1
|
Song J, Carmona-Torres E, Kambari Y, Chavez S, Ueno F, Koizum T, Amaev A, Abdolizadeh A, De Luca V, Blumberger DM, Remington G, Pollock B, Graff-Guerrero A, Gerretsen P. Impaired insight in schizophrenia is associated with higher frontoparietal cerebral blood flow: an arterial spin labeling study. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2025; 11:2. [PMID: 39794339 PMCID: PMC11723987 DOI: 10.1038/s41537-024-00536-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/13/2024] [Indexed: 01/13/2025]
Abstract
Impaired insight into illness occurs in up to 98% of patients with schizophrenia, depending on the stage of illness, and leads to negative clinical outcomes. Previous neuroimaging studies suggest that impaired insight in patients with schizophrenia may be related to structural and functional anomalies in frontoparietal brain regions. To date, limited studies have investigated the association between regional cerebral blood flow (CBF) and impaired insight in schizophrenia. Therefore, we sought to investigate the relationship between regional CBF, as measured by arterial spin labeling (ASL), and impaired insight in participants with schizophrenia. A total of 32 participants were included in the analysis. Impaired insight in patients with schizophrenia was measured using the VAGUS, Self-report (VAGUS-SR). Resting-state regional CBF was measured using pseudo-continuous ASL (pCASL) and extracted using SPM12 and REX toolbox. Whole brain analysis found that impaired insight was associated with higher regional CBF in the right angular gyrus, left supramarginal gyrus, and right superior frontal region when controlling for age, gender, smoking status, and illness severity. The results indicate that impaired insight in schizophrenia is related to regional CBF in frontoparietal areas. These neuroimaging findings can serve as therapeutic targets for intervention, such as with non-invasive brain stimulation.
Collapse
Affiliation(s)
- Jianmeng Song
- Multimodal Imaging Group, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Edgardo Carmona-Torres
- Multimodal Imaging Group, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Yasaman Kambari
- Multimodal Imaging Group, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Sofia Chavez
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Fumihiko Ueno
- Multimodal Imaging Group, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Teruki Koizum
- Multimodal Imaging Group, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Aron Amaev
- Multimodal Imaging Group, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Ali Abdolizadeh
- Multimodal Imaging Group, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Vincenzo De Luca
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Schizophrenia Division, CAMH, Toronto, ON, Canada
| | - Daniel M Blumberger
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Temerty Centre for Therapeutic Brain Intervention, CAMH, Toronto, ON, Canada
| | - Gary Remington
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Schizophrenia Division, CAMH, Toronto, ON, Canada
| | - Bruce Pollock
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Adult Neurodevelopment and Geriatric Psychiatry, CAMH, Toronto, ON, Canada
| | - Ariel Graff-Guerrero
- Multimodal Imaging Group, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Adult Neurodevelopment and Geriatric Psychiatry, CAMH, Toronto, ON, Canada
| | - Philip Gerretsen
- Multimodal Imaging Group, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Adult Neurodevelopment and Geriatric Psychiatry, CAMH, Toronto, ON, Canada.
| |
Collapse
|
2
|
Ferreira R, Bastos-Leite AJ. Arterial spin labelling magnetic resonance imaging and perfusion patterns in neurocognitive and other mental disorders: a systematic review. Neuroradiology 2024; 66:1065-1081. [PMID: 38536448 PMCID: PMC11150205 DOI: 10.1007/s00234-024-03323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/24/2024] [Indexed: 04/18/2024]
Abstract
We reviewed 33 original research studies assessing brain perfusion, using consensus guidelines from a "white paper" issued by the International Society for Magnetic Resonance in Medicine Perfusion Study Group and the European Cooperation in Science and Technology Action BM1103 ("Arterial Spin Labelling Initiative in Dementia"; https://www.cost.eu/actions/BM1103/ ). The studies were published between 2011 and 2023 and included participants with subjective cognitive decline plus; neurocognitive disorders, including mild cognitive impairment (MCI), Alzheimer's disease (AD), frontotemporal lobar degeneration (FTLD), dementia with Lewy bodies (DLB) and vascular cognitive impairment (VCI); as well as schizophrenia spectrum disorders, bipolar and major depressive disorders, autism spectrum disorder, attention-deficit/hyperactivity disorder, panic disorder and alcohol use disorder. Hypoperfusion associated with cognitive impairment was the major finding across the spectrum of cognitive decline. Regional hyperperfusion also was reported in MCI, AD, frontotemporal dementia phenocopy syndrome and VCI. Hypoperfused structures found to aid in diagnosing AD included the precunei and adjacent posterior cingulate cortices. Hypoperfused structures found to better diagnose patients with FTLD were the anterior cingulate cortices and frontal regions. Hypoperfusion in patients with DLB was found to relatively spare the temporal lobes, even after correction for partial volume effects. Hyperperfusion in the temporal cortices and hypoperfusion in the prefrontal and anterior cingulate cortices were found in patients with schizophrenia, most of whom were on medication and at the chronic stage of illness. Infratentorial structures were found to be abnormally perfused in patients with bipolar or major depressive disorders. Brain perfusion abnormalities were helpful in diagnosing most neurocognitive disorders. Abnormalities reported in VCI and the remaining mental disorders were heterogeneous and not generalisable.
Collapse
Affiliation(s)
- Rita Ferreira
- Faculty of Medicine, University of Porto, Porto, Portugal
| | | |
Collapse
|
3
|
Li X, Chen L, Yu K, Zhuang W, Zhu H, Xu W, Yan H, Qi G, Zhou D, Wu S. Impact of twice-a-day transcranial direct current stimulation intervention on cognitive function and motor cortex plasticity in patients with Alzheimer's disease. Gen Psychiatr 2023; 36:e101166. [PMID: 38155843 PMCID: PMC10753710 DOI: 10.1136/gpsych-2023-101166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/21/2023] [Indexed: 12/30/2023] Open
Abstract
Background Non-invasive brain stimulation has improved cognitive functions in patients with Alzheimer's disease (AD), and some studies suggest a close relationship between cognition and plasticity. However, the clinical benefits of transcranial direct current stimulation (tDCS) in patients still need to be evaluated. Aims This study examined the role of tDCS in improving cognition and whether the improved cognition is related to altered cortical plasticity. Methods 124 patients with AD were randomly assigned to active tDCS (n=63) or sham tDCS (n=61). The tDCS was applied at the dorsolateral prefrontal cortex for 30 treatment sessions across 6 weeks (5 days per week, 2 days off). The Mini-Mental State Examination and the Alzheimer's Disease Assessment Scale-Cognitive (ADAS-Cog) were used for cognition evaluation at baseline, week 2 and week 6. The cortical plasticity was represented by motor-evoked potential (MEP) measured with an electromyogram. Results The results showed that multiple courses of active tDCS can improve the cognitive functions of patients with AD, especially in the memory domain (word recall, recall of test instructions and word recognition). In addition, the damaged MEP level was enhanced following active treatment. In the active tDCS group, the improvements in ADAS-Cog total and subitem (word recall and word recognition) scores were negatively correlated with the enhancement of MEP. Conclusions Our research indicates for the first time that twice-a-day tDCS may improve the cognitive function of patients with AD. This study also suggests that cognitive dysfunction may be related to impaired cortical plasticity, which warrants mechanistic investigations of the relationship between cognition and plasticity in the future. Trial registration number ChiCTR1900021067.
Collapse
Affiliation(s)
- Xingxing Li
- Department of Psychiatry, Ningbo Kangning Hospital & Affiliated Mental Health Centre, Ningbo University, Ningbo, Zhejiang, China
- Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo University, Ningbo, Zhejiang, China
| | - Lei Chen
- Department of Psychiatry, Yu Yao Third People’s Hospital, Ningbo, Zhejiang, China
| | - Kunqiang Yu
- Department of Psychiatry, Second People’s Hospital of Lishui, Lishui, Zhejiang, China
| | - Wenhao Zhuang
- Department of Psychiatry, Ningbo Kangning Hospital & Affiliated Mental Health Centre, Ningbo University, Ningbo, Zhejiang, China
- Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo University, Ningbo, Zhejiang, China
| | - Hui Zhu
- Department of Psychiatry, Yu Yao Third People’s Hospital, Ningbo, Zhejiang, China
| | - Wenqiang Xu
- Department of Psychiatry, Second People’s Hospital of Lishui, Lishui, Zhejiang, China
| | - Hui Yan
- Department of Psychiatry, Taizhou Second People's Hospital, Taizhou, Zhejiang, China
| | - Gangqiao Qi
- Department of Psychiatry, Taizhou Second People's Hospital, Taizhou, Zhejiang, China
| | - Dongsheng Zhou
- Department of Psychiatry, Ningbo Kangning Hospital & Affiliated Mental Health Centre, Ningbo University, Ningbo, Zhejiang, China
- Ningbo Key Laboratory for Physical Diagnosis and Treatment of Mental and Psychological Disorders, Ningbo University, Ningbo, Zhejiang, China
| | - Shaochang Wu
- Department of Psychiatry, Second People’s Hospital of Lishui, Lishui, Zhejiang, China
| |
Collapse
|
4
|
Kim J, Song J, Kambari Y, Plitman E, Shah P, Iwata Y, Caravaggio F, Brown EE, Nakajima S, Chakravarty MM, De Luca V, Remington G, Graff-Guerrero A, Gerretsen P. Cortical thinning in relation to impaired insight into illness in patients with treatment resistant schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:27. [PMID: 37120642 PMCID: PMC10148890 DOI: 10.1038/s41537-023-00347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/12/2023] [Indexed: 05/01/2023]
Abstract
Impaired insight into illness is a common element of schizophrenia that contributes to treatment nonadherence and negative clinical outcomes. Previous studies suggest that impaired insight may arise from brain abnormalities. However, interpretations of these findings are limited due to small sample sizes and inclusion of patients with a narrow range of illness severity and insight deficits. In a large sample of patients with schizophrenia, the majority of which were designated as treatment-resistant, we investigated the associations between impaired insight and cortical thickness and subcortical volumes. A total of 94 adult participants with a schizophrenia spectrum disorder were included. Fifty-six patients (60%) had treatment-resistant schizophrenia. The core domains of insight were assessed with the VAGUS insight into psychosis scale. We obtained 3T MRI T1-weighted images, which were analysed using CIVET and MAGeT-Brain. Whole-brain vertex-wise analyses revealed impaired insight, as measured by VAGUS average scores, was related to cortical thinning in left frontotemporoparietal regions. The same analysis in treatment-resistant patients showed thinning in the same regions, even after controlling for age, sex, illness severity, and chlorpromazine antipsychotic dose equivalents. No association was found in non-treatment-resistant patients. Region-of-interest analyses revealed impaired general illness awareness was associated with cortical thinning in the left supramarginal gyrus when controlling for covariates. Reduced right and left thalamic volumes were associated with VAGUS symptom attribution and awareness of negative consequences subscale scores, respectively, but not after correction for multiple testing. Our results suggest impaired insight into illness is related to cortical thinning in left frontotemporoparietal regions in patients with schizophrenia, particularly those with treatment resistance where insight deficits may be more chronic.
Collapse
Affiliation(s)
- Julia Kim
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Jianmeng Song
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Yasaman Kambari
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Eric Plitman
- Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Parita Shah
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Yusuke Iwata
- University of Yamanashi, Faculty of Medicine, Department of Neuropsychiatry, Yamanashi, Japan
| | - Fernando Caravaggio
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Eric E Brown
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada
- Geriatric Mental Health Division, CAMH, Toronto, ON, Canada
| | - Shinichiro Nakajima
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Vincenzo De Luca
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Gary Remington
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada
- Schizophrenia Division, CAMH, Toronto, ON, Canada
| | - Ariel Graff-Guerrero
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Geriatric Mental Health Division, CAMH, Toronto, ON, Canada
- Schizophrenia Division, CAMH, Toronto, ON, Canada
| | - Philip Gerretsen
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Geriatric Mental Health Division, CAMH, Toronto, ON, Canada.
- Schizophrenia Division, CAMH, Toronto, ON, Canada.
| |
Collapse
|
5
|
Percie du Sert O, Unrau J, Gauthier CJ, Chakravarty M, Malla A, Lepage M, Raucher-Chéné D. Cerebral blood flow in schizophrenia: A systematic review and meta-analysis of MRI-based studies. Prog Neuropsychopharmacol Biol Psychiatry 2023; 121:110669. [PMID: 36341843 DOI: 10.1016/j.pnpbp.2022.110669] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Schizophrenia-spectrum disorders (SSD) represent one of the leading causes of disability worldwide and are usually underpinned by neurodevelopmental brain abnormalities observed on a structural and functional level. Nuclear medicine imaging studies of cerebral blood flow (CBF) have already provided insights into the pathophysiology of these disorders. Recent developments in non-invasive MRI techniques such as arterial spin labeling (ASL) have allowed broader examination of CBF across SSD prompting us to conduct an updated literature review of MRI-based perfusion studies. In addition, we conducted a focused meta-analysis of whole brain studies to provide a complete picture of the literature on the topic. METHODS A systematic OVID search was performed in Embase, MEDLINEOvid, and PsycINFO. Studies eligible for inclusion in the review involved: 1) individuals with SSD, first-episode psychosis or clinical-high risk for psychosis, or; 2) had healthy controls for comparison; 3) involved MRI-based perfusion imaging methods; and 4) reported CBF findings. No time span was specified for the database queries (last search: 08/2022). Information related to participants, MRI techniques, CBF analyses, and results were systematically extracted. Whole-brain studies were then selected for the meta-analysis procedure. The methodological quality of each included studies was assessed. RESULTS For the systematic review, the initial Ovid search yielded 648 publications of which 42 articles were included, representing 3480 SSD patients and controls. The most consistent finding was that negative symptoms were linked to cortical fronto-limbic hypoperfusion while positive symptoms seemed to be associated with hyperperfusion, notably in subcortical structures. The meta-analysis integrated results from 13 whole-brain studies, across 426 patients and 401 controls, and confirmed the robustness of the hypoperfusion in the left superior and middle frontal gyri and right middle occipital gyrus while hyperperfusion was found in the left putamen. CONCLUSION This updated review of the literature supports the implication of hemodynamic correlates in the pathophysiology of psychosis symptoms and disorders. A more systematic exploration of brain perfusion could complete the search of a multimodal biomarker of SSD.
Collapse
Affiliation(s)
- Olivier Percie du Sert
- McGill University, Montreal, QC, Canada; Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Joshua Unrau
- McGill University, Montreal, QC, Canada; Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Claudine J Gauthier
- Concordia University, Montreal, QC, Canada; Montreal Heart Institute, Montreal, QC, Canada
| | - Mallar Chakravarty
- McGill University, Montreal, QC, Canada; Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Ashok Malla
- McGill University, Montreal, QC, Canada; Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Martin Lepage
- McGill University, Montreal, QC, Canada; Douglas Mental Health University Institute, Montreal, QC, Canada.
| | - Delphine Raucher-Chéné
- McGill University, Montreal, QC, Canada; Douglas Mental Health University Institute, Montreal, QC, Canada; University of Reims Champagne-Ardenne, Cognition, Health, and Society Laboratory (EA 6291), Reims, France; Academic Department of Psychiatry, University Hospital of Reims, EPSM Marne, Reims, France
| |
Collapse
|
6
|
Adam O, Blay M, Brunoni AR, Chang HA, Gomes JS, Javitt DC, Jung DU, Kantrowitz JT, Koops S, Lindenmayer JP, Palm U, Smith RC, Sommer IE, Valiengo LDCL, Weickert TW, Brunelin J, Mondino M. Efficacy of Transcranial Direct Current Stimulation to Improve Insight in Patients With Schizophrenia: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Schizophr Bull 2022; 48:1284-1294. [PMID: 35820035 PMCID: PMC9673267 DOI: 10.1093/schbul/sbac078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND HYPOTHESIS Impaired insight into the illness and its consequences is associated with poor outcomes in schizophrenia. While transcranial direct current stimulation (tDCS) may represent a potentially effective treatment strategy to relieve various symptoms of schizophrenia, its impact on insight remains unclear. To investigate whether tDCS would modulate insight in patients with schizophrenia, we undertook a meta-analysis based on results from previous RCTs that investigated the clinical efficacy of tDCS. We hypothesize that repeated sessions of tDCS will be associated with insight improvement among patients. STUDY DESIGN PubMed and ScienceDirect databases were systematically searched to identify RCTs that delivered at least 10 tDCS sessions in patients with schizophrenia. The primary outcome was the change in insight score, assessed by the Positive and Negative Syndrome Scale (PANSS) item G12 following active tDCS sessions as opposed to sham stimulation. Effect sizes were calculated for all studies and pooled using a random-effects model. Meta-regression and subgroup analyses were conducted. STUDY RESULTS Thirteen studies (587 patients with schizophrenia) were included. A significant pooled effect size (g) of -0.46 (95% CI [-0.78; -0.14]) in favor of active tDCS was observed. Age and G12 score at baseline were identified as significant moderators, while change in total PANSS score was not significant. CONCLUSIONS Ten sessions of active tDCS with either frontotemporoparietal or bifrontal montage may improve insight into the illness in patients with schizophrenia. The effect of this treatment could contribute to the beneficial outcomes observed in patients following stimulation.
Collapse
Affiliation(s)
- Ondine Adam
- Pôle Est, Centre Hospitalier Le Vinatier, Bron, France,INSERM U1028; CNRS UMR5292; PSYR2 Team; Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Université Jean Monnet, Lyon, France
| | - Martin Blay
- Pôle Est, Centre Hospitalier Le Vinatier, Bron, France
| | - Andre R Brunoni
- Departamento e Instituto de Psiquiatria, Faculdade de Medicina, Laboratório de Neurociências (LIM-27), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil,Departamento e Instituto de Psiquiatria, Faculdade de Medicina, Universidade de São Paulo, Serviço Interdisciplinar de Neuromodulação (SIN), Hospital das Clínicas HCFMUSP, São Paulo, Brazil
| | - Hsin-An Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - July S Gomes
- Interdisciplinary Laboratory of Clinical Neurosciences, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Daniel C Javitt
- Columbia University, New York, NY, USA,New York State Psychiatric Institute, New York, NY, USA,Nathan Kline Institute, Orangeburg, NY, USA
| | - Do-Un Jung
- Department of Psychiatry, Busan Paik Hospital, Inje University, Busan, Republic of Korea
| | - Joshua T Kantrowitz
- Columbia University, New York, NY, USA,New York State Psychiatric Institute, New York, NY, USA,Nathan Kline Institute, Orangeburg, NY, USA
| | - Sanne Koops
- Department of Biomedical Sciences of Cells and Systems, Cognitive Neurosciences, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Jean-Pierre Lindenmayer
- Nathan Kline Institute, Orangeburg, NY, USA,New York University School of Medicine, New York, NY, USA,Manhattan Psychiatric Center, New York, NY, USA
| | - Ulrich Palm
- Department of Psychiatry and Psychotherapy, Hospital of the University of Munich, Munich, Germany,Medical Park Chiemseeblick, Bernau-Felden, Germany
| | - Robert C Smith
- Nathan Kline Institute, Orangeburg, NY, USA,New York University School of Medicine, New York, NY, USA
| | - Iris E Sommer
- Department of Biomedical Sciences of Cells and Systems, Cognitive Neurosciences, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Leandro do Costa Lane Valiengo
- Departamento e Instituto de Psiquiatria, Faculdade de Medicina, Laboratório de Neurociências (LIM-27), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil,Departamento e Instituto de Psiquiatria, Faculdade de Medicina, Universidade de São Paulo, Serviço Interdisciplinar de Neuromodulação (SIN), Hospital das Clínicas HCFMUSP, São Paulo, Brazil
| | - Thomas W Weickert
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA,School of Psychiatry, University of New South Wales, Sydney, NSW, Australia,Neuroscience Research Australia, Sydney, NSW, Australia
| | | | - Marine Mondino
- To whom correspondence should be addressed; PsyR2 team, Centre Hospitalier le Vinatier, batiment 416, 1st floor, 95 boulevard Pinel, 69678 Bron, Cedex BP 30039, France; tel: (+33)4 37 91 55 65, fax: (+33)4 37 91 55 49, e-mail:
| |
Collapse
|
7
|
Blay M, Adam O, Bation R, Galvao F, Brunelin J, Mondino M. Improvement of Insight with Non-Invasive Brain Stimulation in Patients with Schizophrenia: A Systematic Review. J Clin Med 2021; 11:jcm11010040. [PMID: 35011780 PMCID: PMC8745271 DOI: 10.3390/jcm11010040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Patients with schizophrenia are often unaware of their condition and the consequences of their illness. This lack of insight results in impaired functioning, treatment non-adherence and poor prognosis. Here, we aimed to investigate the effects of non-invasive brain stimulation (NIBS) on two forms of insight, clinical and cognitive, in patients with schizophrenia. We conducted a systematic review of the literature registered in the PROSPERO database (CRD42020220323) according to PRISMA guidelines. The literature search was conducted in Medline and Web of Science databases based on studies published up until October 2020 that included pre-NIBS and post-NIBS measurements of clinical and/or cognitive insight in adults with schizophrenia. A total of 14 studies were finally included, and their methodological quality was assessed by using the QualSyst tool. Despite the lack of well-conducted large randomized-controlled studies using insight as the primary outcome, the available findings provide preliminary evidence that NIBS can improve clinical insight in patients with schizophrenia, with a majority of studies using transcranial direct current stimulation with a left frontotemporal montage. Further studies should investigate the effect of NIBS on insight as a primary outcome and how these effects on insight could translate into clinical and functional benefits in patients with schizophrenia.
Collapse
Affiliation(s)
- Martin Blay
- Centre Hospitalier le Vinatier, F-69500 Bron, France; (M.B.); (O.A.); (F.G.); (J.B.)
- Université Lyon 1, Lyon University, F-69100 Villeurbanne, France;
| | - Ondine Adam
- Centre Hospitalier le Vinatier, F-69500 Bron, France; (M.B.); (O.A.); (F.G.); (J.B.)
- Université Lyon 1, Lyon University, F-69100 Villeurbanne, France;
- INSERM U1028, CNRS UMR5292, PSYR2 Team, Lyon Neuroscience Research Center, F-69000 Lyon, France
| | - Rémy Bation
- Université Lyon 1, Lyon University, F-69100 Villeurbanne, France;
- INSERM U1028, CNRS UMR5292, PSYR2 Team, Lyon Neuroscience Research Center, F-69000 Lyon, France
- Psychiatric Unit, Wertheimer Neurologic Hospital, F-69500 Bron, France
| | - Filipe Galvao
- Centre Hospitalier le Vinatier, F-69500 Bron, France; (M.B.); (O.A.); (F.G.); (J.B.)
| | - Jérôme Brunelin
- Centre Hospitalier le Vinatier, F-69500 Bron, France; (M.B.); (O.A.); (F.G.); (J.B.)
- Université Lyon 1, Lyon University, F-69100 Villeurbanne, France;
- INSERM U1028, CNRS UMR5292, PSYR2 Team, Lyon Neuroscience Research Center, F-69000 Lyon, France
| | - Marine Mondino
- Centre Hospitalier le Vinatier, F-69500 Bron, France; (M.B.); (O.A.); (F.G.); (J.B.)
- Université Lyon 1, Lyon University, F-69100 Villeurbanne, France;
- INSERM U1028, CNRS UMR5292, PSYR2 Team, Lyon Neuroscience Research Center, F-69000 Lyon, France
- Correspondence:
| |
Collapse
|
8
|
Daniell K, Kim J, Iwata Y, Caravaggio F, Brown E, Remington G, Agid O, Graff-Guerrero A, Gerretsen P. Exploring the relationship between impaired illness awareness and visuospatial inattention in patients with schizophrenia. J Psychiatr Res 2021; 136:468-473. [PMID: 33168197 DOI: 10.1016/j.jpsychires.2020.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 10/23/2022]
Abstract
Anosognosia, described as impairment in an individual's ability to perceive and understand their illness, and visuospatial inattention commonly co-occur as a result of structural brain lesions in the right posterior parietal area. Anosognosia or impaired illness awareness is a common feature of schizophrenia that contributes to medication nonadherence and poor clinical outcomes. A recent pilot study suggests patients with impaired illness awareness have a rightward visuospatial bias. We aimed to examine this relationship in a large sample of patients. This study consisted of 106 patients with schizophrenia spectrum disorder (henceforth, schizophrenia) and 20 healthy controls. Visuospatial attention was assessed using the line bisection test (LBT). Illness awareness was assessed using the VAGUS self-report version. A Welch's t-test was used to examine differences in LBT scores between patients with schizophrenia and healthy controls. Correlation analyses between LBT and VAGUS scores were performed in patients with schizophrenia. For exploratory purposes, intra-subject reliability of the LBT was also examined using a two-way mixed intra-class correlation coefficient (ICC). There were no differences in LBT scores between patients with schizophrenia and healthy controls. In patients, there were no associations between LBT and VAGUS scores. ICCs between two consecutively acquired LBTs were 0.92 (95% CI: 0.81-0.96) in patients with schizophrenia and 0.93 (95% CI: 0.81-0.97) in healthy controls. Our results, using a reliable measure, did not support our previous preliminary finding that suggested a relationship between impaired illness awareness and visuospatial bias in patients with schizophrenia. Future studies should consider more sensitive visuospatial attention tasks when testing this hypothesis.
Collapse
Affiliation(s)
- Kyle Daniell
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Julia Kim
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Yusuke Iwata
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Fernando Caravaggio
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Eric Brown
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Gary Remington
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ofer Agid
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ariel Graff-Guerrero
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, CAMH, Toronto, Ontario, Canada; Geriatric Mental Health Division, CAMH, Toronto, Ontario, Canada
| | - Philip Gerretsen
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, CAMH, Toronto, Ontario, Canada; Geriatric Mental Health Division, CAMH, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Effects of Transcranial Direct Current Stimulation (tDCS) in the Normalization of Brain Activation in Patients with Neuropsychiatric Disorders: A Systematic Review of Neurophysiological and Neuroimaging Studies. Neural Plast 2020; 2020:8854412. [PMID: 33424961 PMCID: PMC7773462 DOI: 10.1155/2020/8854412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/23/2020] [Accepted: 12/03/2020] [Indexed: 11/17/2022] Open
Abstract
Background People with neuropsychiatric disorders have been found to have abnormal brain activity, which is associated with the persistent functional impairment found in these patients. Recently, transcranial direct current stimulation (tDCS) has been shown to normalize this pathological brain activity, although the results are inconsistent. Objective We explored whether tDCS alters and normalizes brain activity among patients with neuropsychiatric disorders. Moreover, we examined whether these changes in brain activity are clinically relevant, as evidenced by brain-behavior correlations. Methods A systematic review was conducted according to PRISMA guidelines. Randomized controlled trials that studied the effects of tDCS on brain activity by comparing experimental and sham control groups using either electrophysiological or neuroimaging methods were included. Results With convergent evidence from 16 neurophysiological/neuroimaging studies, active tDCS was shown to be able to induce changes in brain activation patterns in people with neuropsychiatric disorders. Importantly, anodal tDCS appeared to normalize aberrant brain activation in patients with schizophrenia and substance abuse, and the effect was selectively correlated with reaction times, task-specific accuracy performance, and some symptom severity measures. Limitations and Conclusions. Due to the inherent heterogeneity in brain activity measurements for tDCS studies among people with neuropsychiatric disorders, no meta-analysis was conducted. We recommend that future studies investigate the effect of repeated cathodal tDCS on brain activity. We suggest to clinicians that the prescription of 1-2 mA anodal stimulation for patients with schizophrenia may be a promising treatment to alleviate positive symptoms. This systematic review is registered with registration number CRD42020183608.
Collapse
|
10
|
Chang CC, Kao YC, Chao CY, Tzeng NS, Chang HA. The Effects of Bi-Anodal tDCS Over the Prefrontal Cortex Regions With Extracephalic Reference Placement on Insight Levels and Cardio-Respiratory and Autonomic Functions in Schizophrenia Patients and Exploratory Biomarker Analyses for Treatment Response. Int J Neuropsychopharmacol 2020; 24:40-53. [PMID: 32808025 PMCID: PMC7816677 DOI: 10.1093/ijnp/pyaa063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/05/2020] [Accepted: 08/11/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND We previously showed the efficacy of bi-anodal transcranial direct current stimulation (tDCS) over the prefrontal cortex (PFC) regions with extracephalic reference placement in improving negative symptoms in schizophrenia. In this ancillary investigation, the effects of this intervention on insight levels, other clinical outcomes, and cardio-respiratory and autonomic functions were examined and the potential of biomarkers for treatment response was explored. METHODS Schizophrenia patients were randomly allocated to receive 10 sessions of bi-anodal tDCS over the PFC regions with extracephalic reference placement (2 mA, 20 minutes, twice daily for 5 weeks) or sham stimulation. We examined, in 60 patients at baseline, immediately after stimulation and at follow-up visits, the insight levels, other clinical outcomes, blood pressure, respiratory rate, heart rate, and heart rate variability. RESULTS Insight levels as assessed by the abbreviated version of the Scale to Assess Unawareness in Mental Disorder in schizophrenia awareness of the disease, positive and negative symptoms dimensions, and beliefs about medication compliance as assessed by Medication Adherence Rating Scale were significantly enhanced by active stimulation relative to sham. No effects were observed on cognitive insight, other clinical outcomes, or cardio-respiratory and autonomic functions. Heart rate variability indices as biomarkers were not associated with the clinical response to the intervention. CONCLUSIONS Our results provide evidence for bi-anodal tDCS over the PFC regions with extracephalic reference placement in heightening the levels of insight into the disease and symptoms, as well as beliefs about medication compliance in schizophrenia, without impacting other clinical outcomes and cardio-respiratory/autonomic functions.
Collapse
Affiliation(s)
- Chuan-Chia Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan,Correspondence: Hsin-An Chang, MD, Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, No. 325, Cheng-Kung Road, Sec. 2, Nei-Hu District, Taipei, 114, Taiwan, Tel/Fax: 011-886-2-8792-7220 / 011-886-2-8792-7221 ()
| | - Yu-Chen Kao
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan,Department of Psychiatry, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei, Taiwan
| | - Che-Yi Chao
- Department of Psychiatry, Cardinal Tien Hospital, New Taipei, Taiwan
| | - Nian-Sheng Tzeng
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan,Student Counseling Center, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-An Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
11
|
Modulation of self-appraisal of illness, medication adherence, life quality and autonomic functioning by transcranial direct current stimulation in schizophrenia patients. Clin Neurophysiol 2020; 131:1997-2007. [DOI: 10.1016/j.clinph.2020.02.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 01/25/2020] [Accepted: 02/24/2020] [Indexed: 12/19/2022]
|
12
|
Improving insight to facilitate antipsychotic medication adherence in patients with schizophrenia. Clin Neurophysiol 2020; 131:1968-1970. [DOI: 10.1016/j.clinph.2020.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 01/01/2023]
|
13
|
Neuromodulation in Schizophrenia: Relevance of Neuroimaging. Curr Behav Neurosci Rep 2020. [DOI: 10.1007/s40473-020-00209-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|