 Maja 54, 08-110 Siedlce, Poland
| | - Aleksandr Bancer
- National Centre for Nuclear Research, Andrzej Soltan 7, 05-400 Otwock-Swierk, Poland
| | - Hassan Abdoul-Carime
- Universite de Lyon, Université Lyon 1, Institut de Physique des 2 Infinis, CNRS/IN2P3, UMR5822, F-69003 Lyon, France
| |
Collapse
|
2
|
Fu X, Wang Y, Xu L, Narumi A, Sato SI, Yang X, Shen X, Kakuchi T. Thermoresponsive Property of Poly( N, N-bis(2-methoxyethyl)acrylamide) and Its Copolymers with Water-Soluble Poly( N, N-disubstituted acrylamide) Prepared Using Hydrosilylation-Promoted Group Transfer Polymerization. Polymers (Basel) 2023; 15:4681. [PMID: 38139932 PMCID: PMC10747282 DOI: 10.3390/polym15244681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
The group-transfer polymerization (GTP) of N,N-bis(2-methoxyethyl)acrylamide (MOEAm) initiated by Me2EtSiH in the hydrosilylation-promoted method and by silylketene acetal (SKA) in the conventional method proceeded in a controlled/living manner to provide poly(N,N-bis(2-methoxyethyl)acrylamide) (PMOEAm) and PMOEAm with the SKA residue at the α-chain end (MCIP-PMOEAm), respectively. PMOEAm-b-poly(N,N-dimethylacrylamide) (PDMAm) and PMOEAm-s-PDMAm and PMOEAm-b-poly(N,N-bis(2-ethoxyethyl)acrylamide) (PEOEAm) and PMOEAm-s-PEOEAm were synthesized by the block and random group-transfer copolymerization of MOEAm and N,N-dimethylacrylamide or N,N-bis(2-ethoxyethyl)acrylamide. The homo- and copolymer structures affected the thermoresponsive properties; the cloud point temperature (Tcp) increasing by decreasing the degree of polymerization (x). The chain-end group in PMOEAm affected the Tcp with PMOEAmx > MCIP-PMOEAmx. The Tcp of statistical copolymers was higher than that of block copolymers, with PMOEAmx-s-PDMAmy > PMOEAmx-b-PDMAmy and PMOEAmx-s-PEOEAmy > PMOEAmx-b-PEOEAmy.
Collapse
Affiliation(s)
- Xiangming Fu
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Changchun 130022, China; (X.F.); (Y.W.); (L.X.); (X.Y.)
| | - Yanqiu Wang
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Changchun 130022, China; (X.F.); (Y.W.); (L.X.); (X.Y.)
| | - Liang Xu
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Changchun 130022, China; (X.F.); (Y.W.); (L.X.); (X.Y.)
| | - Atsushi Narumi
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Yamagata, Japan;
| | - Shin-ichiro Sato
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Hokkaido, Japan;
| | - Xiaoran Yang
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Changchun 130022, China; (X.F.); (Y.W.); (L.X.); (X.Y.)
| | - Xiande Shen
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Changchun 130022, China; (X.F.); (Y.W.); (L.X.); (X.Y.)
- Chongqing Research Institute, Changchun University of Science and Technology, No. 618 Liangjiang Avenue, Longxing Town, Yubei District, Chongqing 401135, China
| | - Toyoji Kakuchi
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Changchun 130022, China; (X.F.); (Y.W.); (L.X.); (X.Y.)
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Hokkaido, Japan;
- Chongqing Research Institute, Changchun University of Science and Technology, No. 618 Liangjiang Avenue, Longxing Town, Yubei District, Chongqing 401135, China
| |
Collapse
|
3
|
von Vacano B, Mangold H, Vandermeulen GWM, Battagliarin G, Hofmann M, Bean J, Künkel A. Sustainable Design of Structural and Functional Polymers for a Circular Economy. Angew Chem Int Ed Engl 2023; 62:e202210823. [PMID: 36197763 DOI: 10.1002/anie.202210823] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
To achieve a sustainable circular economy, polymer production must start transitioning to recycled and biobased feedstock and accomplish CO2 emission neutrality. This is not only true for structural polymers, such as in packaging or engineering applications, but also for functional polymers in liquid formulations, such as adhesives, lubricants, thickeners or dispersants. At their end of life, polymers must be either collected and recycled via a technical pathway, or be biodegradable if they are not collectable. Advances in polymer chemistry and applications, aided by computational material science, open the way to addressing these issues comprehensively by designing for recyclability and biodegradability. This Review explores how scientific progress, together with emerging regulatory frameworks, societal expectations and economic boundary conditions, paint pathways for the transformation towards a circular economy of polymers.
Collapse
Affiliation(s)
| | - Hannah Mangold
- Group Research, BASF SE, 67056, Ludwigshafen am Rhein, Germany
| | - Guido W M Vandermeulen
- Functional Polymers R&D, Care Chemicals Division, BASF SE, 67056, Ludwigshafen am Rhein, Germany
| | | | | | - Jessica Bean
- Group Research, BASF SE, 67056, Ludwigshafen am Rhein, Germany
| | - Andreas Künkel
- Group Research, BASF SE, 67056, Ludwigshafen am Rhein, Germany
| |
Collapse
|
4
|
Recent Developments in Biopolymer-Based Hydrogels for Tissue Engineering Applications. Biomolecules 2023; 13:biom13020280. [PMID: 36830649 PMCID: PMC9953003 DOI: 10.3390/biom13020280] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Hydrogels are being investigated for their application in inducing the regeneration of various tissues, and suitable conditions for each tissue are becoming more apparent. Conditions such as the mechanical properties, degradation period, degradation mechanism, and cell affinity can be tailored by changing the molecular structure, especially in the case of polymers. Furthermore, many high-functional hydrogels with drug delivery systems (DDSs), in which drugs or bioactive substances are contained in controlled hydrogels, have been reported. This review focuses on the molecular design and function of biopolymer-based hydrogels and introduces recent developments in functional hydrogels for clinical applications.
Collapse
|
5
|
He M, Du C, Xia J, Zhang ZG, Dong CM. Multivalent Polypeptide and Tannic Acid Cooperatively Iron-Coordinated Nanohybrids for Synergistic Cancer Photothermal Ferroptosis Therapy. Biomacromolecules 2022; 23:2655-2666. [PMID: 35583462 DOI: 10.1021/acs.biomac.2c00409] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Owing to having a unique mechanism to kill cancer cells via the membrane accumulation of lipid peroxide (LPO) and the downregulation of glutathione peroxidase-4 (GPX-4), the ferroptosis therapy (FT) of tumors based on the Fenton reaction of iron nanoparticles has been receiving much attention in the past decade; however, there are some hurdles including the uncontrollable release of iron ions, slower kinetics of the intracellular Fenton reaction, and poor efficacy of FT that need to be overcome. Considering cooperative coordination of a multivalent thiol-pendant polypeptide ligand with iron ions, we put forward a facile strategy for constructing the iron-coordinated nanohybrid of methacryloyloxyethyl phosphorylcholine-grafted polycysteine/iron ions/tannic acid (i.e., PCFT), which could deliver a higher concentration of iron ions into cells. The dynamic and unsaturated coordination in PCFT is favorable for the intracellular stimuli-triggered release and fast Fenton reaction to realize efficient FT, while its intrinsic photothermia would boost the Fenton reaction to induce a synergistic effect between FT and photothermal therapy (PTT). Both immunofluorescence analyses of reactive oxygen species (ROS) and LPO confirmed that the intracellular Fenton reaction resulted in efficient FT, during which process the photothermia greatly boosted ferroptosis, and the Western blot assay corroborated that the expression level of GPX-4 was downregulated by FT and highly degraded by the photothermia to induce synergistic PTT-FT in vitro. Excitingly, by a single intravenous dose of PCFT plus one NIR irradiation, in vivo PTT-FT treatment completely eradicated 4T1 tumors without skin scar and tumor recurrence for 16 days, demonstrating prominent antitumor efficacy, as evidenced by the GPX-4, H&E, and TUNEL assays.
Collapse
Affiliation(s)
- Meng He
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chang Du
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jindong Xia
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai 201600, P. R. China
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
6
|
Leiske MN, Kempe K. A Guideline for the Synthesis of Amino-Acid-Functionalized Monomers and Their Polymerizations. Macromol Rapid Commun 2021; 43:e2100615. [PMID: 34761461 DOI: 10.1002/marc.202100615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/31/2021] [Indexed: 12/16/2022]
Abstract
Amino acids have emerged as a sustainable source for the design of functional polymers. Besides their wide availability, especially their high degree of biocompatibility makes them appealing for a broad range of applications in the biomedical research field. In addition to these favorable characteristics, the versatility of reactive functional groups in amino acids (i.e., carboxylic acids, amines, thiols, and hydroxyl groups) makes them suitable starting materials for various polymerization approaches, which include step- and chain-growth reactions. This review aims to provide an overview of strategies to incorporate amino acids into polymers. To this end, it focuses on the preparation of polymerizable monomers from amino acids, which yield main chain or side chain-functionalized polymers. Furthermore, postpolymerization modification approaches for polymer side chain functionalization are discussed. Amino acids are presented as a versatile platform for the development of polymers with tailored properties.
Collapse
Affiliation(s)
- Meike N Leiske
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan, Ghent, 9000, Belgium
| | - Kristian Kempe
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|