1
|
Wang C, Li X, Chen S, Shan T. Advances in High-Temperature Non-Metallocene Catalysts for Polyolefin Elastomers. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1334. [PMID: 40141617 PMCID: PMC11944024 DOI: 10.3390/ma18061334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025]
Abstract
Despite the great successes achieved by metallocene catalysts in high-value-added polyolefin elastomer, the challenging preparation conditions and undesirable high-temperature molecular weight capabilities have compromised the efficiency and cost of polyolefin in industrial production. Recently, non-metallocene catalysts have received considerable attention due to their high thermostability, especially when coordinated with early transition metals. This review provides an overview of these early transition metal non-metallocene catalysts, which are mainly composed of N,N'-, N,O-, and N,S-bidentate complexes and tridentate complexes. The structural characteristics, catalytic performance, advantages, and disadvantages of the relevant non-metallocene catalysts, as well as their applications, are discussed. Candidates for commercialization of non-metallocene catalysts are proposed-focusing on imine-enamine, amino-quinoline, and pyridine-imine catalysts-by comparing the successful industrialization cases of metallocene catalysts. Finally, the trend in the research on non-metallocene catalysts and the strategies to address the challenges limiting their commercialization are considered.
Collapse
Affiliation(s)
- Cheng Wang
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250024, China;
- Satellite Chemical Co., Ltd., Jiaxing 314001, China;
| | - Xin Li
- Satellite Chemical Co., Ltd., Jiaxing 314001, China;
| | - Si Chen
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Tianyu Shan
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Transition Metal-(μ-Cl)-Aluminum Bonding in α-Olefin and Diene Chemistry. Molecules 2022; 27:molecules27217164. [PMID: 36363991 PMCID: PMC9654437 DOI: 10.3390/molecules27217164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Olefin and diene transformations, catalyzed by organoaluminum-activated metal complexes, are widely used in synthetic organic chemistry and form the basis of major petrochemical processes. However, the role of M−(μ-Cl)−Al bonding, being proven for certain >C=C< functionalization reactions, remains unclear and debated for essentially more important industrial processes such as oligomerization and polymerization of α-olefins and conjugated dienes. Numerous publications indirectly point at the significance of M−(μ-Cl)−Al bonding in Ziegler−Natta and related transformations, but only a few studies contain experimental or at least theoretical evidence of the involvement of M−(μ-Cl)−Al species into catalytic cycles. In the present review, we have compiled data on the formation of M−(μ-Cl)−Al complexes (M = Ti, Zr, V, Cr, Ni), their molecular structure, and reactivity towards olefins and dienes. The possible role of similar complexes in the functionalization, oligomerization and polymerization of α-olefins and dienes is discussed in the present review through the prism of the further development of Ziegler−Natta processes and beyond.
Collapse
|
3
|
Gagieva SC, Magomedov KF, Tuskaev VA, Bogdanov VS, Kurmaev DA, Golubev EK, Denisov GL, Nikiforova GG, Evseeva MD, Saracheno D, Buzin MI, Dzhevakov PB, Privalov VI, Bulychev BM. Effect of Activator and Outgoing Ligand Nature on the Catalytic Behavior of Bis(phenoxy-imine) Ti(IV) Complexes in the Polymerization of Ethylene and Its Copolymerization with Higher Olefins. Polymers (Basel) 2022; 14:4397. [PMID: 36297979 PMCID: PMC9609217 DOI: 10.3390/polym14204397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/25/2022] Open
Abstract
A series of bis(phenoxy-imine) (FI) titanium(IV) and zirconium(IV) complexes have been synthesized. The effect of the nature of the activator (MAO, combinations EtnAlCl3-n + Bu2Mg and iBu3Al + [Ph3C]+[B(C6F5)4]-) on the catalytic activity and properties of the resulting polymers was studied. It was found that Ti-Fi complexes, despite the nature of the outgoing ligands (Cl or iPrO) in the presence of Al/Mg activators, effectively catalyze the polymerization of ethylene (with the formation of UHMWPE); copolymerization of ethylene with 1-octene (with the formation of ultra-high molecular weight copolymers); and the ternary copolymerization of ethylene, propylene and 5-vinyl-2-norbornene (with the formation of polyolefin elastomers). It has been shown that Zr-FI complexes are not activated by these Al/Mg compositions. The resulting UHMWPE can be processed by a solventless method into high-strength and high-modulus oriented films; however, their mechanical characteristics do not exceed those obtained using MAO.
Collapse
Affiliation(s)
- Svetlana Ch. Gagieva
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1 Leninskie Gory, 119992 Moscow, Russia
| | - Kasim F. Magomedov
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1 Leninskie Gory, 119992 Moscow, Russia
| | - Vladislav A. Tuskaev
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1 Leninskie Gory, 119992 Moscow, Russia
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991 Moscow, Russia
| | - Vyacheslav S. Bogdanov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991 Moscow, Russia
| | - Dmitrii A. Kurmaev
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1 Leninskie Gory, 119992 Moscow, Russia
| | - Evgenii K. Golubev
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991 Moscow, Russia
- Enikolopov Institute of Synthetic Polymer Materials, Russian Academy of Sciences, Profsoyuznaya Str., 70, 117393 Moscow, Russia
| | - Gleb L. Denisov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991 Moscow, Russia
| | - Galina G. Nikiforova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991 Moscow, Russia
| | - Maria D. Evseeva
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1 Leninskie Gory, 119992 Moscow, Russia
| | - Daniele Saracheno
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1 Leninskie Gory, 119992 Moscow, Russia
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991 Moscow, Russia
| | - Mikhail I. Buzin
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str., 28, 119991 Moscow, Russia
| | - Pavel B. Dzhevakov
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1 Leninskie Gory, 119992 Moscow, Russia
| | - Viktor I. Privalov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31, Leninsky Prospect, 119991 Moscow, Russia
| | - Boris M. Bulychev
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1 Leninskie Gory, 119992 Moscow, Russia
| |
Collapse
|
4
|
Ch. Gagieva S, Kurmaev DA, Magomedov KF, Tuskaev VA, Denisov GL, Khakina EA, Zakharchenko EN, Golubev EK, Evseeva MD, Dzevakov PB, Bulychev BM. Cationic [TiCl6]+2 and anionic [TiCl6-xLx]-(2-x) titanium complexes with crown ether as pre-catalyst for ethylene polymerization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|