1
|
Onal B, Gultekin MH, Simsekoglu MF, Selcuk B, Gurbuz A. Biomarkers in Urological Cancers. Biomark Med 2022. [DOI: 10.2174/9789815040463122010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Urological tumours have become one of the most common cancers in the
last decade. It is important to apply an approach that evaluates many factors related to
the patient and the disease carefully to minimize cancer-associated morbidity and
mortality. The clinical use of cancer biomarkers is a valuable part of the clinical
management of urological cancers. These biomarkers may lead to optimized detection,
treatment, and follow-up of urological cancers. With the development of molecular
research, newly developed biomarkers and next-generation sequencing have also
contributed to patient management. In this chapter, we will present biomarkers in the
most common urological cancers under subheadings of bladder cancer, prostate cancer,
kidney cancer, and testicular cancer. Additionally, due to the development that
occurred in the next-generation sequencing (NGS), all the above-mentioned
malignancies are evaluated with regard to NGS.
Collapse
Affiliation(s)
- Bulent Onal
- Department of Urology, Cerrahpasa School of Medicine, Istanbul University - Cerrahpasa,
Istanbul, Turkey
| | - Mehmet Hamza Gultekin
- Department of Urology, Cerrahpasa School of Medicine, Istanbul University - Cerrahpasa,
Istanbul, Turkey
| | - Muhammed Fatih Simsekoglu
- Department of Urology, Cerrahpasa School of Medicine, Istanbul University - Cerrahpasa,
Istanbul, Turkey
| | - Berin Selcuk
- Department of Urology, Cerrahpasa School of Medicine, Istanbul University - Cerrahpasa,
Istanbul, Turkey
| | - Ahmet Gurbuz
- Department of Urology, Cerrahpasa School of Medicine, Istanbul University - Cerrahpasa,
Istanbul, Turkey
| |
Collapse
|
2
|
Yang L, Lu P, Yang X, Li K, Chen X, Zhou Y, Qu S. Downregulation of annexin A3 promotes ionizing radiation-induced EGFR activation and nuclear translocation and confers radioresistance in nasopharyngeal carcinoma. Exp Cell Res 2022; 418:113292. [PMID: 35850266 DOI: 10.1016/j.yexcr.2022.113292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022]
Abstract
Radioresistance currently poses a significant challenge to successful disease control of nasopharyngeal carcinoma (NPC). We previously uncovered that annexin A3 (ANXA3), a calcium-dependent phospholipid binding protein, is underexpressed in radioresistant NPC cells and mouse xenografts. This study aims to further unravel the mechanistic basis underlying ANXA3-mediated radioresistance in NPC. We show that either innate ANXA3 downregulation or short hairpin RNA(shRNA)-based knockdown of ANXA3 confers resistance to ionizing radiation (IR) in NPC both in vitro and in mouse xenograft models in vivo, whereas radiosensitization was observed when ANXA3 was ectopically expressed. Mechanistically, ANXA3 knockdown dramatically enhances IR-induced epidermal growth factor receptor (EGFR) phosphorylation and nuclear translocation, leading to increased post-IR phosphorylation of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) concomitant with markedly accelerated DNA DSB repair. In addition, pretreatment with cetuximab efficiently abrogated the radioresistant phenotype of ANXA3-low cells as well as the ANXA3 knockdown-induced post-IR EGFR nuclear accumulation, suggesting that EGFR is an essential mediator for ANXA3 depletion-mediated radioprotection in NPC. Collectively, this work reveals for the first time a critical role of ANXA3 in radiation survival and DNA repair mechanism of NPC and provides mechanistic evidence to support ANXA3 as a potential therapeutic target to improve radiocurability for NPC.
Collapse
Affiliation(s)
- Liu Yang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Autonomous Region, China
| | - Pingan Lu
- Faculty of Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
| | - Xiaohui Yang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Autonomous Region, China
| | - Kaiguo Li
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Autonomous Region, China
| | - Xuxia Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Autonomous Region, China
| | - Yufei Zhou
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Autonomous Region, China
| | - Song Qu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Autonomous Region, China; Key Laboratory of High-Incidence Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi Autonomous Region, China; Guangxi Clinical Medicine Research Center of Nasopharyngeal Carcinoma, Nanning, 530021, Guangxi Autonomous Region, China.
| |
Collapse
|
3
|
Ozturk A. Role of annexin A3 in breast cancer (Review). Mol Clin Oncol 2022; 16:111. [PMID: 35620213 PMCID: PMC9112397 DOI: 10.3892/mco.2022.2544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/19/2022] [Indexed: 11/06/2022] Open
Abstract
Annexins are a large group of proteins occurring in numerous cell types. Annexins have roles in events such as coagulation inhibition, endocytosis, exocytosis, signal transduction, proliferation and programmed cell death. The association of annexins with numerous diseases has been reported. There are 12 annexin proteins in total and the association of annexin A3 (ANXA3) with numerous malignant tumor types, such as breast cancer, prostate cancer, lung cancer, stomach cancer and colon cancer, has been reported. Studies investigating the relationship between ANXA3 and breast cancer were analyzed in the present review and it was observed that ANXA3 is expressed at higher levels in breast cancer cells. Furthermore, high ANXA3 levels are a poor prognostic factor, increase the invasion ability of breast cancer cells and may be a novel therapeutic target.
Collapse
Affiliation(s)
- Alpaslan Ozturk
- Department of Medical Biochemistry, Amasya University Faculty of Medicine, Amasya 05100, Turkey
| |
Collapse
|
4
|
Garcia-Marques F, Liu S, Totten SM, Bermudez A, Tanimoto C, Hsu EC, Nolley R, Hembree A, Stoyanova T, Brooks JD, Pitteri SJ. Protein signatures to distinguish aggressive from indolent prostate cancer. Prostate 2022; 82:605-616. [PMID: 35098564 PMCID: PMC8916040 DOI: 10.1002/pros.24307] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/31/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Distinguishing men with aggressive from indolent prostate cancer is critical to decisions in the management of clinically localized prostate cancer. Molecular signatures of aggressive disease could help men overcome this major clinical challenge by reducing unnecessary treatment and allowing more appropriate treatment of aggressive disease. METHODS We performed a mass spectrometry-based proteomic analysis of normal and malignant prostate tissues from 22 men who underwent surgery for prostate cancer. Prostate cancer samples included Grade Groups (3-5), with 8 patients experiencing recurrence and 14 without evidence of recurrence with a mean of 6.8 years of follow-up. To better understand the biological pathways underlying prostate cancer aggressiveness, we performed a systems biology analysis and gene enrichment analysis. Proteins that distinguished recurrent from nonrecurrent cancer were chosen for validation by immunohistochemical analysis on tissue microarrays containing samples from a larger cohort of patients with recurrent and nonrecurrent prostate cancer. RESULTS In all, 24,037 unique peptides (false discovery rate < 1%) corresponding to 3,313 distinct proteins were identified with absolute abundance ranges spanning seven orders of magnitude. Of these proteins, 115 showed significantly (p < 0.01) different levels in tissues from recurrent versus nonrecurrent cancers. Analysis of all differentially expressed proteins in recurrent and nonrecurrent cases identified several protein networks, most prominently one in which approximately 24% of the proteins in the network were regulated by the YY1 transcription factor (adjusted p < 0.001). Strong immunohistochemical staining levels of three differentially expressed proteins, POSTN, CALR, and CTSD, on a tissue microarray validated their association with shorter patient survival. CONCLUSIONS The protein signatures identified could improve understanding of the molecular drivers of aggressive prostate cancer and be used as candidate prognostic biomarkers.
Collapse
Affiliation(s)
- Fernando Garcia-Marques
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, USA 94304
| | - Shiqin Liu
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, USA 94304
| | - Sarah M. Totten
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, USA 94304
| | - Abel Bermudez
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, USA 94304
| | - Cheylene Tanimoto
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, USA 94304
| | - En-Chi Hsu
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, USA 94304
| | - Rosalie Nolley
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA 94305
| | - Amy Hembree
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, USA 94304
| | - Tanya Stoyanova
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, USA 94304
| | - James D. Brooks
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, USA 94304
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA 94305
| | - Sharon J. Pitteri
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, USA 94304
- Corresponding Author: Sharon Pitteri, 3155 Porter Drive, Palo Alto, CA 94304,
| |
Collapse
|
5
|
Chan KM, Gleadle JM, O'Callaghan M, Vasilev K, MacGregor M. Prostate cancer detection: a systematic review of urinary biosensors. Prostate Cancer Prostatic Dis 2022; 25:39-46. [PMID: 34997229 DOI: 10.1038/s41391-021-00480-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Current diagnostic methods for prostate cancer are invasive and lack specificity towards aggressive forms of the disease, which can lead to overtreatment. A new class of non-invasive alternatives is under development, in which urinary biomarkers are detected using biosensing devices to offer rapid and accurate prostate cancer diagnosis. These different approaches are systematically reviewed and their potential for translation to clinical practice is evaluated. METHODS A systematic review of the literature was performed in May 2021 using PubMed Medline database, Embase, and Web of Science. The objective was to review the structural designs and performance of biosensors tested on urine samples from patients with prostate cancer. RESULTS A total of 76 records were identified. After screening and eligibility, 14 articles were included and are discussed in this paper. The biosensors were discussed based on the target biomarkers and detection technologies used, as well as the results of the clinical studies. Most of the works reported good discrimination between patients with prostate cancer and controls. CONCLUSIONS This review highlights the potential of urinary biosensors for non-invasive prostate cancer detection. However, clinical studies have so far only been conducted on small cohorts of patient, with large scale trials still needed to validate the proposed approaches. Overall, the consensus arising from the proof of concepts studies reviewed here, is that an adequate combination of biomarkers into multiplex biosensor platforms is required to achieve accurate diagnostic tests. Furthermore, whether such devices can discriminate between aggressive and indolent cancer has not yet been addressed, because it entails optimized biomarkers panels and long-term clinical trials.
Collapse
Affiliation(s)
- Kit Man Chan
- UniSA STEM, University of South Australia, Adelaide, SA, 5095, Australia
| | - Jonathan M Gleadle
- Department of Renal Medicine, Flinders Medical Centre, Flinders University, Bedford Park, SA, 5042, Australia.,Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Michael O'Callaghan
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia.,Urology Unit, Flinders Medical Centre, Flinders University, Bedford Park, SA, 5042, Australia
| | - Krasimir Vasilev
- Future Industries Institute, UniSA STEM, University of South Australia, Adelaide, SA, 5095, Australia
| | - Melanie MacGregor
- Future Industries Institute, UniSA STEM, University of South Australia, Adelaide, SA, 5095, Australia.
| |
Collapse
|
6
|
Abstract
Annexin A3 (ANXA3), an annexin family member, contains 36 kDa and 33 kDa isoforms. Similar to other annexin members, ANXA3 plays an important role in the development of human diseases. Recent studies have reported that abnormal ANXA3 expression is closely associated with the development, progression, metastasis, drug resistance and prognosis of several malignant tumours, such as breast cancer, lung cancer and hepatocellular carcinoma. ANXA3 exerts its role by regulating cell proliferation, migration and apoptosis via the phosphatidylinositol-3 kinase/Akt, nuclear factor-κB (NF-κB), c-JUN N-terminal kinase, extracellular signal-regulated kinase and hypoxia-inducible factor-1 signalling pathways. ANXA3 may act as a novel target for the early diagnosis and treatment of tumours. The present review summarises the recent progress in the role of ANXA3 and its regulatory pathways in tumours.
Collapse
Affiliation(s)
- Chao Liu
- Clinical Laboratory, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Nannan Li
- Clinical Laboratory, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Guijian Liu
- Clinical Laboratory, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Xue Feng
- Clinical Laboratory, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| |
Collapse
|
7
|
Yang L, Lu P, Yang X, Li K, Qu S. Annexin A3, a Calcium-Dependent Phospholipid-Binding Protein: Implication in Cancer. Front Mol Biosci 2021; 8:716415. [PMID: 34355022 PMCID: PMC8329414 DOI: 10.3389/fmolb.2021.716415] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/08/2021] [Indexed: 12/20/2022] Open
Abstract
Annexin A3 (ANXA3), also known as lipocortin III and placental anticoagulant protein III, has been reported to be dysregulated in tumor tissues and cancer cell lines, and harbors pronounced diagnostic and prognostic value for certain malignancies, such as breast, prostate, colorectal, lung and liver cancer. Aberrant expression of ANXA3 promotes tumor cell proliferation, invasion, metastasis, angiogenesis, and therapy resistance to multiple chemotherapeutic drugs including platinum-based agents, fluoropyrimidines, cyclophosphamide, doxorubicin, and docetaxel. Genetic alterations on the ANXA3 gene have also been reported to be associated with the propensity to form certain inherited, familial tumors. These diverse functions of ANXA3 in tumors collectively indicate that ANXA3 may serve as an attractive target for novel anticancer therapies and a powerful diagnostic and prognostic biomarker for early tumor detection and population risk screening. In this review, we dissect the role of ANXA3 in cancer in detail.
Collapse
Affiliation(s)
- Liu Yang
- Key Laboratory of High-Incidence Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Pingan Lu
- Faculty of Medicine, Amsterdam Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Xiaohui Yang
- Key Laboratory of High-Incidence Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Kaiguo Li
- Key Laboratory of High-Incidence Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Song Qu
- Key Laboratory of High-Incidence Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
8
|
Prostate Cancer Biomarkers: From diagnosis to prognosis and precision-guided therapeutics. Pharmacol Ther 2021; 228:107932. [PMID: 34174272 DOI: 10.1016/j.pharmthera.2021.107932] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/23/2022]
Abstract
Prostate cancer (PCa) is one of the most commonly diagnosed malignancies and among the leading causes of cancer-related death worldwide. It is a highly heterogeneous disease, ranging from remarkably slow progression or inertia to highly aggressive and fatal disease. As therapeutic decision-making, clinical trial design and outcome highly depend on the appropriate stratification of patients to risk groups, it is imperative to differentiate between benign versus more aggressive states. The incorporation of clinically valuable prognostic and predictive biomarkers is also potentially amenable in this process, in the timely prevention of metastatic disease and in the decision for therapy selection. This review summarizes the progress that has so far been made in the identification of the genomic events that can be used for the classification, prediction and prognostication of PCa, and as major targets for clinical intervention. We include an extensive list of emerging biomarkers for which there is enough preclinical evidence to suggest that they may constitute crucial targets for achieving significant advances in the management of the disease. Finally, we highlight the main challenges that are associated with the identification of clinically significant PCa biomarkers and recommend possible ways to overcome such limitations.
Collapse
|
9
|
Gao S, Wang Z, Liu X, Xu B, Liu F. The calcimedin annexin A3 displays tumor-promoting effect in esophageal squamous cell carcinoma by activating NF-κB signaling. Mamm Genome 2021; 32:381-388. [PMID: 34109455 DOI: 10.1007/s00335-021-09883-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/02/2021] [Indexed: 11/29/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the lethal malignancies commonly found in the eastern world, with overall five-year survival rates less than 25%. The present study aimed to investigate the biological function of annexin A3 (ANXA3) in ESCC cell proliferation. The mRNA and protein levels of ANXA3 in ESCC tissues and cell lines were determined by real-time PCR and Western blot, respectively. Lentiviral transduction was applied to overexpress or reduce ANXA3 expression in ESCC cell lines. The effect of ANXA3 on ESCC cell proliferation was evaluated by cell-counting kit-8 assay in vitro and tumor-bearing animal model in vivo. We found that ANXA3 was substantially upregulated in ESCC tissues compared to adjacent normal tissues as well as ESCC cell lines compared to normal esophageal endothelial cells. Suppression of ANXA3 significantly inhibited ESCC cell proliferation in vitro and tumor growth in vivo. We further revealed that NF-κB was involved in ANXA3-mediated ESCC cell proliferation. Our results suggest that ANXA3 acts as an oncogene in ESCC, and targeting ANXA3 or NF-κB may serve as potential therapeutic strategies for patients with ESCC.
Collapse
Affiliation(s)
- Shihao Gao
- Department of Chest Surgery, Gucheng County Hospital, No. 55 of Kangning East Road, Hengshui Gucheng, 253800, Hebei, China
| | - Zhangzhan Wang
- Department of Chest Surgery, Gucheng County Hospital, No. 55 of Kangning East Road, Hengshui Gucheng, 253800, Hebei, China
| | - Xiaozhe Liu
- Department of Ophthalmology, Gucheng County Hospital, No. 55 of Kangning East Road, Hengshui Gucheng, 253800, Hebei, China
| | - Bing Xu
- Department of ENT, Gucheng County Hospital, No. 55 of Kangning East Road, Hengshui Gucheng, 253800, Hebei, China
| | - Fengjin Liu
- Department of Chest Surgery, Gucheng County Hospital, No. 55 of Kangning East Road, Hengshui Gucheng, 253800, Hebei, China.
| |
Collapse
|
10
|
Kim H, Park S, Jeong IG, Song SH, Jeong Y, Kim CS, Lee KH. Noninvasive Precision Screening of Prostate Cancer by Urinary Multimarker Sensor and Artificial Intelligence Analysis. ACS NANO 2021; 15:4054-4065. [PMID: 33296173 DOI: 10.1021/acsnano.0c06946] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Screening for prostate cancer relies on the serum prostate-specific antigen test, which provides a high rate of false positives (80%). This results in a large number of unnecessary biopsies and subsequent overtreatment. Considering the frequency of the test, there is a critical unmet need of precision screening for prostate cancer. Here, we introduced a urinary multimarker biosensor with a capacity to learn to achieve this goal. The correlation of clinical state with the sensing signals from urinary multimarkers was analyzed by two common machine learning algorithms. As the number of biomarkers was increased, both algorithms provided a monotonic increase in screening performance. Under the best combination of biomarkers, the machine learning algorithms screened prostate cancer patients with more than 99% accuracy using 76 urine specimens. Urinary multimarker biosensor leveraged by machine learning analysis can be an important strategy of precision screening for cancers using a drop of bodily fluid.
Collapse
Affiliation(s)
- Hojun Kim
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Sungwook Park
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - In Gab Jeong
- Department of Urology, Asan Medical Center (AMC), University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Sang Hoon Song
- Department of Urology, Asan Medical Center (AMC), University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Youngdo Jeong
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Choung-Soo Kim
- Department of Urology, Asan Medical Center (AMC), University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Kwan Hyi Lee
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
11
|
Zemskova MY, Marinets MV, Sivkov AV, Pavlova JV, Shibaev AN, Sorokin KS. Integrin Alpha V in Urine: A Novel Noninvasive Marker for Prostate Cancer Detection. Front Oncol 2021; 10:610647. [PMID: 33791193 PMCID: PMC8006463 DOI: 10.3389/fonc.2020.610647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/31/2020] [Indexed: 11/20/2022] Open
Abstract
Prostate cancer (PCa) diagnosis based on patient urine analysis provides non-invasive and promising method as compared to biopsy and a prostate-specific antigen (PSA) test. This study was conceived to investigate whether Integrin alpha V (ITGAV) protein is present in urine and assess the urinary ITGAV diagnostic potential for PCa. Materials and Methods: Urinary ITGAV expression was determined by Western blot analysis and quantified by ELISA in urine from men with PCa (n = 47), benign prostate hyperplasia (n = 42) and age-matched controls (n = 22). Results: The level of ITGAV protein was significantly lower in PCa urine samples as compared to those in the control group (p < 0.00001). The decrease of ITGAV in urine was highly predictive of PCa with 91.5% sensitivity, 91.4% specificity, 0.93 area under the ROC curve, and its specificity was better than that of serum PSA. Conclusion: Urinary ITGAV provides a novel noninvasive biomarker with high specificity.
Collapse
Affiliation(s)
- Marina Y Zemskova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center, Pushchino Center for Biological Research of the Russian Academy of Sciences, Pushchino, Russia.,Department of the Research, Prostagnost LLC, Moscow, Russia
| | - Maria V Marinets
- N.A. Lopatkin Research Institute of Urology and Interventional Radiology, Branch of FSBI National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrey V Sivkov
- N.A. Lopatkin Research Institute of Urology and Interventional Radiology, Branch of FSBI National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Julia V Pavlova
- Department of Urology, M.F. Vladimirsky Moscow Regional Research and Clinical Institute (MONIKI), Moscow, Russia
| | - Andrey N Shibaev
- Department of Urology, M.F. Vladimirsky Moscow Regional Research and Clinical Institute (MONIKI), Moscow, Russia
| | | |
Collapse
|
12
|
Du K, Ren J, Fu Z, Wu X, Zheng J, Li X. ANXA3 is upregulated by hypoxia-inducible factor 1-alpha and promotes colon cancer growth. Transl Cancer Res 2020; 9:7440-7449. [PMID: 35117344 PMCID: PMC8797770 DOI: 10.21037/tcr-20-994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 09/30/2020] [Indexed: 11/06/2022]
Abstract
Background Annexin A3 (ANXA3) is overexpressed in various cancers and is a potential target for cancer treatment. However, clinical implication and biological function of ANXA3 in colon cancer remain unknown. This study aimed to investigate the relationship between hypoxia-inducible factor 1-alpha (HIF-1α) and ANXA3, and explore the function of ANXA3 in colon carcinoma. Methods Expression levels of HIF-1α and ANXA3 in human colon carcinoma specimens and colon cancer cell lines were detected by immunohistochemistry, real-time PCR and Western blot analysis. The proliferation of colon cancer cells was examined. Nude mice were used for xenograft tumor model, and HIF-1α siRNA or control adenovirus was injected into the tumor. Results HIF-1α and ANXA3 expression levels were higher in colon cancer tissues than their expression levels in normal colon tissues. In addition, HIF-1α and ANXA3 expression increased in colon cancer cells under hypoxic condition. Knockdown of HIF-1α decreased HIF-1α and ANXA3 expression, and inhibited the proliferation and growth of colon cancer cells. In nude mouse model, silencing HIF-1α decreased volume of xenograft tumor and ANXA3 expression. Conclusions ANXA3 expression is upregulated by HIF-1α in colon cancer in response to hypoxic stress and contributes to colon tumor growth. ANXA3 may represent a new therapeutic target for colon carcinoma.
Collapse
Affiliation(s)
- Kunli Du
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Jiahui Ren
- Department of Anus and Intestine Surgery, Xi'an Mayinglong Anorectal Hospital, Xi'an, China
| | - Zhongxue Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xingye Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianyong Zheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Xing Li
- Nanjing Yuheming Medical Nutrition Research Institute, Nanjing, China
| |
Collapse
|
13
|
Guo C, Li N, Dong C, Wang L, Li Z, Liu Q, Ma Q, Greenaway FT, Tian Y, Hao L, Liu S, Sun MZ. 33-kDa ANXA3 isoform contributes to hepatocarcinogenesis via modulating ERK, PI3K/Akt-HIF and intrinsic apoptosis pathways. J Adv Res 2020; 30:85-102. [PMID: 34026289 PMCID: PMC8132212 DOI: 10.1016/j.jare.2020.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 01/02/2023] Open
Abstract
Introduction As a member of annexin family proteins, annexin A3 (ANXA3) has 36-kDa and 33-kDa isoforms. ANXA3 plays crucial roles in the tumorigenesis, aggressiveness and drug-resistance of cancers. However, previous studies mainly focused on the role of total ANXA3 in cancers without distinguishing the distinction between the two isoforms, the role of 33-kDa ANXA3 in cancer remains unclear. Objectives Current work aimed to investigate the function and regulation mechanism of 33-kDa ANXA3 in hepatocarcinoma. Methods The expressions of ANXA3, CRKL, Rac1, c-Myc and pAkt were analyzed in hepatocarcinoma specimens by Western blotting. The biological function of 33-kDa ANXA3 in the growth, metastasis, apoptosis, angiogenesis, chemoresistance of hepatocarcinoma cells with the underlying molecular mechanism were investigated using gain-of-function strategy in vitro or in vivo. Results 33-kDa ANXA3 was remarkably upregulated in tumor tissues compared with corresponding normal liver tissues of hepatocarcinoma patients. Its stable knockdown decreased the in vivo tumor growing velocity and malignancy of hepatocarcinoma HepG2 cells transplanted in nude mice. The in vitro experimental results indicated 33-kDa ANXA3 knockdown suppressed the proliferation, colony forming, migration and invasion abilities of HepG2 cells through downregulating CRKL, Rap1b, Rac1, pMEK, pERK2 and c-Myc in ERK pathway; inhibited angiogenesisability of HepG2 cells through inactivating PI3K/Akt-HIF pathway; induced apoptosis and enhanced chemoresistance of HepG2 cells through increasing Bax/decreasing Bcl-2 expressions and inactivating caspase 9/caspase 3 in intrinsic apoptosis pathway. Accordingly, CRKL, Rac1, c-Myc and pAkt were also upregulated in hepatocarcinoma patients ’ tumor tissues compared with corresponding normal liver tissues. Conclusions The overexpression of 33-kDa ANXA3 is involved in the clinical progression of hepatocarcinoma and in the malignancy, angiogenesis and apoptosis of hepatocarcinoma cells. It is of potential use in hepatocarcinoma diagnosis and treatment.
Collapse
Affiliation(s)
- Chunmei Guo
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Nannan Li
- Department of Biochemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Chengyong Dong
- Department of General Surgery, the 2 Affiliated Hospital, Dalian Medical University, Dalian 116027, China
| | - Liming Wang
- Department of General Surgery, the 2 Affiliated Hospital, Dalian Medical University, Dalian 116027, China
| | - Zhaopeng Li
- Department of Biochemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Qinlong Liu
- Department of General Surgery, the 2 Affiliated Hospital, Dalian Medical University, Dalian 116027, China
| | - Qinglai Ma
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Frederick T Greenaway
- Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA 01610, USA
| | - Yuxiang Tian
- Department of Biochemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Lihong Hao
- Department of Anatomy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Shuqing Liu
- Department of Biochemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Ming-Zhong Sun
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.,Institute of Hematology, the Second Hospital of Dalian Medical University, Dalian 116027, China
| |
Collapse
|
14
|
Bombelli S, Torsello B, De Marco S, Lucarelli G, Cifola I, Grasselli C, Strada G, Bovo G, Perego RA, Bianchi C. 36-kDa Annexin A3 Isoform Negatively Modulates Lipid Storage in Clear Cell Renal Cell Carcinoma Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:2317-2326. [PMID: 32861643 DOI: 10.1016/j.ajpath.2020.08.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/28/2020] [Accepted: 08/18/2020] [Indexed: 11/26/2022]
Abstract
The adipocyte-like morphology of clear cell renal cell carcinoma (ccRCC) cells results from a grade-dependent neutral lipid accumulation; however, the molecular mechanism and role in renal cancer progression have yet to be clarified. ccRCC shows a gene expression signature consistent with adipogenesis, and the phospholipid-binding protein annexin A3 (AnxA3), a negative regulator of adipocyte differentiation, is down-regulated in RCC and shows a differential expression pattern for two isoforms of 36 and 33 kDa. Using primary cell cultures and cell lines, we investigated the involvement of AnxA3 isoforms in lipid storage modulation of ccRCC cells. We found that the increased accumulation of lipids into ccRCC cells correlated with a decrease of the 36/33 isoform ratio. Treatment with adipogenic medium induced a significant increment of lipid storage in ccRCC cells that had a low 36-kDa AnxA3 expression and 36/33 ratio. The 36-kDa AnxA3 silencing in ccRCC cells increased lipid storage induced by adipogenic medium. These data suggest that 36-kDa AnxA3 negatively modulates the response to adipogenic treatment and may act as negative regulator of lipid storage in ccRCC cells. The subcellular distribution of AnxA3 in the cellular endocytic compartment suggests its involvement in modulation of vesicular trafficking, and it might serve as a putative mechanism of lipid storage regulation in ccRCC cells, opening novel translational outcomes.
Collapse
Affiliation(s)
- Silvia Bombelli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Barbara Torsello
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Sofia De Marco
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Giuseppe Lucarelli
- Department of Emergency and Organ Transplantation-Urology, University of Bari, Bari, Italy
| | - Ingrid Cifola
- Institute for Biomedical Technologies, National Research Council, Segrate, Italy
| | - Chiara Grasselli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Guido Strada
- Urology Unit, ASST North Milan, Bassini Hospital, Cinisello Balsamo, Italy
| | - Giorgio Bovo
- Pathology Unit, ASST North Milan, Vimercate Hospital, Vimercate, Italy
| | - Roberto A Perego
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| | - Cristina Bianchi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| |
Collapse
|
15
|
Wang B, Li Y, Sui M, Qi Q, Wang T, Liu D, Zhou M, Zheng Y, Zhu LQ, Zhang B. Identification of the downstream molecules of agrin/Dok-7 signaling in muscle. FASEB J 2020; 34:5144-5161. [PMID: 32043676 DOI: 10.1096/fj.201901693rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/15/2020] [Accepted: 01/29/2020] [Indexed: 11/11/2022]
Abstract
The development of the neuromuscular junction depends on signaling processes that involve protein phosphorylation. Motor neuron releases agrin to activate muscle protein Dok-7, a key tyrosine kinase essential for the formation of a mature and functional neuromuscular junction. However, the signaling cascade downstream of Dok-7 remains poorly understood. In this study, we combined the clustered regularly interspaced short palindromic repeats/Cas9 technique and quantitative phosphoproteomics analysis to study the tyrosine phosphorylation events triggered by agrin/Dok-7. We found tyrosine phosphorylation level of 36 proteins increased specifically by agrin stimulation. In Dok-7 mutant myotubes, however, 13 of the 36 proteins failed to be enhanced by agrin stimulation, suggesting that these 13 proteins are Dok-7-dependent tyrosine-phosphorylated proteins, could work as downstream molecules of agrin/Dok-7 signaling. We validated one of the proteins, Anxa3, by in vitro and in vivo assays. Knocking down of Anxa3 in the cultured myotubes inhibited agrin-induced AChR clustering, whereas reduction of Anxa3 in mouse muscles induced abnormal postsynaptic development. Collectively, our phosphoproteomics analysis provides novel insights into the complicated signaling network downstream of agrin/Dok-7.
Collapse
Affiliation(s)
- Beibei Wang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Li
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Sui
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Qinqin Qi
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Wang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Liu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Meiling Zhou
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Yunjie Zheng
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling-Qiang Zhu
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China.,Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Zhang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Zhuang C, Wang P, Sun T, Zheng L, Ming L. Expression levels and prognostic values of annexins in liver cancer. Oncol Lett 2019; 18:6657-6669. [PMID: 31807177 PMCID: PMC6876331 DOI: 10.3892/ol.2019.11025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 09/10/2019] [Indexed: 02/07/2023] Open
Abstract
Annexins are a superfamily of calcium-dependent phospholipid-binding proteins that are implicated in a wide range of biological processes. The annexin superfamily comprises 13 members in humans (ANXAs), the majority of which are frequently dysregulated in cancer. However, the expression patterns and prognostic values of ANXAs in liver cancer are currently largely unknown. The present study aimed to analyze the expression levels of ANXAs and survival data in patients with liver cancer from the Oncomine, GEPIA, Kaplan-Meier plotter and cBioPortal for Cancer Genomics databases. The results demonstrated that ANXA1, A2, A3, A4 and A5 were upregulated, whereas ANXA10 was downregulated in liver cancer compared with normal liver tissues. The expression of ANXA10 was associated with pathological stage. High expression levels of ANXA2 and A5 were significantly associated with poor overall survival (OS) rate whereas ANXA7 and A10 were associated with increased OS. The prognostic values of ANXAs in liver cancer were determined based on sex and clinical stage, which revealed that ANXA2, A5, A7 and A10 were associated with OS in male, but not in female patients. In addition, the potential biological functions of ANXAs were identified by Gene Ontology functional annotation and Kyoto Encyclopedia of Genes Genomes pathway analysis; the results demonstrated that ANXAs may serve a role in liver cancer through the neuroactive ligand-receptor interaction pathway. In conclusion, the results of the present study suggested that ANXA1, A2, A3, A4, A5 and A10 may be potential therapeutic targets for liver cancer treatment, and that ANXA2, A5, A7 and A10 may be potential prognostic biomarkers of liver cancer.
Collapse
Affiliation(s)
- Chunbo Zhuang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Pei Wang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ting Sun
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Lei Zheng
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Liang Ming
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
17
|
Xu R, Yin J, Zhang Y, Zhang S. Annexin A3 depletion overcomes resistance to oxaliplatin in colorectal cancer via the MAPK signaling pathway. J Cell Biochem 2019; 120:14585-14593. [PMID: 30998268 DOI: 10.1002/jcb.28720] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/20/2019] [Accepted: 02/28/2019] [Indexed: 12/17/2022]
Abstract
Colorectal cancer (CRC) is a common disease with high mortality and morbidity. Annexin A3 (ANXA3) belongs to the structurally homologous family of Ca2+ and phospholipid-binding proteins. This study aimed to investigate the effects and potential mechanisms of ANXA3 on oxaliplatin (Ox) resistance in CRC. We generated two human CRC cell lines (HCT116/Ox and SW480/Ox) with acquired Ox resistance and determined their resistance properties. ANXA3 expression and cell apoptosis, migration and invasion also were evaluated. We found that cell viability of HCT116/Ox and SW480/Ox was higher than that in parental cells in the presence of Ox. ANXA3 was highly expressed in HCT116/Ox and SW480/Ox cells. ANXA3 downregulation diminished cell survival, migration and invasion, while increased the apoptosis of HCT116 and SW480 with or without Ox. Moreover, depletion of ANXA3 reduced cell viability and BrdU incorporation, increased cell apoptosis and c-caspase 3 expression in HCT116/Ox with or without Ox. A transwell assay determined that knockdown of ANXA3 impeded the migration and invasion of HCT116/Ox and SW480/Ox cells. Additionally, phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) decreased upon ANXA3 depletion in HCT116/Ox cells, and ANXA3 silencing suppressed Ox-induced activation of ERK and JNK signaling pathway. ANXA3 downregulation reduced Ox resistance in CRC, and treatment with the ERK inhibitor PD098059 or JNK inhibitor SP600125 contributed to this process. These results indicate that silencing ANXA3 could overcome Ox resistance in CRC via the mitogen-activated protein kinase signaling pathway.
Collapse
Affiliation(s)
- Ruisi Xu
- Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Jian Yin
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Ying Zhang
- Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Siqi Zhang
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
18
|
Li J, Zhou T, Liu L, Ju YC, Chen YT, Tan ZR, Wang J. The regulatory role of Annexin 3 in a nude mouse bearing a subcutaneous xenograft of MDA-MB-231 human breast carcinoma. Pathol Res Pract 2018; 214:1719-1725. [PMID: 30236487 DOI: 10.1016/j.prp.2018.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/24/2018] [Accepted: 09/11/2018] [Indexed: 11/17/2022]
Abstract
The following study investigated the effects of Annexin A3 (ANXA3) on breast cancer biological behavior in vivo, using nude mouse model bearing a subcutaneous tumor. A total of 18 female nude mice were randomly divided into three groups (n = 6): negative control group which was inoculated with MDA-MB-231 cells, blank control group which was inoculated with MDA-MB-231-NC cells, and the transfection group which was inoculated with MDA-MB-231-Sh cells. The experiment lasted for 4 weeks, during which mice conditions, diet and defecation were monitored on a daily basis. Body weight, as well as tumor diameters, which were assessed using standard caliper method, were measured once a week. In vivo imaging was performed to detect the activity of transplanted tumors. H&E staining was used to analyze the histological structure of tumor tissues in three groups, while flow cytometry and fluorescent RT-PCR were performed to measure cell proliferation and the expression of ANXA3 mRNA. Briefly, significantly slower tumor growth and tumor activity were observed in the transfection group compared to negative and blank controls, while the tumor weight and volume in this group were also significantly lower compared to the other two groups (P < 0.01). Sparse tumor cells accompanied with massive fibrous connective tissue proliferation, and lower new blood vessels formation were observed in transfection group compared to other groups. Moreover, mRNA and protein levels of ANXA3 were significantly lower in transfection group compared to the other two groups (P < 0.01). In addition, lower proliferation index and higher G0/1 cell count were observed in transfection group compared to negative and blank controls (P < 0.01). To sum up, these results suggested that ANXA3 silencing regulates the proliferation and inhibits the growth of MDA-MB-231 breast cancer cells. Consequently, ANXA3 might be used as a potential target for gene therapy in breast cancer.
Collapse
Affiliation(s)
- Jie Li
- Division of Medical Affairs, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, PR China
| | - Tao Zhou
- Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, PR China
| | - Liang Liu
- Tumor Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, PR China.
| | - Ying Chao Ju
- Animal Experimental Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, PR China
| | - Yue Tong Chen
- Tumor Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, PR China
| | - Zi Rui Tan
- Division of Medical Affairs, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, PR China
| | - Jing Wang
- Tumor Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, PR China
| |
Collapse
|
19
|
Wang K, Li J. Overexpression of ANXA3 is an independent prognostic indicator in gastric cancer and its depletion suppresses cell proliferation and tumor growth. Oncotarget 2018; 7:86972-86984. [PMID: 27894078 PMCID: PMC5349965 DOI: 10.18632/oncotarget.13493] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 10/27/2015] [Indexed: 12/18/2022] Open
Abstract
Background Gastric cancer (GC) is one of the most common malignancies worldwide. Tumour metastasis is one of the leading causes of death in GC patients. This study aims to investigate the significance of ANXA3 expression and the mechanism by which ANXA3 is involved in the epithelial–mensenchymal transition (EMT) of gastric cancer cells. Results Our results confirmed that ANXA3 was high expression at the mRNA and protein level in GC cancer tissues and the majority of GC cell lines. In clinicopathological analysis, we found that increased expression of ANXA3 in tumors was closely associated with a poor prognosis. Xogenous ANXA3 transduction promoted proliferation, clone formation, migration, and invasion. Small interfering RNA silencing of ANXA3 inhibited these processes. Silence of ANXA3 inhibited tumorigenicity in vivo. Additionally, ANXA3 expression is associated with the epithelial–mesenchymal transition. Methods Firstly, we investigated the ANXA3 expression on mRNA and protein level with RT-PCR and Western blot. Secondly, 183 GC patients tissues were used the to evaluate the clinicopathological characteristics and prognosis through immunohistochemistry. Furthermore, The functions of ANXA3 were analyzed in the cell proliferation, Colony Formation, migration, invasion and apoptosis of GC cell lines. Conclusions Our research suggests that ANXA3 plays important roles in gastric cancer carcinogenesis and metastasis, and provides a valuable prognostic marker and potential target for treatment of gastric cancer patients.
Collapse
Affiliation(s)
- Ke Wang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jiansheng Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| |
Collapse
|
20
|
Functional Association between Regulatory RNAs and the Annexins. Int J Mol Sci 2018; 19:ijms19020591. [PMID: 29462943 PMCID: PMC5855813 DOI: 10.3390/ijms19020591] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 12/17/2022] Open
Abstract
Cells respond to pathophysiological states by activation of stress-induced signalling. Regulatory non-coding microRNAs (miRNAs) often form stable feed-forward loops which ensure prolongation of the signal, contributing to sustained activation. Members of the annexin protein family act as sensors for Ca2+, pH, and lipid second messengers, and regulate various signalling pathways. Recently, annexins were reported to participate in feedback loops, suppressing miRNA synthesis and attenuating stress-induced dysregulation of gene expression. They can directly or indirectly associate with RNAs, and are transferred between the cells in exosomes and shed microvesicles. The ability of annexins to recruit other proteins and miRNAs into exosomes implicates them in control of cell–cell interactions, affecting the adaptive responses and remodelling processes during disease. The studies summarized in this Review point to an emerging role of annexins in influencing the synthesis, localisation, and transfer of regulatory RNAs.
Collapse
|
21
|
Proteomic Differences in Feline Fibrosarcomas Grown Using Doxorubicin-Sensitive and -Resistant Cell Lines in the Chick Embryo Model. Int J Mol Sci 2018; 19:ijms19020576. [PMID: 29443940 PMCID: PMC5855798 DOI: 10.3390/ijms19020576] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/09/2018] [Accepted: 02/12/2018] [Indexed: 12/19/2022] Open
Abstract
Proteomic analyses are rapid and powerful tools that are used to increase the understanding of cancer pathogenesis, discover cancer biomarkers and predictive markers, and select and monitor novel targets for cancer therapy. Feline injection-site sarcomas (FISS) are aggressive skin tumours with high recurrence rates, despite treatment with surgery, radiotherapy, and chemotherapy. Doxorubicin is a drug of choice for soft tissue sarcomas, including FISS. However, multidrug resistance is one of the major causes of chemotherapy failure. The main aim of the present study was to identify proteins that differentiate doxorubicin-resistant from doxorubicin-sensitive FISS using two-dimensional gel electrophoresis (2DE), followed by matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS) analysis. Using the three-dimensional (3D) preclinical in ovo model, which resembles features of spontaneous fibrosarcomas, three significantly (p ≤ 0.05) differentially expressed proteins were identified in tumours grown from doxorubicin-resistant fibrosarcoma cell lines (FFS1 and FFS3) in comparison to the doxorubicin-sensitive one (FFS5): Annexin A5 (ANXA5), Annexin A3 (ANXA3), and meiosis-specific nuclear structural protein 1 (MNS1). Moreover, nine other proteins were significantly differentially expressed in tumours grown from the high doxorubicin-resistant cell line (FFS1) in comparison to sensitive one (FFS5). This study may be the first proteomic fingerprinting of FISS reported, identifying potential candidates for specific predictive biomarkers and research targets for doxorubicin-resistant FISS.
Collapse
|
22
|
Downregulation of annexin A3 inhibits tumor metastasis and decreases drug resistance in breast cancer. Cell Death Dis 2018; 9:126. [PMID: 29374148 PMCID: PMC5833718 DOI: 10.1038/s41419-017-0143-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/25/2017] [Accepted: 11/10/2017] [Indexed: 12/17/2022]
Abstract
Annexin A3 (ANXA3) is dysregulated and plays an important role in various cancers. However, the role of ANXA3 in breast cancer is still unclear. Here, we observed that the expression level of ANXA3 was significantly upregulated in breast cancer tissues. ANXA3 knockdown inhibited cell invasion but promoted cell proliferation in both in vitro and in vivo assays. Furthermore, we found that ANXA3 knockdown inhibited the NFκB pathway via upregulating IκBα, resulting in mesenchymal–epithelial transition (MET) and a heterogeneity change of breast cancer stem cells (BCSCs). In addition, we demonstrated that ANXA3 knockdown increased the sensitivity of breast cancer cells to doxorubicin by increasing the drug uptake. The combination of ANXA3 knockdown and doxorubicin treatment simultaneously inhibited tumor growth and metastasis in vivo. This study described the role and mechanisms of ANXA3 in regulating BCSCs and breast cancer growth and metastasis, indicating that downregulating ANXA3 together with chemotherapy might be a novel therapeutic strategy for treating breast cancer.
Collapse
|
23
|
Kim JY, Jung EJ, Park HJ, Lee JH, Song EJ, Kwag SJ, Park JH, Park T, Jeong SH, Jeong CY, Ju YT, Lee YJ, Hong SC. Tumor-Suppressing Effect of Silencing of Annexin A3 Expression in Breast Cancer. Clin Breast Cancer 2017; 18:e713-e719. [PMID: 29217453 DOI: 10.1016/j.clbc.2017.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/30/2017] [Accepted: 11/13/2017] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Annexin A3 (ANXA3) participates in various tumor-associated biological processes, including tumor initiation, progression, and metastasis. The present study was designed to investigate the expression and function of ANXA3 in breast cancer cells. MATERIALS AND METHODS Annexin A3 protein expression in breast cancer cell lines was evaluated using Western blot analysis. ANXA3 expression in MDA-MB 231 breast cancer cells was silenced by RNA interference, and the effects of RNA silencing on cell proliferation, colony forming ability, wound-healing, and invasiveness were evaluated. Levels of ANXA3 expression in 30 primary breast cancers were assayed using immunohistochemistry and correlated with patient survival. RESULTS Levels of ANXA3 expression were higher in the basal subtype of breast cancer cells, such as MDA-MB 231, HCC-70, and HCC-1954 cells, than in other subtypes. ANXA3 silencing inhibited the activities of MDA-MB 231 and HCC-1954 cells, including their proliferation, invasion across transwell membranes, and wound-healing and colony forming abilities. ANXA3 small interfering RNA (siRNA) also reduced the expression of cycle-dependent kinase protein and increased the expression of E2F1 and p27 proteins compared with control siRNA. Expression of ANXA3 was closely correlated with tumor size, with higher ANXA3 expression associated with reduced disease-free survival in breast cancer patients. CONCLUSION These findings indicate that ANXA3 is associated with the natural progression of breast cancer and might be a potential prognostic marker of patient survival.
Collapse
Affiliation(s)
- Ju-Yeon Kim
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Eun Jung Jung
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea.
| | - Hee Jin Park
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Jeong-Hee Lee
- Department of Pathology, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Eun Jin Song
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Seung-Jin Kwag
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Ji-Ho Park
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Taejin Park
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
| | - Sang-Ho Jeong
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
| | - Chi-Young Jeong
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Young-Tae Ju
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Young-Joon Lee
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Soon-Chan Hong
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea
| |
Collapse
|
24
|
Zou W, Xu W, Song Z, Zhong T, Weng Y, Huang C, Li M, Zhang C, Zhan X, Guo Q. Proteomic Identification of an Upregulated Isoform of Annexin A3 in the Spinal Cords of Rats in a Neuropathic Pain Model. Front Neurosci 2017; 11:484. [PMID: 28928629 PMCID: PMC5591859 DOI: 10.3389/fnins.2017.00484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/15/2017] [Indexed: 11/13/2022] Open
Abstract
Neuropathic pain (NP) is induced by nerve damage or a disturbance in the peripheral or central nervous systems. Nerve damage causes the activation of sensitizing mechanisms in the peripheral and central nervous systems, which induces transcriptional and post-transcriptional alterations in sensory nerves. However, the underlying mechanisms of NP remain elusive. In the study, Two-dimensional gel electrophoresis (2DGE)-based comparative proteomics identified 38 differential gel spots, and 15 differentially expressed proteins (DEPs) between the sham and the chronic constriction injury (CCI)-induced neuropathic pain rats. Of them, Annexin A3 (ANXA3) was significantly increased after CCI with Western blot analysis and immunofluorescence imaging. A lentivirus delivering ANXA3 shRNA (LV-shANXA3) was administered intrathecally to determine the analgesic effects of ANXA3 on allodynia and hyperalgesia in a CCI-induced neuropathic pain model in rats. Further study showed that LV-shANXA3 reversed the upregulation of ANXA3, alleviated CCI-induced mechanical allodynia and thermal hyperalgesia. The study indicated that ANXA3 may play an important role in neuropathic pain.
Collapse
Affiliation(s)
- Wangyuan Zou
- Department of Anesthesiology, Xiangya Hospital, Central South UniversityChangsha, China
| | - Wei Xu
- Department of Anesthesiology, Xiangya Hospital, Central South UniversityChangsha, China
| | - Zongbin Song
- Department of Anesthesiology, Xiangya Hospital, Central South UniversityChangsha, China
| | - Tao Zhong
- Department of Anesthesiology, Xiangya Hospital, Central South UniversityChangsha, China
| | - Yingqi Weng
- Department of Anesthesiology, Xiangya Hospital, Central South UniversityChangsha, China
| | - Changsheng Huang
- Department of Anesthesiology, Xiangya Hospital, Central South UniversityChangsha, China
| | - Maoyu Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South UniversityChangsha, China
| | - Chuanlei Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South UniversityChangsha, China
| | - Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South UniversityChangsha, China.,Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South UniversityChangsha, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South UniversityChangsha, China
| |
Collapse
|
25
|
Jeun M, Park S, Kim Y, Choi J, Song SH, Jeong IG, Kim CS, Lee KH. Self-Normalized Detection of ANXA3 from Untreated Urine of Prostate Cancer Patients without Digital Rectal Examination. Adv Healthc Mater 2017; 6. [PMID: 28703915 DOI: 10.1002/adhm.201700449] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/22/2017] [Indexed: 12/19/2022]
Abstract
A noninvasive quantitative assay that is capable of identifying prostate cancer biomarkers in untreated urine is an attractive diagnosis tool, but this method is subject to various obstacles. Difficulties presented by untreated urine include varying salt concentrations, and pH levels that may be different even though they are from the same patient. Untreated urine also presents interference from other biomolecules and possesses a fewer number of cancer biomarkers than can be found in serum. As a result, urine preconditioning processes and digital rectal examination (DRE) to increase biomarker secretion are mandatory in current urine assays. To address these challenges, an ion-responsive urine sensor (IRUS) that measures differential electrical signals is proposed as a self-normalized detection method. The proposed IRUS is based on a FET biosensor with a disposable sensing gate and has the capability to detect the prostate cancer antigen ANXA3 in untreated patient urine. The IRUS can detect ANXA3 at <1 fg mL-1 with high reliability. In addition, it is found that ANXA3 levels in urine show clinically significant correlation with real tumor volumes. This paper provides a guideline in developing a clinically ready accurate noninvasive platform, which is capable of predicting prostate cancer using untreated urine without DRE.
Collapse
Affiliation(s)
- Minhong Jeun
- Center for Biomaterials; Biomedical Research Institute; Korea Institute of Science and Technology (KIST); 5 Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
| | - Sungwook Park
- Center for Biomaterials; Biomedical Research Institute; Korea Institute of Science and Technology (KIST); 5 Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
- Department of Biomedical Engineering; Korea University of Science and Technology (UST); 217 Gajeong-ro Yuseong-gu Daejeon 34113 Republic of Korea
| | - Yongdeok Kim
- Center for Biomaterials; Biomedical Research Institute; Korea Institute of Science and Technology (KIST); 5 Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
| | - Jaewon Choi
- Center for Biomaterials; Biomedical Research Institute; Korea Institute of Science and Technology (KIST); 5 Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
- Department of Biomedical Engineering; Korea University of Science and Technology (UST); 217 Gajeong-ro Yuseong-gu Daejeon 34113 Republic of Korea
| | - Sang Hoon Song
- Department of Urology; Asan Medical Center; University of Ulsan College of Medicine; 88 Olympic-ro 43-gil Songpa-gu Seoul 05505 Republic of Korea
| | - In Gab Jeong
- Department of Urology; Asan Medical Center; University of Ulsan College of Medicine; 88 Olympic-ro 43-gil Songpa-gu Seoul 05505 Republic of Korea
| | - Choung-Soo Kim
- Department of Urology; Asan Medical Center; University of Ulsan College of Medicine; 88 Olympic-ro 43-gil Songpa-gu Seoul 05505 Republic of Korea
| | - Kwan Hyi Lee
- Center for Biomaterials; Biomedical Research Institute; Korea Institute of Science and Technology (KIST); 5 Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
- Department of Biomedical Engineering; Korea University of Science and Technology (UST); 217 Gajeong-ro Yuseong-gu Daejeon 34113 Republic of Korea
| |
Collapse
|
26
|
Annexin A3 as a Prognostic Biomarker for Breast Cancer: A Retrospective Study. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2603685. [PMID: 28497041 PMCID: PMC5406736 DOI: 10.1155/2017/2603685] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/28/2017] [Accepted: 03/19/2017] [Indexed: 11/18/2022]
Abstract
To validate the correlation between ANXA3 expression and prognosis in breast cancer, a retrospective study encompassing 309 breast cancer patients was performed. The expression of ANXA3 was determined by the immunohistochemical examination of tissue sections by the Max Vision™ method. The ANXA3 levels in the patient samples were validated for the prognosis based on age, menopause status, tumor size, tumor node, metastasis stage, the number of lymphatic metastases, oncology grade, and molecular subtyping. An elevated expression of ANXA3 was detected in breast cancer samples, compared to adjacent tissue samples, and significant correlation depending on the number of lymphatic metastases (P = 0.001) and histological grade (P = 0.004) was observed. The number of lymphatic metastases and ANXA3 expression were identified as independent risk factors affecting the disease-free survival and overall survival. Significantly (P < 0.002) higher level of ANXA3 was detected in triple-negative breast cancer compared to other subtypes. There was no significant (P > 0.05) change in the expression of ANXA3 with respect to age, menopausal status, tumor size, and clinical stage. The findings implicate the expression of ANXA3 with the natural progression of breast cancer and associate it with increased lymphatic metastasis. The study validates the use of ANXA3 as a potential prognosis biomarker for breast cancer.
Collapse
|
27
|
Qu S, Li XY, Liang ZG, Li L, Huang ST, Li JQ, Li DR, Zhu XD. Protein expression of nucleophosmin, annexin A3 and nm23-H1 correlates with human nasopharyngeal carcinoma radioresistance in vivo. Oncol Lett 2016; 12:615-620. [PMID: 27347189 DOI: 10.3892/ol.2016.4632] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/11/2016] [Indexed: 01/22/2023] Open
Abstract
Radioresistance is a significant obstacle in the treatment of endemic nasopharyngeal carcinoma (NPC). The present study aimed to identify proteins associated with radioresistance in NPC in vitro and in vivo. Proteomics analyses were conducted to screen for differentially-expressed proteins (DEPs) in parental CNE-2 cells and CNE-2R cells. Using proteomics approaches, 16 DEPs were identified. Of these DEPs, nucleophosmin (NPM1), annexin A3 and nm23-H1, were verified using western blot analyses. The tumorigenicity was investigated using mouse xenograft tumorigenicity assays, and tumor growth curves were generated. The protein expression of NPM1, annexin A3 and nm23-H1 was examined by immunohistochemically staining tumor tissues. NPM1 and annexin A3 protein levels were downregulated in the CNE-2R cells, whereas nm23-H1 expression was upregulated. In vivo tests showed that compared with the CNE-2 tumors, CNE-2R tumor growth was significantly retarded (P<0.05). CNE-2 tumor progression was inhibited by irradiation, but CNE-2R tumor progression was not, indicating that the CNE-2R cells were also radioresistant in vivo. NPM1 and annexin A3 expression was significantly lower in non-irradiated (NIR)-CNE-2R tumors compared with NIR-CNE-2 tumors (P<0.01). However, Nm23-H1 protein levels were significantly higher (P<0.05). Overall, the present study established comparable radioresistant and radiosensitive tumor models of human NPC, and identified candidate biomarkers that may correlate with radioresistance. The data showed that dysregulation of NPM1, annexin A3 and nm23-H1 expression correlated with the cellular and tumor radioresponse. These proteins are involved in the regulation of intracellular functions, including stress responses, cell proliferation and DNA repair. However, further clinical evaluations are required.
Collapse
Affiliation(s)
- Song Qu
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China; Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiao-Yu Li
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China; Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zhong-Guo Liang
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China; Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ling Li
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China; Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shi-Ting Huang
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China; Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jia-Quan Li
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China; Guangxi Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Dan-Rong Li
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China; Guangxi Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiao-Dong Zhu
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China; Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
28
|
Zeidan B, Jackson TR, Larkin SET, Cutress RI, Coulton GR, Ashton-Key M, Murray N, Packham G, Gorgoulis V, Garbis SD, Townsend PA. Annexin A3 is a mammary marker and a potential neoplastic breast cell therapeutic target. Oncotarget 2016; 6:21421-7. [PMID: 26093083 PMCID: PMC4673275 DOI: 10.18632/oncotarget.4070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/22/2015] [Indexed: 11/25/2022] Open
Abstract
Breast cancers are the most common cancer-affecting women; critically the identification of novel biomarkers for improving early detection, stratification and differentiation from benign tumours is important for the reduction of morbidity and mortality. To identify and functionally characterise potential biomarkers, we used mass spectrometry (MS) to analyse serum samples representing control, benign breast disease (BBD) and invasive breast cancer (IDC) patients. Complementary and multidimensional proteomic approaches were used to identify and validate novel serum markers. Annexin A3 (ANX A3) was found to be differentially expressed amongst different breast pathologies. The diagnostic value of serum ANX A3 was subsequently validated by ELISA in an independent serum set representing the three groups. Here, ANX A3 was significantly upregulated in the benign disease group sera compared with other groups (P < 0.0005). In addition, paired breast tissue immunostaining confirmed that ANX A3 was abundantly expressed in benign and to a lesser extent malignant neoplastic epithelium. Finally, we illustrated ANX A3 expression in cell culture lysates and conditioned media from neoplastic breast cell lines, and its role in neoplastic breast cell migration in vitro. This study confirms the novel role of ANX A3 as a mammary biomarker, regulator and therapeutic target.
Collapse
Affiliation(s)
- Bashar Zeidan
- Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Thomas R Jackson
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK.,Manchester Centre for Cellular Metabolism, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | | | - Ramsey I Cutress
- Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Gary R Coulton
- St. George's Medical Biomics Centre, St. George's University of London, London, UK
| | | | - Nick Murray
- Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Graham Packham
- Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Vassilis Gorgoulis
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK.,Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece.,Manchester Centre for Cellular Metabolism, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Spiros D Garbis
- Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Paul A Townsend
- Cancer Sciences Unit, University of Southampton, Southampton, UK.,Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK.,Manchester Centre for Cellular Metabolism, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
29
|
Protein Imprinted Material electrochemical sensor for determination of Annexin A3 in biological samples. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.12.214] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Frantzi M, Latosinska A, Merseburger AS, Mischak H. Recent progress in urinary proteome analysis for prostate cancer diagnosis and management. Expert Rev Mol Diagn 2015; 15:1539-54. [PMID: 26491818 DOI: 10.1586/14737159.2015.1104248] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Prostate cancer (PCa) is fifth leading cause of cancer-associated deaths in men worldwide. Although the application of the serum prostate-specific antigen (PSA) screening test resulted in an increase in the PCa diagnosed cases, it demonstrated a negligible benefit regarding the associated mortality. Treatment options vary, with active surveillance to be preferable for patients with low-risk PCa and therapy of advanced castration-resistant PCa to rely on α-emitters and cytotoxic chemotherapy. Although recent developments have led to the approval of novel drugs for the treatment of castration-resistant PCa, the optimal sequence and timing of medication have not been yet determined. New screening modalities could improve the discriminatory accuracy between tumors with favorable clinical prognosis. Implementation of proteomic-based biomarkers appears to be a promising improvement, which could enable a more accurate diagnosis, guide treatment and improve patient outcome. Reviewed here are urinary proteome-based approaches for detection of PCa and patient management.
Collapse
Affiliation(s)
- Maria Frantzi
- a Mosaiques diagnostics GmbH , Hannover , Germany.,b Biotechnology Division , Biomedical Research Foundation Academy of Athens , Athens , Greece
| | - Agnieszka Latosinska
- b Biotechnology Division , Biomedical Research Foundation Academy of Athens , Athens , Greece
| | | | - Harald Mischak
- a Mosaiques diagnostics GmbH , Hannover , Germany.,d Institute of Cardiovascular and Medical Sciences , University of Glasgow , Glasgow , UK
| |
Collapse
|
31
|
Tong M, Fung TM, Luk ST, Ng KY, Lee TK, Lin CH, Yam JW, Chan KW, Ng F, Zheng BJ, Yuan YF, Xie D, Lo CM, Man K, Guan XY, Ma S. ANXA3/JNK Signaling Promotes Self-Renewal and Tumor Growth, and Its Blockade Provides a Therapeutic Target for Hepatocellular Carcinoma. Stem Cell Reports 2015; 5:45-59. [PMID: 26095609 PMCID: PMC4618447 DOI: 10.1016/j.stemcr.2015.05.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 12/18/2022] Open
Abstract
Frequent tumor relapse in hepatocellular carcinoma (HCC) has been commonly attributed to the presence of residual cancer stem cells (CSCs) after conventional treatments. We have previously identified and characterized CD133 to mark a specific CSC subset in HCC. In the present study, we found endogenous and secretory annexin A3 (ANXA3) to play pivotal roles in promoting cancer and stem cell-like features in CD133+ liver CSCs through a dysregulated JNK pathway. Blockade of ANXA3 with an anti-ANXA3 monoclonal antibody in vitro as well as in human HCC xenograft models resulted in a significant reduction in tumor growth and self-renewal. Clinically, ANXA3 expression in HCC patient sera closely associated with aggressive clinical features. Our results suggest that ANXA3 can serve as a novel diagnostic biomarker and that the inhibition of ANXA3 may be a viable therapeutic option for the treatment of CD133+ liver-CSC-driven HCC.
Collapse
Affiliation(s)
- Man Tong
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Tsun-Ming Fung
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Steve T Luk
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Kai-Yu Ng
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Terence K Lee
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory for Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Chi-Ho Lin
- Centre for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Judy W Yam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory for Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Kwok Wah Chan
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Fai Ng
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Bo-Jian Zheng
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Yun-Fei Yuan
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Dan Xie
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chung-Mau Lo
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory for Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Kwan Man
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory for Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Xin-Yuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory for Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Stephanie Ma
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory for Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.
| |
Collapse
|
32
|
Jin Y, Feng LP, Jiang X, Wang YX, Yin J, Yang ZP, Li Y, Pan LY. Annexin A3 Is a Potential Predictor of Platinum Resistance in Epithelial Ovarian Cancer Patients in a Prospective Cohort. J Cancer 2015; 6:678-85. [PMID: 26078799 PMCID: PMC4466418 DOI: 10.7150/jca.11689] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 05/04/2015] [Indexed: 12/24/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the leading cause of death among gynecological malignancies and is rarely cured in the recurrent setting, mainly because of progressive chemoresistance, especially platinum resistance. In our previous studies, the platinum-resistance-related protein, annexin A3, was selected by comparative proteomics. In this study, we detected serum annexin A3 levels using a self-developed chemiluminescence immunoassay kit in a prospective EOC patient cohort. We also evaluated the capacity of serum annexin A3 levels to predict platinum resistance. Serum annexin A3 levels in healthy women exhibited a similar normal distribution (Z=0.723, P=0.673), allowing determination of a normal cutoff level of 0.11-1.45 ng/mL. Of the 89 EOC patients, 21 were platinum resistant and 68 were platinum sensitive. Residual disease after primary surgery (p=0.004) and serum annexin A3 levels (p=0.036) were both independent factors associated with platinum resistance. The AUC was 0.733 (95% confidence interval (CI), 0.627-0.823). The optimal cutoff value for serum annexin A3 levels was 2.05 ng/mL. Multivariate logistic analysis showed that expression of annexin A3 as assessed by immunohistochemistry (P=0.005) and residual tumor size (P=0.000) had a significant influence on platinum resistance. The AUC of ROC curve of annexin A3 expression by immunohistochemistry was 0.664 (95% CI, 0.554-0.763) and the cut off value was “>=moderate scores”. In conclusion, we demonstrate that annexin A3 is a secreted protein that may be measured in the peripheral blood using a self-developed, chemiluminescence immunoassay kit. Serum annexin A3 levels may be a potential predictor of platinum resistance in epithelial ovarian cancer patients.
Collapse
Affiliation(s)
- Ying Jin
- 1. Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (No.1 Shuai fu yuan, Dongcheng District, Beijing 100730, China)
| | - Li-Ping Feng
- 1. Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (No.1 Shuai fu yuan, Dongcheng District, Beijing 100730, China) ; 2. The current address for Li-ping Feng: Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China (No. 107 Cultural West Road, Jinan 250012, China)
| | - Xiang Jiang
- 1. Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (No.1 Shuai fu yuan, Dongcheng District, Beijing 100730, China) ; 3. The current address for Xiang Jiang: Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Health Hospital, Shanghai, China (No 536 Changle Road, Jingan District, Shanghai 200040,China)
| | - Yong-Xue Wang
- 1. Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (No.1 Shuai fu yuan, Dongcheng District, Beijing 100730, China)
| | - Jie Yin
- 1. Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (No.1 Shuai fu yuan, Dongcheng District, Beijing 100730, China)
| | - Zi-Ping Yang
- 1. Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (No.1 Shuai fu yuan, Dongcheng District, Beijing 100730, China)
| | - Yan Li
- 1. Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (No.1 Shuai fu yuan, Dongcheng District, Beijing 100730, China)
| | - Ling-Ya Pan
- 1. Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (No.1 Shuai fu yuan, Dongcheng District, Beijing 100730, China)
| |
Collapse
|
33
|
Li C, Zang T, Wrobel K, Huang JTJ, Nabi G. Quantitative urinary proteomics using stable isotope labelling by peptide dimethylation in patients with prostate cancer. Anal Bioanal Chem 2015; 407:3393-404. [PMID: 25724369 DOI: 10.1007/s00216-015-8569-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/30/2015] [Accepted: 02/16/2015] [Indexed: 01/14/2023]
Abstract
Prostate cancer (PCa) is the most commonly diagnosed malignancy in men. The current prevalent diagnosis method, prostate-specific antigen (PSA) screening test, has low sensitivity, specificity and is poor at predicting the grade of disease. Thus, new biomarkers are urgently needed to improve the PCa diagnosis and staging for the management of patients. The aim of this study is to investigate the first voided urinary sample after massage for biomarker discovery for PCa. In this work, untargeted metabolomic profiling of the first voided urinary sample after massage from 28 confirmed prostate cancer patients, 20 benign enlarged prostate patients and 6 healthy volunteers was performed using liquid chromatography coupled to high-resolution tandem mass spectrometry (LC-MS/MS). Single and multiple peptide protein and cross-linking molecules were identified using PEAKS software. Analytical and diagnostic performance was tested using the Student's t test, Benjamini Hochberg correction and the receiver operating characteristic (ROC) curves. Using differential display analysis to compare peptides and cross-linking molecules of urinary samples between patients with benign, enlarged prostate and malignant cancer, we identified multiple peptides derived from osteopontin (SPP1) and prothrombin (F2) that are lower in PCa patients than in benign and enlarged prostate. The diagnosis accuracies of SPP1 and F2 peptides are 0.65-0.77 and 0.68-0.72, respectively. In addition to this, there are significant differences between PCa and benign/enlarged prostate patients in pyridinoline (PYD) and deoxypyridinoline (DPD) (p value = 0.001). Differences also, as shown in the excretion of these molecules for different stages of PCa (p value = 0.04) as the level of DPD and DPD/PYD ratio, were high in patients with locally advanced tumours. The study underscores the importance of proteomics analysis, and our results demonstrate that a urinary-based in depth proteomic approach allows the potential identification of dysregulated pathways and diagnostic biomarkers.
Collapse
Affiliation(s)
- Chunhui Li
- Academic Section of Urology, Division of Imaging Technology, University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, UK
| | | | | | | | | |
Collapse
|
34
|
Prostate cancer biomarker annexin A3 detected in urines obtained following digital rectal examination presents antigenic variability. Clin Biochem 2014; 47:901-8. [PMID: 24954692 DOI: 10.1016/j.clinbiochem.2014.05.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 05/17/2014] [Accepted: 05/21/2014] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Annexin A3 (ANXA3) is a potential marker for prostate cancer (PCa). We aimed to develop robust immunoassays suitable for quantifying ANXA3 in urine samples obtained following digital rectal examination (DRE) in order to facilitate the diagnostic performance evaluation of this marker. DESIGN AND METHODS Anti-ANXA3 monoclonal antibodies were generated and their epitopes mapped. Two different ANXA3 assay prototypes were established on the VIDAS® automated immunoanalyser and analytical validation was carried out using post-DRE urine samples obtained from patients with PCa (n=23) or benign prostate hyperplasia (n=31). RESULTS The assays had the same capture antibody (TGC44) but different detection antibodies (13A12 or 5C5), recognizing novel distinct epitopes. Both had a lower limit of quantification <1ng/mL and were highly specific for ANXA3, not cross-reacting with other annexins. Interassay imprecision was ≤11% and ≤15% for 13A12 and 5C5 assays, respectively. Surprisingly, a total lack of correlation was observed between ANXA3 levels measured by these two assays in post-DRE urines, indicating detection of distinct antigenic variants. Two freeze-thaw cycles did not affect analyte stability in either assay, whereas a lack of stability of antigenic variants was observed when samples were stored at -80°C for 1month. CONCLUSIONS Two different antigenic variants of ANXA3 are present in post-DRE urines and their clinical significance for diagnosis of prostate cancer should be further investigated. These variants are not stable over time in samples preserved at -80°C. Until this issue is resolved, ANXA3 should only be measured in freshly collected samples.
Collapse
|
35
|
Zhai JM, Sun SJ, Wang W, Zeng C. Expression of Annexin A3 in Gastric Cancer and its Correlation with Proliferation and Apoptosis. Asian Pac J Cancer Prev 2014; 15:3001-4. [DOI: 10.7314/apjcp.2014.15.7.3001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
36
|
Matsuzaki S, Serada S, Morimoto A, Ueda Y, Yoshino K, Kimura T, Naka T. Annexin A4 is a promising therapeutic target for the treatment of platinum-resistant cancers. Expert Opin Ther Targets 2014; 18:403-14. [PMID: 24479491 DOI: 10.1517/14728222.2014.882323] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Platinum drugs are widely used for the treatment of testicular, bladder, ovarian, colorectal, lung and prostate cancers. With regard to ovarian cancer in particular, the prognosis is poor for tumours that are (or have become) platinum-resistant. Determining the mechanism underlying platinum resistance may aid in the identification of therapeutic targets for the treatment of platinum-resistant tumours. AREAS COVERED This review gives an overview of the characteristics and functions of Annexin (Anx) A4, the mechanism of Anx A4-induced platinum resistance, the association between platinum resistance and platinum transporters, recent reports that Anx A4 overexpression promotes the efflux of platinum drugs via platinum transporters and the association between other Anxs and chemoresistance. The reader will gain an understanding of recent studies on the mechanism of Anx A4-induced chemoresistance. Anx A4 represents a therapeutic target for the treatment of Anx A4-overexpressing platinum-resistant tumours. EXPERT OPINION Anx A4 is overexpressed in ovarian clear cell carcinoma (CCC), and enhanced Anx A4 expression induces platinum resistance. Recent studies showed that Anx A4 is also associated with platinum resistance in cancers other than ovarian CCC. Furthermore, other Anxs are reportedly associated with chemoresistance, suggesting a relationship between the Anx family and chemoresistance.
Collapse
Affiliation(s)
- Shinya Matsuzaki
- Osaka University Graduate School of Medicine, Department of Obstetrics and Gynecology , 2-2 Yamadaoka Suita, Osaka 565-0871 , Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Pan QZ, Pan K, Weng DS, Zhao JJ, Zhang XF, Wang DD, Lv L, Jiang SS, Zheng HX, Xia JC. Annexin A3 promotes tumorigenesis and resistance to chemotherapy in hepatocellular carcinoma. Mol Carcinog 2013; 54:598-607. [DOI: 10.1002/mc.22126] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 11/08/2013] [Accepted: 12/02/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Qiu-Zhong Pan
- Collaborative Innovation Center for Cancer Medicine; State Key Laboratory of Oncology in South China; Sun Yat-Sen University Cancer Center; Guangzhou P. R. China
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou P. R. China
| | - Ke Pan
- Collaborative Innovation Center for Cancer Medicine; State Key Laboratory of Oncology in South China; Sun Yat-Sen University Cancer Center; Guangzhou P. R. China
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou P. R. China
| | - De-Sheng Weng
- Collaborative Innovation Center for Cancer Medicine; State Key Laboratory of Oncology in South China; Sun Yat-Sen University Cancer Center; Guangzhou P. R. China
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou P. R. China
| | - Jing-Jing Zhao
- Collaborative Innovation Center for Cancer Medicine; State Key Laboratory of Oncology in South China; Sun Yat-Sen University Cancer Center; Guangzhou P. R. China
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou P. R. China
| | - Xiao-Fei Zhang
- Collaborative Innovation Center for Cancer Medicine; State Key Laboratory of Oncology in South China; Sun Yat-Sen University Cancer Center; Guangzhou P. R. China
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou P. R. China
| | - Dan-Dan Wang
- Collaborative Innovation Center for Cancer Medicine; State Key Laboratory of Oncology in South China; Sun Yat-Sen University Cancer Center; Guangzhou P. R. China
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou P. R. China
| | - Lin Lv
- Collaborative Innovation Center for Cancer Medicine; State Key Laboratory of Oncology in South China; Sun Yat-Sen University Cancer Center; Guangzhou P. R. China
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou P. R. China
| | - Shan-Shan Jiang
- Collaborative Innovation Center for Cancer Medicine; State Key Laboratory of Oncology in South China; Sun Yat-Sen University Cancer Center; Guangzhou P. R. China
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou P. R. China
| | - Hai-Xia Zheng
- Collaborative Innovation Center for Cancer Medicine; State Key Laboratory of Oncology in South China; Sun Yat-Sen University Cancer Center; Guangzhou P. R. China
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou P. R. China
| | - Jian-Chuan Xia
- Collaborative Innovation Center for Cancer Medicine; State Key Laboratory of Oncology in South China; Sun Yat-Sen University Cancer Center; Guangzhou P. R. China
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou P. R. China
| |
Collapse
|
39
|
Molecular markers for prostate cancer in formalin-fixed paraffin-embedded tissues. BIOMED RESEARCH INTERNATIONAL 2013; 2013:283635. [PMID: 24371818 PMCID: PMC3859157 DOI: 10.1155/2013/283635] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/10/2013] [Indexed: 12/14/2022]
Abstract
Prostate cancer (PCa) is the most frequently diagnosed type of cancer in developed countries. The decisive method of diagnosis is based on the results of biopsies, morphologically evaluated to determine the presence or absence of cancer. Although this approach leads to a confident diagnosis in most cases, it can be improved by using the molecular markers present in the tissue. Both miRNAs and proteins are considered excellent candidates for biomarkers in formalin-fixed paraffin-embedded (FFPE) tissues, due to their stability over long periods of time. In the last few years, a concerted effort has been made to develop the necessary tools for their reliable measurement in these types of samples. Furthermore, the use of these kinds of markers may also help in establishing tumor grade and aggressiveness, as well as predicting the possible outcomes in each particular case for the different treatments available. This would aid clinicians in the decision-making process. In this review, we attempt to summarize and discuss the potential use of microRNA and protein profiles in FFPE tissue samples as markers to better predict PCa diagnosis, progression, and response to therapy.
Collapse
|
40
|
Xie YQ, Fu DI, He ZH, Tan QD. Prognostic value of Annexin A3 in human colorectal cancer and its correlation with hypoxia-inducible factor-1α. Oncol Lett 2013; 6:1631-1635. [PMID: 24260057 PMCID: PMC3834359 DOI: 10.3892/ol.2013.1620] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 09/25/2013] [Indexed: 02/04/2023] Open
Abstract
Annexins are a family of intracellular proteins that bind membrane phospholipids in a Ca2+ concentration-dependent manner and are involved in cellular processes, including apoptosis, proliferation and differentiation. Hypoxia-inducible factor-1α (HIF-1α) has been hypothesized to be critical in the angiogenesis of tumors. We hypothesized that Annexin A3, a member of the Annexin family, and HIF-1α may be associated with each other in colorectal cancer. The expression of Annexin A3 and HIF-1α in 60 colorectal cancer tissues was assessed by immunohistochemistry to statistically analyze the association between the clinicopathological features and survival of these cases. In the present study, 65 and 47% of colorectal cancer specimens were found to show Annexin A3 and HIF-1α immunoreactivity, respectively. Annexin A3 expression was found to significantly correlate with tumor size and Dukes’ stage (all P<0.05). Furthermore, Annexin A3 and HIF-1α protein expression exhibited a similar pattern in these samples, and their expression was found to correlate with poor survival in colorectal cancer patients. The results of the current study indicated for the first time that the increased expression of Annexin A3 in colorectal cancer correlates significantly with tumor growth and poor prognosis. Furthermore, Annexin A3 has been found to correlate with HIF-1α expression. These observations highlight an improved understanding of the carcinogenesis of colorectal cancer.
Collapse
Affiliation(s)
- Yong-Qiu Xie
- Department of Anesthesiology, Xiangya Hospital of Central-South University, Changsha, Hunan 410008, P.R. China
| | | | | | | |
Collapse
|
41
|
Lu SH, Yuan RH, Chen YL, Hsu HC, Jeng YM. Annexin A10 is an immunohistochemical marker for adenocarcinoma of the upper gastrointestinal tract and pancreatobiliary system. Histopathology 2013; 63:640-8. [PMID: 24024557 DOI: 10.1111/his.12229] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 07/14/2013] [Indexed: 12/12/2022]
Abstract
AIMS Annexin A10 (ANXA10) is a calcium- and phospholipid-binding protein expressed normally in the gastric mucosa. In this study, we evaluated the potential use of ANXA10 as a diagnostic marker. METHODS AND RESULTS We observed ANXA10 expression in the gastric mucosa, the Brunner gland of the duodenum and the urothelium, but absence of expression in other normal organs. Following the screening of 1327 primary carcinomas of major organs, we identified ANXA10 expression in 46% of gastric, 72% of ampullary, 78% of pancreatic and 33% of biliary adenocarcinomas. ANXA10 was expressed in 83% of non-invasive urothelial carcinomas, but was expressed in only 9% of invasive urothelial carcinomas. ANAX10 was rarely expressed in carcinomas of other organs. Of 227 metastatic adenocarcinomas, ANXA10 was expressed in 83% of metastatic pancreatic and 47% of metastatic gastric adenocarcinomas, but was expressed in only 2% of metastatic adenocarcinomas from other organs. In the liver, the sensitivity and specificity for identifying the pancreas as the primary site of metastatic adenocarcinoma were 83 and 95%, respectively. CONCLUSION Our study results indicate that the inclusion of ANXA10 in an immunohistochemical panel will be helpful in the differential diagnosis of adenocarcinoma of an unknown primary site.
Collapse
Affiliation(s)
- Su-Hsi Lu
- Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
42
|
Overexpression of the chromatin remodeler death-domain–associated protein in prostate cancer is an independent predictor of early prostate-specific antigen recurrence. Hum Pathol 2013; 44:1789-96. [DOI: 10.1016/j.humpath.2013.01.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 01/29/2013] [Accepted: 01/29/2013] [Indexed: 12/22/2022]
|
43
|
Grupp K, Höhne TS, Prien K, Hube-Magg C, Tsourlakis MC, Sirma H, Pham T, Heinzer H, Graefen M, Michl U, Simon R, Wilczak W, Izbicki J, Sauter G, Minner S, Schlomm T, Steurer S. Reduced CD147 expression is linked to ERG fusion-positive prostate cancers but lacks substantial impact on PSA recurrence in patients treated by radical prostatectomy. Exp Mol Pathol 2013; 95:227-34. [PMID: 23948277 DOI: 10.1016/j.yexmp.2013.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 06/12/2013] [Accepted: 08/01/2013] [Indexed: 10/26/2022]
Abstract
The extracellular matrix metalloproteinase inducer CD147 has been suggested as a prognostic marker in prostate cancer. CD147 expression was analyzed by immunohistochemistry on a tissue microarray containing 11,152 prostate cancer specimens. Results were compared to tumor phenotype, biochemical recurrence, ERG status and deletions on PTEN, 3p13, 6q15 and 5q21. CD147 expression was strong in benign prostatic glands and often reduced in prostate cancers. CD147 immunostaining was found in 71.7% of 7628 interpretable cases. CD147 staining was considered strong in 34.6%, moderate in 24.3% and weak in 12.8% of cancers while 28.3% did not show any CD147 reactivity. Reduced CD147 staining was strongly associated with both TMPRSS2-ERG-rearrangement and ERG expression (p<0.0001 each). Within the subgroups of ERG positive and negative cancers, deletions of PTEN, 3p13, 6q15 and 5q21 were unrelated to the CD147 expression status. Decreased CD147 expression was significantly linked to high preoperative PSA values, high Gleason grade, advanced tumor stage (p<0.0001 each), and positive lymph node involvement (p=0.0026) in all cancers. There was a marginal, but statistically significant, association of reduced CD147 expression with early biochemical recurrence (p=0.0296). The significant reduction of CD147 expression in ERG positive prostate cancer provides further evidence for marked biological differences between "fusion type" and "non-fusion type" prostate cancer. Despite a weak association with PSA recurrence, CD147 cannot be considered a relevant prognostic biomarker.
Collapse
Affiliation(s)
- Katharina Grupp
- General, Visceral and Thoracic Surgery Department and Clinic, Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Germany; Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Dal Pra A, Lalonde E, Sykes J, Warde F, Ishkanian A, Meng A, Maloff C, Srigley J, Joshua AM, Petrovics G, van der Kwast T, Evans A, Milosevic M, Saad F, Collins C, Squire J, Lam W, Bismar TA, Boutros PC, Bristow RG. TMPRSS2-ERG Status Is Not Prognostic Following Prostate Cancer Radiotherapy: Implications for Fusion Status and DSB Repair. Clin Cancer Res 2013; 19:5202-9. [DOI: 10.1158/1078-0432.ccr-13-1049] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Zeng C, Ke Z, Song Y, Yao Y, Hu X, Zhang M, Li H, Yin J. Annexin A3 is associated with a poor prognosis in breast cancer and participates in the modulation of apoptosis in vitro by affecting the Bcl-2/Bax balance. Exp Mol Pathol 2013; 95:23-31. [DOI: 10.1016/j.yexmp.2013.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Revised: 03/21/2013] [Accepted: 04/17/2013] [Indexed: 11/29/2022]
|
46
|
Current status of biomarkers for prostate cancer. Int J Mol Sci 2013; 14:11034-60. [PMID: 23708103 PMCID: PMC3709717 DOI: 10.3390/ijms140611034] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 12/30/2022] Open
Abstract
Prostate cancer (PCa) is a leading cause of cancer-related death of men globally. Since its introduction, there has been intense debate as to the effectiveness of the prostate specific antigen (PSA) test as a screening tool for PCa. It is now evident that the PSA test produces unacceptably high rates of false positive results and is not prognostic. Here we review the current status of molecular biomarkers that promise to be prognostic and that might inform individual patient management. It highlights current efforts to identify biomarkers obtained by minimally invasive methods and discusses current knowledge with regard to gene fusions, mRNA and microRNAs, immunology, and cancer-associated microparticles.
Collapse
|
47
|
Wu Z, Weng D, Li G. Quantitative proteome analysis of overexpressed Cripto-1 tumor cell reveals 14-3-3γ as a novel biomarker in nasopharyngeal carcinoma. J Proteomics 2013; 83:26-36. [PMID: 23500129 DOI: 10.1016/j.jprot.2013.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 02/13/2013] [Accepted: 03/04/2013] [Indexed: 12/18/2022]
Abstract
UNLABELLED We previously found that Cripto-1 is involved in the tumorigenesis of nasopharyngeal carcinoma (NPC). Here, to identify new NPC related proteins and to investigate the clinicopathological correlations of it in NPC, Cripto-1 over-expressed cell (CNE1/CR1(+)) was established. Two-dimensional difference in gel electrophoresis (2D-DIGE) analysis and matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF MS) were used to identify 23 differential proteins in CNE1/CR1(+) and parental cells. Among them, 14-3-3γ showed the potential to be a NPC related protein. 14-3-3γ expression was found in 58.3% (60/103) tumor tissues as detected by IHC, and 69.6% (16/23) NPC fresh tumors expressed higher 14-3-3γ than paired non-cancerous tissues as detected by Western blot. Moreover, 14-3-3γ expression was positively correlated with N classification (p=0.031), distant metastasis (M classification, p=0.018) and clinical stage (p=0.046) of NPC patients. As determined by the Kaplan-Meier method, 14-3-3γ expression in NPC was significantly associated with overall survival (p=0.015). Multivariate analysis also showed that the expression of 14-3-3γ protein was an independent prognostic factor for outcome of NPC. In this study, we identified upregulated 14-3-3γ by 2D-DIGE in CNE1/CR-1(+). We also demonstrated that 14-3-3γ might be a potential biomarker for the prognosis of patients with NPC. BIOLOGICAL SIGNIFICANCE We believe that three aspects of this manuscript will make it interesting to general readers of Journal of Proteomics. Firstly, based on our previous report, we further validated that Cripto-1 can promote the proliferation and invasion of nasopharyngeal carcinoma (NPC). In this context, we used 2D-DIGE to identify new NPC related proteins. As a result, 14-3-3γ showed the potential to be a candidate. Secondly, we reported for the first time that the expression level of 14-3-3γ was significantly increased in human NPC patient tissues, and 14-3-3γ overexpression correlated statistically with N classification, distant metastasis, and clinical stage. Our results highlight the clinical significance of 14-3-3γ in NPC. Finally, we found that high 14-3-3γ expression is associated with poor survival in NPC patients. Thus, this study has identified that the 14-3-3γ involves in the carcinogenesis of NPC. Our findings may also provide new insights into understanding the molecular mechanism involved in NPC carcinogenesis and progression, and may lead to the development of new approaches for effective diagnosis and therapy.
Collapse
Affiliation(s)
- Zhengrong Wu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China.
| | | | | |
Collapse
|
48
|
Monastyrskaya K, Babiychuk EB, Draeger A, Burkhard FC. Down-regulation of annexin A1 in the urothelium decreases cell survival after bacterial toxin exposure. J Urol 2013; 190:325-33. [PMID: 23376147 DOI: 10.1016/j.juro.2013.01.088] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2013] [Indexed: 11/20/2022]
Abstract
PURPOSE We examined the role of annexins in bladder urothelium. We characterized expression and distribution in normal bladders, biopsies from patients with bladder pain syndrome, cultured human urothelium and urothelial TEU-2 cells. MATERIALS AND METHODS Annexin expression in bladder layers was analyzed by quantitative reverse transcriptase-polymerase chain reaction and immunofluorescence. We assessed cell survival after exposure to the pore forming bacterial toxin streptolysin O by microscopy and alamarBlue® assay. Bladder dome biopsies were obtained from 8 asymptomatic controls and 28 patients with symptoms of bladder pain syndrome. RESULTS Annexin A1, A2, A5 and A6 were differentially distributed in bladder layers. Annexin A6 was abundant in detrusor smooth muscle and low in urothelium, while annexin A1 was the highest in urothelium. Annexin A2 was localized to the lateral membrane of umbrella cells but excluded from tight junctions. TEU-2 cell differentiation caused up-regulation of annexin A1 and A2 and down-regulation of annexin A6 mRNA. Mature urothelium dedifferentiation during culture caused the opposite effect, decreasing annexin A1 and increasing annexin A6. Annexin A2 influenced TEU-2 cell epithelial permeability. siRNA mediated knockdown of annexin A1 in TEU-2 cells caused significantly decreased cell survival after streptolysin O exposure. Annexin A1 was significantly reduced in biopsies from patients with bladder pain syndrome. CONCLUSIONS Several annexins are expressed in human bladder and TEU-2 cells, in which levels are regulated during urothelial differentiation. Annexin A1 down-regulation in patients with bladder pain syndrome might decrease cell survival and contribute to compromised urothelial function.
Collapse
Affiliation(s)
- Katia Monastyrskaya
- Urology Research Laboratory, Department of Clinical Research, University of Bern, Bern, Switzerland.
| | | | | | | |
Collapse
|
49
|
High Nr-CAM expression is associated with favorable phenotype and late PSA recurrence in prostate cancer treated by prostatectomy. Prostate Cancer Prostatic Dis 2013; 16:159-64. [DOI: 10.1038/pcan.2012.50] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
50
|
Effective enrichment of cholangiocarcinoma secretomes using the hollow fiber bioreactor culture system. Talanta 2012; 99:294-301. [DOI: 10.1016/j.talanta.2012.05.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/23/2012] [Accepted: 05/24/2012] [Indexed: 11/20/2022]
|