1
|
Isci R, Ibis O, Suna G, Unlu C, Ozturk T. Thienothiophene-based quantum dots: calibration of photophysical properties via carbon dot and biomolecular interactions. NANOSCALE 2025. [PMID: 40396984 DOI: 10.1039/d5nr00980d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Semiconductor-based quantum dots (QDs) are size-tunable, photostable and extremely effective fluorophores with strong bandgap luminescence, which make them attractive for biological and medical nano-applications. Herein, we present a thienothiophene (TT)-based highly conjugated fluorescent semiconductor containing triphenylamine (TPA) and tetraphenylethylene (TPE) units, TT-TPE-TPA, as a QD conjugate. As TT-TPE-TPA exhibits remarkable photophysical properties such as a maximum solid-state quantum yield of 47%, a maximum fluorescence solution quantum yield of 81%, a mega Stokes shift of 133 nm and a positive solvatochromism from blue to orange colors, its carbon-nitrogen (CN) and carbon-nitrogen-boron (CNB) dots were prepared. While the dots changed the emission characteristics of TT-TPE-TPA, depending on the enhanced conjugation and fluorescence properties of TT-TPE-TPA/CDs, tunable optical properties were achieved towards vital biomolecules such as urea, NH4Cl and sucrose. By systematically modulating the composition and concentration of TT-TPE-TPA, CDs, and biomolecules, the detailed mechanisms of energy transfer, fluorescence quenching, and radiation enhancement were revealed. This work opens the door to a new class of promising optical nanomaterials that could be controlled in TT-based QDs.
Collapse
Affiliation(s)
- Recep Isci
- Istanbul Technical University, Chemistry Department, 34469, Maslak, Istanbul, Turkey.
| | - Ozge Ibis
- Istanbul Technical University, Chemistry Department, 34469, Maslak, Istanbul, Turkey.
| | - Garen Suna
- Istanbul Technical University, Chemistry Department, 34469, Maslak, Istanbul, Turkey.
| | - Caner Unlu
- Istanbul Technical University, Chemistry Department, 34469, Maslak, Istanbul, Turkey.
| | - Turan Ozturk
- Istanbul Technical University, Chemistry Department, 34469, Maslak, Istanbul, Turkey.
- TUBITAK UME, Chemistry Group Laboratories, 41470, Gebze, Kocaeli, Turkey
| |
Collapse
|
2
|
Dong J, Lv Y, Li Y, Xu K, Cui X, Guo CY, Li B. Synthesis of Thienoacenes via Cascade Copper-Catalyzed C-S Coupling and Thienannulation Reactions and Their Thermoelectric Properties. J Org Chem 2025; 90:5845-5855. [PMID: 40267337 DOI: 10.1021/acs.joc.4c03182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Thienoacenes are a prominent class of fused-ring conjugated organic compounds and have attracted considerable attention due to their high coplanarity, good stability, high charge-carrier mobility, etc. However, most current synthetic methods toward thienoacenes require costly starting materials and reagents, as well as a lengthy synthetic procedure with low overall yields. Herein, a nonprecious copper-catalyzed system without additional ligands was developed to facilitate C-S coupling and 5-endo-dig thienannulation reaction, leading to the synthesis of a range of thienoacenes including dithieno[3,2-b:2',3'-d]thiophenes (DTTs) and thieno[2',3':4,5]thieno[3,2-b]thiophene[2,3-d]thiophene (TTAs) with yields of up to 90% (for single-sided thienannulation reactions) and 65% (for double-sided thienannulation reactions). In addition, three π-extended DTTs were studied as potential thermoelectric materials, and their composites with single-walled carbon nanotubes (SWCNTs) exhibited high thermoelectric performance with the power factor up to 399.01 ± 16.26 μW m-1 K-2 at room temperature, which is the highest reported for thermoelectric composites comprising small-molecule thiophene derivatives and SWCNTs, signifying a step forward in the development of high-performance thermoelectric composites based on thiophene derivatives.
Collapse
Affiliation(s)
- Jiaxuan Dong
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Yifan Lv
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Yiyang Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Kexin Xu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Xinrui Cui
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Cun-Yue Guo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Baolin Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| |
Collapse
|
3
|
Chai Z, Gu T, Beau A, Bolze F, Gros CP, Liang X, Shi D, Xu H. Thieno[3,2- b]thiophene-based bridged BODIPY dimers: synthesis, electrochemistry, and one- and two-photon photophysical properties. Dalton Trans 2025; 54:674-682. [PMID: 39564774 DOI: 10.1039/d4dt02655a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Four BODIPY dyes (6a-6d) with electron-donating or electron-withdrawing groups at the meso-position were synthesized by the Sonogashira coupling reaction of 2,5-diethynylthieno[3,2-b]thiophene with mono-iodo-BODIPY moieties. All compounds were fully characterized by 1H NMR and MALDI-TOF MS. Their photophysical and electrochemical properties were studied by UV-visible absorption spectroscopy, steady-state and time-resolved fluorescence spectroscopy, two-photon excitation spectroscopy and cyclic voltammetry. These conjugated dyes exhibit interesting photophysical properties such as a high molar extinction coefficient, large Stokes shift and high two-photon absorption cross section σ2.
Collapse
Affiliation(s)
- Zhiyong Chai
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Tingting Gu
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Annaelle Beau
- ChémoBiologie Synthétique et Thérapeutique (UMR 7199 CNRS-University of Strasbourg), Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France.
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB, UMR CNRS 6302, Université de Bourgogne, 9 Avenue Alain Savary, 21000 Dijon, France.
| | - Frédéric Bolze
- ChémoBiologie Synthétique et Thérapeutique (UMR 7199 CNRS-University of Strasbourg), Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France.
| | - Claude P Gros
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB, UMR CNRS 6302, Université de Bourgogne, 9 Avenue Alain Savary, 21000 Dijon, France.
| | - Xu Liang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Donghai Shi
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Haijun Xu
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453002, China
| |
Collapse
|
4
|
Rafiq A, Aslam S, Ahmad M, Nazir MS, Farooq A, Sultan S. Recent synthetic approaches towards thienothiophenes: a potential template for biologically active compounds. Mol Divers 2024; 28:1793-1821. [PMID: 37095354 DOI: 10.1007/s11030-023-10647-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/02/2023] [Indexed: 04/26/2023]
Abstract
Heterocyclic compounds are attractive candidates because of their vast applications in natural and physical sciences. Thienothiophene (TT) is an annulated ring of two thiophene rings with a stable and electron-rich structure. Thienothiophenes (TTs) fully represent the planar system, which can drastically alter or improve the fundamental properties of organic, π-conjugated materials when included into a molecular architecture. These molecules possessed many applications including, pharmaceutical as well as optoelectronic properties. Different isomeric forms of thienothiophene showed various applications such as antiviral, antitumor, antiglaucoma, antimicrobial, and as semiconductors, solar cells, organic field effect transistors, electroluminiscents etc. A number of methodologies were adopted to synthesize thienothiophene derivatives. In this review, we have addressed different synthetic strategies of various isomeric forms of thienothiophene that have been reported during last seven years, i.e., 2016-2022.
Collapse
Affiliation(s)
- Ayesha Rafiq
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Sana Aslam
- Department of Chemistry, Government College Women University, Faisalabad, 38000, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan.
| | | | - Ambar Farooq
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Sadia Sultan
- Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam 42300, Shah Alam, Selangor Darul Ehsan, Malaysia
- Atta-Ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam 42300, Shah Alam, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
5
|
Isci R, Ozturk T. Thienothiophene-based organic light-emitting diode: synthesis, photophysical properties and application. Beilstein J Org Chem 2023; 19:1849-1857. [PMID: 38090628 PMCID: PMC10714501 DOI: 10.3762/bjoc.19.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/28/2023] [Indexed: 10/16/2024] Open
Abstract
A donor-π-acceptor (D-π-A)-type pull-push compound, DMB-TT-TPA (8), comprising triphenylamine as donor and dimesitylboron as acceptor linked through a thieno[3,2-b]thiophene (TT) π-conjugated linker bearing a 4-MeOPh group, was designed, synthesized, and fabricated as an emitter via a solution process for an organic light-emitting diode (OLED) application. DMB-TT-TPA (8) exhibited absorption and emission maxima of 411 and 520 nm, respectively, with a mega Stokes shift of 109 nm and fluorescence quantum yields both in the solid state (41%) and in solution (86%). The optical properties were supported by computational chemistry using density functional theory for optimized geometry and absorption. A solution-processed OLED was fabricated using low turn-on voltage, which had performances with maximum power, current, and external quantum efficiencies of 6.70 lm/W, 10.6 cd/A, and 4.61%, respectively.
Collapse
Affiliation(s)
- Recep Isci
- Department of Chemistry, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Turan Ozturk
- Department of Chemistry, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
- TUBITAK UME, Chemistry Group Laboratories, 41470, Gebze, Kocaeli, Turkey
| |
Collapse
|
6
|
İŞÇİ R, ÖZTÜRK T. A multifunctional thienothiophene member: 4-thieno[3,2- b]thiophen-3-ylbenzonitrile (4-CNPhTT). Turk J Chem 2023; 47:1239-1248. [PMID: 38173761 PMCID: PMC10760839 DOI: 10.55730/1300-0527.3608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/31/2023] [Accepted: 09/30/2023] [Indexed: 01/05/2024] Open
Abstract
Thieno[3,2-b]thiophene (TT) has been attracting significant attention in the field of organic electronics and optoelectronics. In this study, a useful building block of TT derivative 4-thieno[3,2-b]thiophen-3-ylbenzonitrile (4-CNPhTT), developed by our group and possessing a strong electron-withdrawing 4-CNPh moiety, is reviewed as it has been the source of the development of various organic electronic materials. Some optic and electronic properties are discussed based on electrochemical polymerization of 4-CNPhTT performed using cyclic voltammetry, and spectroelectrochemical measurements are conducted to investigate the optical variations of the polymer film upon doping. Moreover, 4-CNPhTT is clarified by scanning electron microscopy at different magnitudes ranging from 100 to 500 μm, supported by the single X-ray crystal structure. The thermal properties of 4-CNPhTT are investigated by thermal gravimetric and differential thermal analyses. All of the observed properties demonstrate that 4-CNPhTT has the potential of shedding light on the development of new materials for electronic and optoelectronic applications within the TT family.
Collapse
Affiliation(s)
- Recep İŞÇİ
- Department of Chemistry, İstanbul Technical University, İstanbul,
Turkiye
| | - Turan ÖZTÜRK
- Department of Chemistry, İstanbul Technical University, İstanbul,
Turkiye
- TÜBİTAK UME, Chemistry Group Laboratories, Kocaeli,
Turkiye
| |
Collapse
|
7
|
Ozturk SE, Isci R, Faraji S, Sütay B, Majewski LA, Ozturk T. Synthesis, Photophysical Properties and OFET Application of Thienothiophene and Benzothiadiazole Based Donor-π-Acceptor- π (D- π -A- π) Type Conjugated Polymers. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
8
|
Isci R, Baysak E, Kesan G, Minofar B, Eroglu MS, Duygulu O, Gorkem SF, Ozturk T. Non-covalent modification of single wall carbon nanotubes (SWCNTs) by thienothiophene derivatives. NANOSCALE 2022; 14:16602-16610. [PMID: 36317494 DOI: 10.1039/d2nr04582f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Non-covalent functionalization of single wall carbon nanotubes (SWCNTs) has been conducted using several binding agents with surface π-interaction forces in recent studies. Herein, we present the first example of non-covalent functionalization of sidewalls of SWCNTs using thienothiophene (TT) derivatives without requiring any binding agents. Synthesized TT derivatives, TT-CN-TPA, TT-CN-TPA2 and TT-COOH-TPA, were attached directly to SWCNTs through non-covalent interactions to obtain new TT-based SWCNT hybrids, HYBRID 1-3. Taking advantage of the presence of sulfur atoms in the structure of TT, HYBRID 1, as a representative, was treated with Au nanoparticles for the adsorption of Au by sulfur atoms, which generated clear TEM images of the particles. The images indicated the attachment of TTs to the surface of SWCNTs. Thus, the presence of sulfur atoms in TT units made the binding of TTs to SWCNTs observable via TEM analysis through adsorption of Au nanoparticles by the sulfur atoms. Surface interactions between TTs and SWCNTs of the new hybrids were also clarified by classical molecular dynamic simulations, a quantum mechanical study, and SEM, TEM, AFM and contact angle (CA) analyses. The minimum distance between a TT and a SWCNT reached up to 3.5 Å, identified with strong peaks on a radial distribution function (RDF), while maximum interaction energies were raised to -316.89 kcal mol-1, which were determined using density functional theory (DFT).
Collapse
Affiliation(s)
- Recep Isci
- Department of Chemistry, Science Faculty, Istanbul Technical University, Maslak, Istanbul 34469, Turkey.
| | - Elif Baysak
- Department of Chemistry, Science Faculty, Istanbul Technical University, Maslak, Istanbul 34469, Turkey.
| | - Gurkan Kesan
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská, 1760, 370 05, České Budějovice, Czech Republic
| | - Babak Minofar
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská, 1760, 370 05, České Budějovice, Czech Republic
- Laboratory of Structural Biology and Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 37333 Nove Hrady, Czech Republic
| | - Mehmet S Eroglu
- Metallurgical and Materials Engineering Dept., Faculty of Engineering, Marmara University, Aydınevler, Maltepe, 34854, Istanbul, Turkey
- Chemistry Group, Organic Chemistry Laboratory, TUBITAK National Metrology Institute, Gebze, Kocaeli, 54 41470, Turkey
| | - Ozgur Duygulu
- Material Technologies, TUBITAK Marmara Research Center, Gebze, Kocaeli, 41470, Turkey
| | - Sultan F Gorkem
- Chemistry Department, Eskisehir Technical University, 26470 Eskisehir, Turkey
| | - Turan Ozturk
- Department of Chemistry, Science Faculty, Istanbul Technical University, Maslak, Istanbul 34469, Turkey.
- Chemistry Group, Organic Chemistry Laboratory, TUBITAK National Metrology Institute, Gebze, Kocaeli, 54 41470, Turkey
| |
Collapse
|
9
|
Petrucci AN, Cousins ME, Liptak MD. Beyond "Mega": Origin of the "Giga" Stokes Shift for Triazolopyridiniums. J Phys Chem B 2022; 126:6997-7005. [PMID: 36062309 DOI: 10.1021/acs.jpcb.2c04397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Over the past decade, fluorophores that exhibit "mega" Stokes shifts, defined to be Stokes shifts of greater than 100 nm, have gained considerable attention due to their potential technological applications. A subset of these fluorophores have Stokes shifts of at least 10,000 cm-1, for whom we suggest the moniker "giga" Stokes shift. The majority of "giga" Stokes shifts reported in the literature arise from the twisted intramolecular charge transfer mechanism, but this mechanism does not fit empirical characterization of triazolopyridinium (TOP). This observation inspired a density functional theory (DFT) and time-dependent DFT study of TOP, and several related fluorophores, to elucidate the novel photophysical origin for the "giga" Stokes shift of TOP. The resulting computational models revealed that photoexcitation of TOP yields a zwitterionic excited state that undergoes significant structural relaxation prior to emission. Most notably, TOP has two orthogonal moieties in the ground state that adopt a coplanar geometry in the excited state. According to Hückel's rule, both the heterocycle and phenyl moieties of TOP should be aromatic in an orthogonal ground state. However, according to Baird's rule, these individual moieties should be anti-aromatic in the excited state. By relaxing to a coplanar conformation in the excited state, TOP likely forms a single aromatic system consisting of both the heterocycle and phenyl moieties.
Collapse
Affiliation(s)
- Adam N Petrucci
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405, United States
| | - Morgan E Cousins
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405, United States
| | - Matthew D Liptak
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405, United States
| |
Collapse
|