1
|
Rey R, Chauvet-Gelinier JC, Suaud-Chagny MF, Ragot S, Bonin B, d'Amato T, Teyssier JR. Distinct Expression Pattern of Epigenetic Machinery Genes in Blood Leucocytes and Brain Cortex of Depressive Patients. Mol Neurobiol 2018; 56:4697-4707. [PMID: 30377985 PMCID: PMC6647377 DOI: 10.1007/s12035-018-1406-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/24/2018] [Indexed: 12/25/2022]
Abstract
In major depressive disorder (MDD), altered gene expression in brain cortex and blood leucocytes may be due to aberrant expression of epigenetic machinery coding genes. Here, we explore the expression of these genes both at the central and peripheral levels. Using real-time quantitative PCR technique, we first measured expression levels of genes encoding DNA and histone modifying enzymes in the dorsolateral prefrontal cortex (DLPFC) and cingulate cortex (CC) of MDD patients (n = 24) and healthy controls (n = 12). For each brain structure, transcripts levels were compared between subject groups. In an exploratory analysis, we then compared the candidate gene expressions between a subgroup of MDD patients with psychotic characteristics (n = 13) and the group of healthy subjects (n = 12). Finally, we compared transcript levels of the candidate genes in blood leucocytes between separate samples of MDD patients (n = 17) and healthy controls (n = 16). In brain and blood leucocytes of MDD patients, we identified an overexpression of genes encoding enzymes which transfer repressive transcriptional marks: HDAC4-5-6-8 and DNMT3B in the DLPFC, HDAC2 in the CC and blood leucocytes. In the DLPFC of patients with psychotic characteristics, two genes (KAT2A and UBE2A) were additionally overexpressed suggesting a shift to a more transcriptionally permissive conformation of chromatin. Aberrant activation of epigenetic repressive systems may be involved in MDD pathogenesis both in brain tissue and blood leucocytes.
Collapse
Affiliation(s)
- Romain Rey
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Psychiatric Disorders: from Resistance to Response Team, F-69000, Lyon, France. .,University Lyon 1, F-69000, Villeurbanne, France. .,Schizophrenia Expert Centre, Le Vinatier Hospital, Bron, France. .,INSERM U1028; CNRS UMR5292; Université Claude Bernard Lyon 1; Centre de Recherche en Neurosciences de Lyon, Equipe PSYR2; Centre Hospitalier Le Vinatier, Pole Est, Centre Expert Schizophrénie, 95 boulevard Pinel BP 30039, 69678, Bron Cedex, France.
| | - Jean-Christophe Chauvet-Gelinier
- Psychiatry Unit, Neurosciences Department, Le Bocage University Hospital, Marion Building, Dijon, France.,Laboratory of Psychopathology and Medical Psychology (IFR 100), Bourgogne University, Dijon, France
| | - Marie-Françoise Suaud-Chagny
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Psychiatric Disorders: from Resistance to Response Team, F-69000, Lyon, France.,University Lyon 1, F-69000, Villeurbanne, France.,Schizophrenia Expert Centre, Le Vinatier Hospital, Bron, France
| | - Sylviane Ragot
- Department of Genetics and Laboratory of Molecular Genetics, University Hospital, Dijon, France
| | - Bernard Bonin
- Psychiatry Unit, Neurosciences Department, Le Bocage University Hospital, Marion Building, Dijon, France.,Laboratory of Psychopathology and Medical Psychology (IFR 100), Bourgogne University, Dijon, France
| | - Thierry d'Amato
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Psychiatric Disorders: from Resistance to Response Team, F-69000, Lyon, France.,University Lyon 1, F-69000, Villeurbanne, France.,Schizophrenia Expert Centre, Le Vinatier Hospital, Bron, France
| | - Jean-Raymond Teyssier
- Department of Genetics and Laboratory of Molecular Genetics, University Hospital, Dijon, France
| |
Collapse
|
2
|
Cui D, Xu X. DNA Methyltransferases, DNA Methylation, and Age-Associated Cognitive Function. Int J Mol Sci 2018; 19:E1315. [PMID: 29710796 PMCID: PMC5983821 DOI: 10.3390/ijms19051315] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 12/16/2022] Open
Abstract
Ageing, a leading cause of the decline/deficits in human learning, memory, and cognitive abilities, is a major risk factor for age-associated neurodegenerative disorders such as Alzheimer’s disease. Emerging evidence suggests that epigenetics, an inheritable but reversible biochemical process, plays a crucial role in the pathogenesis of age-related neurological disorders. DNA methylation, the best-known epigenetic mark, has attracted most attention in this regard. DNA methyltransferases (DNMTs) are key enzymes in mediating the DNA methylation process, by which a methyl group is transferred, faithfully or anew, to genomic DNA sequences. Biologically, DNMTs are important for gene imprinting. Accumulating evidence suggests that DNMTs not only play critical roles, including gene imprinting and transcription regulation, in early development stages of the central nervous system (CNS), but also are indispensable in adult learning, memory, and cognition. Therefore, the impact of DNMTs and DNA methylation on age-associated cognitive functions and neurodegenerative diseases has emerged as a pivotal topic in the field. In this review, the effects of each DNMT on CNS development and healthy and pathological ageing are discussed.
Collapse
Affiliation(s)
- Di Cui
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany.
| | - Xiangru Xu
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany.
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
3
|
Glucocorticoid receptor gene methylation moderates the association of childhood trauma and cortisol stress reactivity. Psychoneuroendocrinology 2018; 90:68-75. [PMID: 29433075 DOI: 10.1016/j.psyneuen.2018.01.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 02/03/2023]
Abstract
Exposure to childhood trauma (CT) has been linked to sustained dysregulations of major stress response systems, including findings of both exaggerated and attenuated hypothalamus-pituitary-adrenal (HPA) axis activity. Likewise, CT constitutes a common risk factor for a broad range of psychiatric conditions that involve distinct neuroendocrine profiles. In this study, we investigated the role of epigenetic variability in a stress-related gene as a potential mediator or moderator of such differential trajectories in CT survivors. For this, we screened adult volunteers for CT and recruited a healthy sample of 98 exposed (67 with mild-moderate, 31 with moderate-severe exposure) and 102 control individuals, with an equal number of males and females in each group. DNA methylation (DNAM) levels of the glucocorticoid receptor exon 1F promoter (NR3C1-1F) at functionally relevant sites were analyzed via bisulfite pyrosequencing from whole blood samples. Participants were exposed to a laboratory stressor (Trier Social Stress Test) to assess salivary cortisol stress responses. The major finding of this study indicates that DNAM in a biologically relevant region of NR3C1-1F moderates the specific direction of HPA-axis dysregulation (hypo- vs. hyperreactivity) in adults exposed to moderate-severe CT. Those trauma survivors with increased NR3C1-1F DNAM displayed, on average, 10.4 nmol/l (62.3%) higher peak cortisol levels in response to the TSST compared to those with low DNAM. In contrast, unexposed and mildly-moderately exposed individuals displayed moderately sized cortisol stress responses irrespective of NR3C1-1F DNAM. Contrary to some prior work, however, our data provides no evidence for a direct association of CT and NR3C1-1F DNAM status. According to this study, epigenetic changes of NR3C1-1F may provide a more in-depth understanding of the highly variable neuroendocrine and pathological sequelae of CT.
Collapse
|
4
|
Palma-Gudiel H, Cirera F, Crispi F, Eixarch E, Fañanás L. The impact of prenatal insults on the human placental epigenome: A systematic review. Neurotoxicol Teratol 2018; 66:80-93. [PMID: 29307795 DOI: 10.1016/j.ntt.2018.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/20/2017] [Accepted: 01/01/2018] [Indexed: 02/07/2023]
Abstract
The placenta is the first human organ to reach full development during pregnancy. It serves as a barrier but also as an interchange surface. Epigenetic changes observed in placental tissue may reflect intrauterine insults while also pointing to physiological pathways altered under exposure to such environmental threats. By means of a systematic search of the literature, 39 papers assessing human placental epigenetic signatures in association with either (i) psychosocial stress, (ii) maternal psychopathology, (iii) maternal smoking during pregnancy, and (iv) exposure to environmental pollutants, were identified. Their findings revealed placental tissue as a unique source of epigenetic variability that does not correlate with epigenetic patterns observed in maternal or newborn blood, tissues which are typically analyzed regarding prenatal stress. Studies regarding prenatal stress and psychopathology during pregnancy were scarce and exploratory in nature revealing inconsistent findings. Of note, there was a marked tendency towards placental hypomethylation in studies assessing either tobacco use during pregnancy or exposure to environmental pollutants suggesting the interaction between contaminant-derived metabolites and epigenetic machinery. This review highlights the need for further prospective longitudinal studies assessing long-term health effects of placental epigenetic signatures derived from exposure to several prenatal stressors.
Collapse
Affiliation(s)
- Helena Palma-Gudiel
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Flors Cirera
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Fátima Crispi
- Fetal i+D Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Barcelona, Spain; Centre for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain
| | - Elisenda Eixarch
- Fetal i+D Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Barcelona, Spain; Centre for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain
| | - Lourdes Fañanás
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.
| |
Collapse
|
5
|
Palomera-Ávalos V, Griñán-Ferré C, Izquierdo V, Camins A, Sanfeliu C, Pallàs M. Metabolic Stress Induces Cognitive Disturbances and Inflammation in Aged Mice: Protective Role of Resveratrol. Rejuvenation Res 2017; 20:202-217. [PMID: 27998210 DOI: 10.1089/rej.2016.1885] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Inflammation and oxidative stress (OS) are key points in age progression. Both processes impact negatively in cognition and in brain functions. Resveratrol (RV) has been postulated as a potent antioxidant natural compound, with rejuvenating properties. Inducing a metabolic stress by high-fat (HF) diet in aged C56/BL6 (24 months) led to cognitive disturbances compared with control age mated and with young mice. These changes were prevented by RV. Molecular determinations demonstrated a significant increase in some inflammatory parameters (TNF-α, Cxcl10, IL-1, IL-6, and Ccl3) in old mice, but slight changes in OS machinery. RV mainly induced the recovery of the metabolically stressed animals. The study of key markers involved in senescence and rejuvenation (mitochondrial biogenesis and Sirt1-AMPK-PGC1-α) demonstrated that RV is also able to modulate the changes in these cellular metabolic pathways. Moreover, changes of epigenetic marks (methylation and acetylation) that are depending on OS were demonstrated. On the whole, results showed the importance of integrative role of different cellular mechanisms in the deleterious effects of age in cognition and the beneficial role of RV. The work presented in this study showed a wide range of processes modified in old age and by metabolic stress, weighting the importance of each one and the role of RV as a possible strategy for fighting against.
Collapse
Affiliation(s)
- Veronica Palomera-Ávalos
- 1 Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona , Barcelona, Spain
| | - Christian Griñán-Ferré
- 1 Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona , Barcelona, Spain
| | - Vanesa Izquierdo
- 1 Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona , Barcelona, Spain
| | - Antonio Camins
- 1 Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona , Barcelona, Spain
| | - Coral Sanfeliu
- 2 Institut d'Investigacions Biomèdiques de Barcelona (IIBB) , CSIC, and IDIBAPS, Barcelona, Spain
| | - Mercè Pallàs
- 1 Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona , Barcelona, Spain
| |
Collapse
|
6
|
Alfimova MV, Kondratiev NV, Golimbet VE. Results and promises of genetics of cognitive impairment in schizophrenia: epigenetic approaches. Zh Nevrol Psikhiatr Im S S Korsakova 2017. [DOI: 10.17116/jnevro201711721130-135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Griñán-Ferré C, Sarroca S, Ivanova A, Puigoriol-Illamola D, Aguado F, Camins A, Sanfeliu C, Pallàs M. Epigenetic mechanisms underlying cognitive impairment and Alzheimer disease hallmarks in 5XFAD mice. Aging (Albany NY) 2016; 8:664-84. [PMID: 27013617 PMCID: PMC4925821 DOI: 10.18632/aging.100906] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/23/2016] [Indexed: 12/27/2022]
Abstract
5XFAD is an early-onset mouse transgenic model of Alzheimer disease (AD). Up to now there are no studies that focus on the epigenetic changes produced as a result of Aβ-42 accumulation and the possible involvement in the different expression of related AD-genes. Under several behavioral and cognition test, we found impairment in memory and psychoemotional changes in female 5XFAD mice in reference to wild type that worsens with age. Cognitive changes correlated with alterations on protein level analysis and gene expression of markers related with tau aberrant phosphorylation, amyloidogenic pathway (APP, BACE1), Oxidative Stress (iNOS, Aldh2) and inflammation (astrogliosis, TNF-α and IL-6); no changes were found in non-amyloidogenic pathway indicators such as ADAM10. Epigenetics changes as higher CpG methylation and transcriptional changes in DNA methyltransferases (DNMTs) family were found. Dnmt1 increases in younger 5XFAD and Dnmt3a and b high levels in the oldest transgenic mice. Similar pattern was found with histone methyltransferases such as Jarid1a andG9a. Histone deacetylase 2 (Hdac2) or Sirt6, both related with cognition and memory, presented a similar pattern. Taken together, these hallmarks presented by the 5XFAD model prompted its use in assessing different potential therapeutic interventions based on epigenetic targets after earlier amyloid deposition.
Collapse
Affiliation(s)
- Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain
| | - Sara Sarroca
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, and IDIBAPS, 08036 Barcelona, Spain
| | - Aleksandra Ivanova
- Department of Pharmacology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain
| | - Dolors Puigoriol-Illamola
- Department of Pharmacology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain
| | - Fernando Aguado
- Department of Cellular Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Antoni Camins
- Department of Pharmacology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain
| | - Coral Sanfeliu
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, and IDIBAPS, 08036 Barcelona, Spain
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
8
|
First molecular diagnosis of Donohue syndrome in Africa: novel unusual insertion/deletion mutation in the INSR gene. Mol Biol Rep 2016; 43:165-73. [PMID: 26874853 DOI: 10.1007/s11033-016-3951-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/09/2016] [Indexed: 01/24/2023]
Abstract
Donohue syndrome (DS) is a very rare autosomal recessive disease affecting less than one in a million life births. It represents the most severe form of insulin resistance due to mutations involving the insulin receptor (IR) gene "INSR". DS is characterized by pre- and postnatal growth retardation with failure-to-thrive, lipoatrophy, acanthosis nigricans, hypertrichosis, and dysmorphic features. An exhaustive INSR gene sequencing was performed after PCR amplification of coding exons and introns boundaries. Bioinformatic tools, including ESEfinder, MFOLD and Proter software were also used to predict the impact of INSR mutation on INSR on gene expression as well as on the protein structure and function. The results have shown a novel unusual c.3003_3012delinsGGAAG (p.S1001_D1004delinsRE) insertion/deletion (indel) mutation within the exon 16 in the three patients, which represent the fourth indel mutation within the INSR gene. The mutation modifies the secondary structure of DNA and RNA, as well as the composition of exonic splicing enhancers of exon 16. Moreover, despite the conservation of the secondary structure of the IR, the p.S1001_D1004delinsRE in-frame mutation is accompanied by the loss of four amino acids replaced by two residues of different nature and hydrophobicity level in the juxtamembrane domain of the receptor. The results have confirmed the role of the juxtamembrane domain of IR involved in a crucial interaction of the IR with cellular effectors essentially the IR substrate 1 (IRS-1), the SHC and the Nck proteins that ensure the signal mediated by the insulin transduction pathway in target cells. Our findings have also proven the genotype/phenotype correlation between INSR mutation and DS phenotype severity.
Collapse
|
9
|
Palma-Gudiel H, Córdova-Palomera A, Leza JC, Fañanás L. Glucocorticoid receptor gene (NR3C1) methylation processes as mediators of early adversity in stress-related disorders causality: A critical review. Neurosci Biobehav Rev 2015; 55:520-35. [PMID: 26073068 DOI: 10.1016/j.neubiorev.2015.05.016] [Citation(s) in RCA: 237] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/19/2015] [Accepted: 05/25/2015] [Indexed: 01/04/2023]
Abstract
Early life stress (ELS) is a known risk factor for suffering psychopathology in adulthood. The hypothalamic-pituitary-adrenal (HPA) axis has been described to be deregulated in both individuals who experienced early psychosocial stress and in patients with a wide range of psychiatric disorders. The NR3C1 gene codes for the glucocorticoid receptor, a key element involved in several steps of HPA axis modulation. In this review, we gather existing evidence linking NR3C1 methylation pattern with either ELS or psychopathology. We summarize that several types of ELS have been frequently associated with NR3C1 hypermethylation whereas hypomethylation has been continuously found to be associated with post-traumatic stress disorder. In light of the reported findings, the main concerns of ongoing research in this field are the lack of methodological consensus and selection of CpG sites. Further studies should target individual CpG site methylation assessment focusing in biologically relevant areas such as transcription factor binding regions whereas widening the examined sequence in order to include all non-coding first exons of the NR3C1 gene in the analysis.
Collapse
Affiliation(s)
- Helena Palma-Gudiel
- Unity of Anthropology, Departament of Animal Biology, Faculty of Biology, Instituto de Biomedicina (IBUB), Universidad de Barcelona (UB), Av. Diagonal, 643, 08028 Barcelona, Spain
| | - Aldo Córdova-Palomera
- Unity of Anthropology, Departament of Animal Biology, Faculty of Biology, Instituto de Biomedicina (IBUB), Universidad de Barcelona (UB), Av. Diagonal, 643, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), C/ Doctor Esquerdo, 46, 28007 Madrid, Spain
| | - Juan Carlos Leza
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), C/ Doctor Esquerdo, 46, 28007 Madrid, Spain; Department of Pharmacology, Faculty of Medicine, Universidad Complutense, Madrid, Spain
| | - Lourdes Fañanás
- Unity of Anthropology, Departament of Animal Biology, Faculty of Biology, Instituto de Biomedicina (IBUB), Universidad de Barcelona (UB), Av. Diagonal, 643, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), C/ Doctor Esquerdo, 46, 28007 Madrid, Spain.
| |
Collapse
|