1
|
Wu J, Liu N, Chen J, Tao Q, Lu C, Li Q, Chen X, Peng C. Clofarabine induces tumor cell apoptosis, GSDME-related pyroptosis, and CD8 + T-cell antitumor activity via the non-canonical P53/STING pathway. J Immunother Cancer 2025; 13:e010252. [PMID: 39915005 PMCID: PMC11804206 DOI: 10.1136/jitc-2024-010252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/10/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Clofarabine (Clo) is a Food and Drug Administration (FDA)-approved drug for the treatment of acute lymphoblastic leukemia; however, its effects on solid tumors remain largely unknown. METHODS In vitro and in vivo experiments have demonstrated the cytotoxic effects of Clo on melanoma and lung cancer. The molecular mechanisms of Clo-induced tumor cell death were analyzed using western blotting, ELISA, reverse transcription-PCR, immunofluorescence, co-immunoprecipitation (CO-IP), short hairpin RNA, co-culture, chromatin immunoprecipitation, and flow cytometry. Clinical data sets were used to analyze the correlation between stimulator of interferon genes (STING)-NFκB signaling and immune infiltration. RESULTS In this study, Clo significantly reduced the growth of melanoma and lung cancer cells. Furthermore, Clo treatment induced GSDME-mediated pyroptosis. Most importantly, Clo administration dramatically increased the cytotoxic activity of CD8+ T cells in vitro and in vivo. Mechanistically, the administration of Clo induced the interaction of P53 with STING, which activated the non-canonical STING-NFκB pathway; consequently, NF-κB directly bound to the promoter regions of its target genes, including CCL5, CXCL10, HLAs and BAX. This resulted in apoptosis, pyroptosis, and immunogenic cell death in tumor cells by Clo. Furthermore, Clo-induced GSDME-mediated pyroptosis partly assists in activating T cell immunity via CCL5 and CXCL10. The non-canonical STING-NF-κB pathway is the crucial signaling pathway that initiates and links apoptosis, pyroptosis, and immunogenic cell death. CONCLUSIONS Our study is the first to show that Clo, an FDA-approved drug, induces tumor cell apoptosis, GSDME-related pyroptosis, and CD8+ T-cell antitumor activity via the non-canonical P53-STING-NF-κB signaling pathway, providing a novel strategy for the clinical therapy of melanoma and lung cancer.
Collapse
Affiliation(s)
- Jie Wu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Nian Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Tao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Can Lu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiuqiu Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Mokkapati S, Manyam G, Steinmetz AR, Tholomier C, Martini A, Choi W, Czerniak B, Lee BH, Dinney CP, McConkey DJ. Molecular profiling of bladder cancer xenografts defines relevant molecular subtypes and provides a resource for biomarker discovery. Transl Oncol 2025; 52:102269. [PMID: 39808845 PMCID: PMC11782912 DOI: 10.1016/j.tranon.2024.102269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/24/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025] Open
Abstract
Bladder cancer (BLCA) genomic profiling has identified molecular subtypes with distinct clinical characteristics and variable sensitivities to frontline therapy. BLCAs can be categorized into luminal or basal subtypes based on their gene expression. We comprehensively characterized nine human BLCA cell lines (UC3, UC6, UC9, UC13, UC14, T24, SCaBER, RT4V6 and RT112) into molecular subtypes using orthotopic xenograft models. Patient-derived, luciferase-tagged BLCA cell lines were cultured in vitro and engrafted into bladders of NSG mice. Tumor growth was monitored using bioluminescence imaging and mRNA-based molecular classification was used to characterize xenografts into molecular subtypes. RNAseq analysis and basal, luminal, and epithelial-mesenchymal transition (EMT) marker expression revealed distinct patterns; certain cell lines expressed predominantly basal or luminal markers while others demonstrated mixed expression. SCaBER expressed high basal and EMT markers and low luminal markers, consistent with a true basal cell. RT4V6 was a true luminal cell line, displaying only high luminal makers. UC13, T24 and UC3 only showed increased expression of EMT markers. RT112, UC6, UC9 and UC14 expressed basal, luminal, and EMT markers. Immunohistochemical analysis validated our findings. Ki67 was assessed as a continuous percentage of positively stained cells. Morphological assessment of xenografts included H&E and α-SMA staining. These findings will allow for the rational use of appropriate models to develop targeted therapies to overcome or manipulate mechanisms of treatment resistance in BLCA.
Collapse
Affiliation(s)
- Sharada Mokkapati
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Ganiraju Manyam
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexis R Steinmetz
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Côme Tholomier
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alberto Martini
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Woonyoung Choi
- Johns Hopkins Greenberg Bladder Cancer Institute, Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Bogdon Czerniak
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Byron H Lee
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Colin P Dinney
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David J McConkey
- Johns Hopkins Greenberg Bladder Cancer Institute, Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
3
|
Tu CC, Hsieh TH, Chu CY, Lin YC, Lin BJ, Chen CH. Targeting PPARγ via SIAH1/2-mediated ubiquitin-proteasomal degradation as a new therapeutic approach in luminal-type bladder cancer. Cell Death Dis 2024; 15:908. [PMID: 39695138 DOI: 10.1038/s41419-024-07298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
Bladder cancer (BC) is the second most prevalent genitourinary malignancy worldwide. Despite recent approvals of immune checkpoint inhibitors and targeted therapy for muscle invasive or recurrent BC, options remain limited for patients with non-muscle invasive BC (NMIBC) refractory to Bacillus Calmette-Guérin (BCG) and chemotherapy. NMIBC is more frequently classified as a luminal subtype, in which increased PPARγ activity is a key feature in promoting tumor growth and evasion of immunosurveillance. Cinobufotalin is one of the major compound of bufadienolides, the primary active components of toad venom that has been utilized in the clinical treatment of cancer. We herein focused on cinobufotalin, examining its anticancer activity and molecular mechanisms in luminal-type NMIBC. Our results newly reveal that cinobufotalin strongly suppresses the viability and proliferation of luminal BC cells with minimal cytotoxic effects on normal uroepithelial cells, and exhibits significant antitumor activity in a RT112 xenograft BC model. Mechanistically, our sub-G1-phase cell accumulation, Annexin V staining, caspase-3/8/9 activation, and PARP activation analyses show that cinobufotalin induces apoptosis in luminal-type BC cells. Cinobufotalin significantly inhibited the levels of PPARγ and its downstream targets, as well as lipid droplet formation and free fatty acid levels in RT112 cells. PPARγ overexpression rescued RT112 cells from cinobufotalin-induced apoptosis and mitigated the downregulation of FASN and PLIN4. Finally, we show seemingly for the first time that cinobufotalin promotes SIAH1/2-mediated proteasomal degradation of PPARγ in luminal BC cells. Together, these findings compellingly support the idea that cinobufotalin could be developed as a promising therapeutic agent for treating luminal-type NMIBC.
Collapse
Affiliation(s)
- Chih-Chieh Tu
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Han Hsieh
- Precision Health Center, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Ying Chu
- CRISPR Gene Targeting Core, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chen Lin
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Bo-Jyun Lin
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Han Chen
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
4
|
Gutmann M, Ertl IE, Herek P, Vician P, Pirker C, Nössing C, Brettner R, Lemberger U, Grausenburger R, Batlogg K, Baumfried O, Prantl I, Singh N, Laukhtina E, Oszwald A, Wasinger G, Compérat E, Berger W, Shariat SF, Englinger B. Clofarabine Has a Superior Therapeutic Window as compared to Gemcitabine in Preclinical Bladder Cancer Models. Eur Urol Oncol 2024; 7:1166-1170. [PMID: 38755094 DOI: 10.1016/j.euo.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/05/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
Current standard-of-care systemic therapy options for locally advanced and metastatic bladder cancer (BC), which are predominantly based on cisplatin-gemcitabine combinations, are limited by significant treatment failure rates and frailty-based patient ineligibility. We previously addressed the urgent clinical need for better-tolerated BC therapeutic strategies using a drug screening approach, which identified outstanding antineoplastic activity of clofarabine in preclinical models of BC. To further assess clofarabine as a potential BC therapy component, we conducted head-to-head comparisons of responses to clofarabine versus gemcitabine in preclinical in vitro and in vivo models of BC, complemented by in silico analyses. In vitro data suggest a distinct correlation between the two antimetabolites, with higher cytotoxicity of gemcitabine, especially against several nonmalignant cell types, including keratinocytes and endothelial cells. Accordingly, tolerance of clofarabine (oral or intraperitoneal application) was distinctly better than for gemcitabine (intraperitoneal) in patient-derived xenograft models of BC. Clofarabine also exhibited distinctly superior anticancer efficacy, even at dosing regimens optimized for gemcitabine. Neither complete remission nor cure, both of which were observed with clofarabine, were achieved with any tolerable gemcitabine regimen. Taken together, our findings demonstrate that clofarabine has a better therapeutic window than gemcitabine, further emphasizing its potential as a candidate for drug repurposing in BC. PATIENT SUMMARY: We compared the anticancer activity of clofarabine, a drug used for treatment of leukemia but not bladder cancer, and gemcitabine, a drug currently used for chemotherapy against bladder cancer. Using cell cultures and mouse models, we found that clofarabine was better tolerated and more efficacious than gemcitabine, and even cured implanted tumors in mouse models. Our results suggest that clofarabine, alone or in combination schemes, might be superior to gemcitabine for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Michael Gutmann
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Iris E Ertl
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Paula Herek
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Petra Vician
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Christine Pirker
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Christoph Nössing
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Robert Brettner
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Ursula Lemberger
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Reinhard Grausenburger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Kai Batlogg
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Oliver Baumfried
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Isabella Prantl
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Neha Singh
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Ekaterina Laukhtina
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - André Oszwald
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Gabriel Wasinger
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Eva Compérat
- Department of Pathology, Medical University of Vienna, Vienna, Austria; Department of Pathology, Tenon Hospital, Sorbonne University, Paris, France
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| | - Shahrokh F Shariat
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Department of Urology, Weill Cornell Medical College, New York, NY, USA; Department of Urology, University of Texas Southwestern, Dallas, TX, USA; Department of Urology, Second Faculty of Medicine, Charles University, Prague, Czech Republic; Division of Urology, Department of Special Surgery, Jordan University Hospital, The University of Jordan, Amman, Jordan; Research Center for Evidence Medicine, Urology Department, Tabriz University of Medical Sciences, Tabriz, Iran; Karl Landsteiner Institute of Urology and Andrology, Vienna, Austria
| | - Bernhard Englinger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Wang Z, Hulikova A, Swietach P. Innovating cancer drug discovery with refined phenotypic screens. Trends Pharmacol Sci 2024; 45:723-738. [PMID: 39013672 DOI: 10.1016/j.tips.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024]
Abstract
Before molecular pathways in cancer were known to a depth that could predict targets, drug development relied on phenotypic screening, where the effectiveness of candidate chemicals is judged from functional readouts without considering the mechanisms of action. The unraveling of tumor-specific pathways has brought targets for molecularly driven drug discovery, but precedents in the field have shown that awareness of pathways does not necessarily predict therapeutic efficacy, and many cancers still lack druggable targets. Phenotypic screening therefore retains a niche in drug development where a targeted approach is not informative. We analyze the unique advantages of phenotypic screens, and how technological advances have improved their discovery power. Notable advances include the use of larger biological panels and refined protocols that address the disease-relevance and increase data content with imaging and omic approaches.
Collapse
Affiliation(s)
- Zhenyi Wang
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Alzbeta Hulikova
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Pawel Swietach
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK.
| |
Collapse
|
6
|
Nössing C, Herek P, Shariat SF, Berger W, Englinger B. Advances in preclinical assessment of therapeutic targets for bladder cancer precision medicine. Curr Opin Urol 2024; 34:251-257. [PMID: 38602053 PMCID: PMC11155291 DOI: 10.1097/mou.0000000000001177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
PURPOSE OF REVIEW Bladder cancer incidence is on the rise, and until recently, there has been little to no change in treatment regimens over the last 40 years. Hence, it is imperative to work on strategies and approaches to untangle the complexity of intra- and inter-tumour heterogeneity of bladder cancer with the aim of improving patient-specific care and treatment outcomes. The focus of this review is therefore to highlight novel targets, advances, and therapy approaches for bladder cancer patients. RECENT FINDINGS The success of combining an antibody-drug conjugate (ADC) with immunotherapy has been recently hailed as a game changer in treating bladder cancer patients. Hence, interest in other ADCs as a treatment option is also rife. Furthermore, strategies to overcome chemoresistance to standard therapy have been described recently. In addition, other studies showed that targeting genomic alterations (e.g. mutations in FGFR3 , DNA damage repair genes and loss of the Y chromosome) could also be helpful as prognostic and treatment stratification biomarkers. The use of single-cell RNA sequencing approaches has allowed better characterisation of the tumour microenvironment and subsequent identification of novel targets. Functional precision medicine could be another avenue to improve and guide personalized treatment options. SUMMARY Several novel preclinical targets and treatment options have been described recently. The validation of these advances will lead to the development and implementation of robust personalized treatment regimens for bladder cancer patients.
Collapse
Affiliation(s)
| | - Paula Herek
- Department of Urology, Comprehensive Cancer Center
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Austria
| | - Shahrokh F. Shariat
- Department of Urology, Comprehensive Cancer Center
- Department of Urology, Weill Cornell Medical College, New York, New York
- Department of Urology, University of Texas Southwestern, Dallas, Texas, USA
- Department of Urology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- Institute for Urology, University of Jordan, Amman, Jordan
- Research center for Evidence Medicine, Urology Department, Tabriz University of Medical Sciences, Tabriz, Iran
- Karl Landsteiner Institute of Urology and Andrology, Vienna, Austria
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Austria
| | - Bernhard Englinger
- Department of Urology, Comprehensive Cancer Center
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Austria
| |
Collapse
|
7
|
Wang F, Zhang G, Xu T, Ma J, Wang J, Liu S, Tang Y, Jin S, Li J, Xing N. High and selective cytotoxicity of ex vivo expanded allogeneic human natural killer cells from peripheral blood against bladder cancer: implications for natural killer cell instillation after transurethral resection of bladder tumor. J Exp Clin Cancer Res 2024; 43:24. [PMID: 38245792 PMCID: PMC10799482 DOI: 10.1186/s13046-024-02955-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Non-muscle-invasive bladder cancer (NMIBC) is treated with transurethral resection of bladder tumor (TURBT) followed by intravesical instillation of chemotherapy or Bacillus Calmette-Guérin therapy. However, these treatments have a high recurrence rate and side effects, emphasizing the need for alternative instillations. Previously, we revealed that expanded allogeneic human natural killer (NK) cells from peripheral blood are a promising cellular therapy for prostate cancer. However, whether NK cells exhibit a similar killing effect in bladder cancer (BCa) remains unknown. METHODS Expansion, activation, and cryopreservation of allogeneic human NK cells obtained from peripheral blood were performed as we previously described. In vitro cytotoxicity was evaluated using the cell counting kit-8. The levels of perforin, granzyme B, interferon-γ, tumor necrosis factor-α, and chemokines (C-C-motif ligand [CCL]1, CCL2, CCL20, CCL3L1, and CCL4; C-X-C-motif ligand [CXCL]1, CXCL16, CXCL2, CXCL3, and CXCL8; and X-motif ligand 1 and 2) were determined using enzyme-linked immunosorbent assay. The expression of CD107a, major histocompatibility complex class I (MHC-I), MHC-I polypeptide-related sequences A and B (MICA/B), cytomegalovirus UL16-binding protein-2/5/6 (ULBP-2/5/6), B7-H6, CD56, CD69, CD25, killer cell Ig-like receptors (KIR)2DL1, KIRD3DL1, NKG2D, NKp30, NKp46, and CD16 of NK cells or BCa and normal urothelial cells were detected using flow cytometry. Cytotoxicity was evaluated using lactate dehydrogenase assay in patient-derived organoid models. BCa growth was monitored in vivo using calipers in male NOD-scid IL2rg-/- mice subcutaneously injected with 5637 and NK cells. Differential gene expressions were investigated using RNA sequence analysis. The chemotaxis of T cells was evaluated using transwell migration assays. RESULTS We revealed that the NK cells possess higher cytotoxicity against BCa lines with more production of cytokines than normal urothelial cells counterparts in vitro, demonstrated by upregulation of degranulation marker CD107a and increased interferon-γ secretion, by MICA/B/NKG2D and B7H6/NKp30-mediated activation. Furthermore, NK cells demonstrated antitumor effects against BCa in patient-derived organoids and BCa xenograft mouse models. NK cells secreted chemokines, including CCL1/2/20, to induce T-cell chemotaxis when encountering BCa cells. CONCLUSIONS The expanded NK cells exhibit potent cytotoxicity against BCa cells, with few toxic side effects on normal urothelial cells. In addition, NK cells recruit T cells by secreting a panel of chemokines, which supports the translational application of NK cell intravesical instillation after TURBT from bench to bedside for NMIBC treatment.
Collapse
Affiliation(s)
- Fangming Wang
- Department of Urology, Tsinghua University Affiliated Beijing Tsinghua Changgung Hospital, Tsinghua University Clinical Institute, Beijing, 102218, China
| | - Gang Zhang
- Department of Urology, Tsinghua University Affiliated Beijing Tsinghua Changgung Hospital, Tsinghua University Clinical Institute, Beijing, 102218, China
| | - Tianli Xu
- BOE Regenerative Medicine Technology Co. Ltd, Beijing, 100015, China
| | - Jianlin Ma
- BOE Regenerative Medicine Technology Co. Ltd, Beijing, 100015, China
| | - Jing Wang
- BOE Regenerative Medicine Technology Co. Ltd, Beijing, 100015, China
| | - Shuai Liu
- BOE Regenerative Medicine Technology Co. Ltd, Beijing, 100015, China
| | - Yuzhe Tang
- Department of Urology, Tsinghua University Affiliated Beijing Tsinghua Changgung Hospital, Tsinghua University Clinical Institute, Beijing, 102218, China
| | - Song Jin
- Department of Urology, Tsinghua University Affiliated Beijing Tsinghua Changgung Hospital, Tsinghua University Clinical Institute, Beijing, 102218, China
| | - Jianxing Li
- Department of Urology, Tsinghua University Affiliated Beijing Tsinghua Changgung Hospital, Tsinghua University Clinical Institute, Beijing, 102218, China.
| | - Nianzeng Xing
- Department of Urology, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
8
|
Fu S, Tan Z, Shi H, Chen J, Zhang Y, Guo C, Feng W, Xu H, Wang J, Wang H. Development of a stemness-related prognostic index to provide therapeutic strategies for bladder cancer. NPJ Precis Oncol 2024; 8:14. [PMID: 38245587 PMCID: PMC10799910 DOI: 10.1038/s41698-024-00510-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/08/2023] [Indexed: 01/22/2024] Open
Abstract
Bladder cancer (BC) is a heterogeneous disease with varying clinical outcomes. Recent evidence suggests that cancer progression involves the acquisition of stem-like signatures, and assessing stemness indices help uncover patterns of intra-tumor molecular heterogeneity. We used the one-class logistic regression algorithm to compute the mRNAsi for each sample in BLCA cohort. We subsequently classified BC patients into two subtypes based on 189 mRNAsi-related genes, using the unsupervised consensus clustering. Then, we identified nine hub genes to construct a stemness-related prognostic index (SRPI) using Cox regression, LASSO regression and Random Forest methods. We further validated SRPI using two independent datasets. Afterwards, we examined the molecular and immune characterized of SRPI. Finally, we conducted multiply drug screening and experimental approaches to identify and confirm the most proper agents for patients with high SRPI. Based on the mRNAsi-related genes, BC patients were classified into two stemness subtypes with distinct prognosis, functional annotations, genomic variations and immune profiles. Using the SRPI, we identified a specific subgroup of BC patients with high SRPI, who had a poor response to immunotherapy, and were less sensitive to commonly used chemotherapeutic agents, FGFR inhibitors, and EGFR inhibitors. We further identified that dasatinib was the most promising therapeutic agent for this subgroup of patients. This study provides further insights into the stemness classification of BC, and demonstrates that SRPI is a promising tool for predicting prognosis and therapeutic opportunities for BC patients.
Collapse
Affiliation(s)
- Shi Fu
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
| | - Zhiyong Tan
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
| | - Hongjin Shi
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
| | - Junhao Chen
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China
| | | | - Chunming Guo
- School for Life Science, Yunnan University, Kunming, China
| | - Wei Feng
- Kunming Medical University, Kunming, China
| | - Haole Xu
- Kunming Medical University, Kunming, China
| | - Jiansong Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China.
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China.
| | - Haifeng Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China.
- Yunnan Clinical Medical Center of Urological Disease, Kunming, China.
| |
Collapse
|
9
|
Garioni M, Tschan VJ, Blukacz L, Nuciforo S, Parmentier R, Roma L, Coto-Llerena M, Pueschel H, Piscuoglio S, Vlajnic T, Stenner F, Seifert HH, Rentsch CA, Bubendorf L, Le Magnen C. Patient-derived organoids identify tailored therapeutic options and determinants of plasticity in sarcomatoid urothelial bladder cancer. NPJ Precis Oncol 2023; 7:112. [PMID: 37919480 PMCID: PMC10622543 DOI: 10.1038/s41698-023-00466-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023] Open
Abstract
Sarcomatoid Urothelial Bladder Cancer (SARC) is a rare and aggressive histological subtype of bladder cancer for which therapeutic options are limited and experimental models are lacking. Here, we report the establishment of a long-term 3D organoid-like model derived from a SARC patient (SarBC-01). SarBC-01 emulates aggressive morphological, phenotypical, and transcriptional features of SARC and harbors somatic mutations in genes frequently altered in sarcomatoid tumors such as TP53 (p53) and RB1 (pRB). High-throughput drug screening, using a library comprising 1567 compounds in SarBC-01 and conventional urothelial carcinoma (UroCa) organoids, identified drug candidates active against SARC cells exclusively, or UroCa cells exclusively, or both. Among those, standard-of-care chemotherapeutic drugs inhibited both SARC and UroCa cells, while a subset of targeted drugs was specifically effective in SARC cells, including agents targeting the Glucocorticoid Receptor (GR) pathway. In two independent patient cohorts and in organoid models, GR and its encoding gene NR3C1 were found to be significantly more expressed in SARC as compared to UroCa, suggesting that high GR expression is a hallmark of SARC tumors. Further, glucocorticoid treatment impaired the mesenchymal morphology, abrogated the invasive ability of SARC cells, and led to transcriptomic changes associated with reversion of epithelial-to-mesenchymal transition, at single-cell level. Altogether, our study highlights the power of organoids for precision oncology and for providing key insights into factors driving rare tumor entities.
Collapse
Affiliation(s)
- Michele Garioni
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Urology, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Viviane J Tschan
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Lauriane Blukacz
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sandro Nuciforo
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Romuald Parmentier
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Urology, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Luca Roma
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Mairene Coto-Llerena
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Heike Pueschel
- Department of Urology, University Hospital Basel, Basel, Switzerland
| | - Salvatore Piscuoglio
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Tatjana Vlajnic
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Frank Stenner
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland
| | | | - Cyrill A Rentsch
- Department of Urology, University Hospital Basel, Basel, Switzerland
| | - Lukas Bubendorf
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Clémentine Le Magnen
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland.
- Department of Urology, University Hospital Basel, Basel, Switzerland.
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.
| |
Collapse
|
10
|
MUW researcher of the month. Wien Klin Wochenschr 2023; 135:215-216. [PMID: 37081181 DOI: 10.1007/s00508-023-02202-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
|
11
|
Zhou Z, Zhou Y, Liu W, Dai J. A novel cuproptosis-related lncRNAs signature predicts prognostic and immune of bladder urothelial carcinoma. Front Genet 2023; 14:1148430. [PMID: 37065485 PMCID: PMC10102384 DOI: 10.3389/fgene.2023.1148430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Bladder Urothelial Carcinoma (BLCA) remains the most common urinary system tumor, and its prognosis is poor. Cuproptosis is a recently discovered novel cell death involved in the development of tumor cells. However, the use of cuproptosis to predict the prognosis and immunity of Bladder Urothelial Carcinoma remains largely unclear, and this study was designed to verify cuproptosis-related long non-coding RNAs (lncRNAs) to estimate the prognosis and immunity of Bladder Urothelial Carcinoma. In our study, we first defined the expression of cuproptosis-related genes (CRGs) in BLCA, and 10 CRGs were up- or downregulated. We then constructed a co-expression network of cuproptosis-related mRNA and long non-coding RNAs using RNA sequence data from The Cancer Genome Atlas Bladder Urothelial Carcinoma (TCGA-BLCA), clinical features and mutation data from BLCA patients to obtain long non-coding RNAs by Pearson analysis. Afterward, univariate and multivariate COX analysis identified 21 long non-coding RNAs as independent prognostic factors and used these long non-coding RNAs to construct a prognostic model. Then, survival analysis, principal component analysis (PCA), immunoassay, and comparison of tumor mutation frequencies were performed to verify the accuracy of the constructed model, and GO and KEGG functional enrichment analysis was used to verify further whether cuproptosis-related long non-coding RNAs were associated with biological pathways. The results showed that the model constructed with cuproptosis-related long non-coding RNAs could effectively evaluate the prognosis of BLCA, and these long non-coding RNAs were involved in numerous biological pathways. Finally, we performed immune infiltration, immune checkpoint and drug sensitivity analyses on four genes (TTN, ARID1A, KDM6A, RB1) that were highly mutated in the high-risk group to evaluate the immune association of risk genes with BLCA. In conclusion, the cuproptosis-related lncRNA markers constructed in this study have evaluation value for prognosis and immunity in BLCA, which can provide a certain reference for the treatment and immunity of BLCA.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Otolaryngology Head and Neck, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yusong Zhou
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wei Liu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jing Dai
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Jing Dai,
| |
Collapse
|
12
|
Zhang K, Yuan E. Combined analysis of bulk and single-cell RNA sequencing reveals novel natural killer cell-related prognostic biomarkers for predicting immunotherapeutic response in hepatocellular carcinoma. Front Immunol 2023; 14:1142126. [PMID: 37056756 PMCID: PMC10086229 DOI: 10.3389/fimmu.2023.1142126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
IntroductionNatural killer (NK) cells play an irreplaceable and important role as a subtype of innate immune cells in the contemporary setting of antitumor immunity.MethodsWe chose a total of 1,196 samples for this analysis from the public dataset’s six separate cohorts. To identify 42 NK cell marker genes, we first carried out a thorough study of single-cell RNA sequencing data from the GSE149614 cohort of hepatocellular carcinoma (HCC).ResultsUsing the NK cell marker genes in the TCGA cohort, we next created a seven-gene prognostic signature, separating the patients into two categories with distinct survival patterns. This signature’s prognostic prediction ability was well verified across several validation cohorts. Patients with high scores had higher TIDE scores but lower immune cell infiltration percentages. Importantly, low-scoring patients had superior immunotherapy response and prognosis than high-scoring patients in an independent immunotherapy cohort (IMvigor210). Finally, we used CD56 and TUBA1B antibodies for immunohistochemical labeling of HCC tissue sections, and we discovered a lower number of CD56+ cells in the HCC tissue sections with high TUBA1B expression.DiscussionIn summary, our research created a unique prognostic profile based on NK cell marker genes that may accurately predict how well immunotherapy would work for HCC patients.
Collapse
Affiliation(s)
- Kai Zhang
- *Correspondence: Kai Zhang, ; Enwu Yuan,
| | - Enwu Yuan
- *Correspondence: Kai Zhang, ; Enwu Yuan,
| |
Collapse
|
13
|
CDCP1 expression is frequently increased in aggressive urothelial carcinoma and promotes urothelial tumor progression. Sci Rep 2023; 13:73. [PMID: 36593286 PMCID: PMC9807563 DOI: 10.1038/s41598-022-26579-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/16/2022] [Indexed: 01/03/2023] Open
Abstract
The prognosis of patients with advanced urothelial carcinoma (UC) remains poor and improving treatment continues to be a major medical need. CUB domain containing protein 1 (CDCP1) is a known oncogene in various types of solid cancers and its overexpression is associated with impaired prognosis. However, its role in UC remains undetermined. Here we assessed the clinical relevance of CDCP1 in two cohorts of UC at different stages of the disease. Immunohistochemistry showed that CDCP1 is highly expressed in advanced UC, which significantly correlates with shorter overall survival. Importantly, the basal/squamous UC subtype showed significantly enriched CDCP1 at the mRNA and protein levels. The functional role of CDCP1 overexpression was assessed taking advantage of ex vivo organoids derived from the CDCP1pcLSL/+ transgenic mouse model. Furthermore, CDCP1 knockout UC cell lines were generated using CRISPR/Cas9 technology. Interestingly, CDCP1 overexpression significantly induced the activation of MAPK/ERK pathways in ex vivo organoids and increased their proliferation. Similarly, CDCP1 knockout in UC cell lines reduced their proliferation and migration, concomitant with MAPK/ERK pathway activity reduction. Our results highlight the relevance of CDCP1 in advanced UC and demonstrate its oncogenic role, suggesting that targeting CDCP1 could be a rational therapeutic strategy for the treatment of advanced UC.
Collapse
|
14
|
Conroy S, Nguyen AH. Compound to Clinic? A Preclinical High-throughput Screening Pathway To Expedite Drug Discovery in Bladder Cancer. Eur Urol 2022; 82:271-272. [DOI: 10.1016/j.eururo.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022]
|