1
|
Giri BR, Jakka D, Sandoval MA, Kulkarni VR, Bao Q. Advancements in Ocular Therapy: A Review of Emerging Drug Delivery Approaches and Pharmaceutical Technologies. Pharmaceutics 2024; 16:1325. [PMID: 39458654 PMCID: PMC11511072 DOI: 10.3390/pharmaceutics16101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Eye disorders affect a substantial portion of the global population, yet the availability of efficacious ophthalmic drug products remains limited. This can be partly ascribed to a number of factors: (1) inadequate understanding of physiological barriers, treatment strategies, drug and polymer properties, and delivery systems; (2) challenges in effectively delivering drugs to the anterior and posterior segments of the eye due to anatomical and physiological constraints; and (3) manufacturing and regulatory hurdles in ocular drug product development. The present review discusses innovative ocular delivery and treatments, encompassing implants, liposomes, nanoparticles, nanomicelles, microparticles, iontophoresis, in situ gels, contact lenses, microneedles, hydrogels, bispecific antibodies, and gene delivery strategies. Furthermore, this review also introduces advanced manufacturing technologies such as 3D printing and hot-melt extrusion (HME), aimed at improving bioavailability, reducing therapeutic dosages and side effects, facilitating the design of personalized ophthalmic dosage forms, as well as enhancing patient compliance. This comprehensive review lastly offers insights into digital healthcare, market trends, and industry and regulatory perspectives pertaining to ocular product development.
Collapse
Affiliation(s)
- Bhupendra Raj Giri
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (B.R.G.); (M.A.S.); (V.R.K.)
| | - Deeksha Jakka
- School of Pharmacy, The University of Mississippi, University, MS 38677, USA;
| | - Michael A. Sandoval
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (B.R.G.); (M.A.S.); (V.R.K.)
| | - Vineet R. Kulkarni
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (B.R.G.); (M.A.S.); (V.R.K.)
| | - Quanying Bao
- Synthetic Product Development, Alexion, AstraZeneca Rare Disease, 101 College Street, New Haven, CT 06510, USA
| |
Collapse
|
2
|
Murugan S, de Campos VS, Ghag SA, Ng M, Shyam R. Characterization of a Novel Mouse Model for Fuchs Endothelial Corneal Dystrophy. Invest Ophthalmol Vis Sci 2024; 65:18. [PMID: 38587441 PMCID: PMC11005065 DOI: 10.1167/iovs.65.4.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/23/2024] [Indexed: 04/09/2024] Open
Abstract
Purpose Fuchs endothelial corneal dystrophy (FECD) is a progressive blinding disorder, characterized by increased corneal endothelial excrescences (guttae), corneal endothelial cell loss, and edema. These symptoms are hypothesized to be caused by changes in the extracellular matrix (ECM) and mitochondrial dysfunction in the corneal endothelium. Despite this clinical and biological relevance, a comprehensive animal model that recapitulates all the major disease characteristics is currently unavailable. In this study, we develop such a model to improve our understanding of the signaling pathways involved in the FECD progression and develop strategies for early intervention. Method To generate a comprehensive FECD model, we generated a double mutant mouse bearing tamoxifen-inducible knockdown of Slc4a11 and the Col8a2 (Q455K) mutation. We performed optical coherence tomography (OCT) and in vivo confocal microscopy using the Heidelberg Retinal Tomography 3 - Rostock Cornea module (HRT3-RCM) on the mice at 5 weeks of age before tamoxifen feeding to establish baseline values for corneal thickness, endothelial cell density, and test for the presence of guttae. We measured these parameters again post-tamoxifen treatment at 16 weeks of age. We collected corneas at 16 weeks to perform histopathology, immunofluorescence staining for tight junctions, adherens junctions, and oxidative stress. We evaluated endothelial pump function using a lactate assay. Results The double mutant tamoxifen-fed animals showed the presence of guttae, and displayed increased corneal thickness and decreased endothelial cell density. Endothelial cells showed altered morphology with disrupted adherens junctions and elevated reactive oxygen species (ROS). Finally, we found that stromal lactate concentrations were elevated in the double mutant mice, indicative of compromised endothelial pump function. Conclusions Overall, this mouse model recapitulates all the important phenotypic features associated with FECD.
Collapse
Affiliation(s)
- Subashree Murugan
- Vision Science Program, School of Optometry, Indiana University Bloomington, Indiana, United States
| | - Viviane Souza de Campos
- Vision Science Program, School of Optometry, Indiana University Bloomington, Indiana, United States
| | - Sachin Anil Ghag
- Vision Science Program, School of Optometry, Indiana University Bloomington, Indiana, United States
| | - Matthew Ng
- Department of Biology, Indiana University Bloomington, Indiana, United States
| | - Rajalekshmy Shyam
- Vision Science Program, School of Optometry, Indiana University Bloomington, Indiana, United States
| |
Collapse
|
3
|
Abdelrahman O, Topka M, Zhang Y, Bock A, Lörner J, Jungbauer R, Hotfiel T, Paulsen F, Hammer CM. Suitability of Slaughterhouse-Acquired Pig Eyes as Model Systems for Refractive Ultraviolet and Infrared Femtosecond Laser Research. Curr Eye Res 2024; 49:401-409. [PMID: 38146603 DOI: 10.1080/02713683.2023.2297348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/16/2023] [Indexed: 12/27/2023]
Abstract
PURPOSE To elucidate whether it is feasible to use porcine eyes from scalded, abattoir-acquired animals for refractive femtosecond laser research. METHODS An infrared laser (FS 200) and an ultraviolet laser (prototype version) were tested for their applicability on scalded pig eyes. Fifty porcine eyes were divided into two equally-sized groups and assigned to either the infrared or the ultraviolet laser. Both laser groups were comprised of five subgroups of n = 5 eyes each. Group A: non-scalded eyes (negative control); group B: eyes taken from tunnel-scalded animals; group C1: eyes taken from tank-scalded animals without opaque corneal lesion; group C2: eyes taken from animals with opaque corneal lesion; group D: eyes scalded in toto in the laboratory (positive control). In each group the lasers were employed to create a stromal flap. The quality of the laser cuts and the resulting flap beds, as well as of the porcine corneas themselves, was examined by anterior segment optical coherence tomography and scanning electron microscopy. RESULTS All scalded specimens exhibited substantial corneal swelling, most pronounced in group C2. After ultraviolet laser application, the tank- and tunnel-scalded samples displayed marked irregularities and an increased degree of surface roughness in the flap beds. After infrared laser application, this was only the case in the tank-scalded specimens. CONCLUSION It is not recommended to use eyes taken from scalded pigs for ultraviolet femtosecond laser experiments. For infrared femtosecond lasers, eyes taken from tunnel-scalded animals may represent an acceptable alternative, if non-scalded eyes are not available.
Collapse
Affiliation(s)
- Omar Abdelrahman
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marius Topka
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Yao Zhang
- WaveLight GmbH, Erlangen, Bavaria, Germany
| | | | | | - Rebecca Jungbauer
- Department of Orthodontics, University Medical Centre Regensburg, Regensburg, Germany
| | - Thilo Hotfiel
- Center for Musculoskeletal Surgery Osnabrück, Klinikum Osnabrück, Osnabrück, Germany
- Department of Orthopedic and Trauma Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian M Hammer
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Anatomy Unit, Section of Medicine, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
4
|
Zhu YT, Tighe S, Chen SL, Zhang Y, Chen SY, Kao WWY, Tseng SCG. Manufacturing of human corneal endothelial grafts. Ocul Surf 2023; 29:301-310. [PMID: 37268293 PMCID: PMC10529356 DOI: 10.1016/j.jtos.2023.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 06/04/2023]
Abstract
PURPOSE Human corneal endothelial cells (HCECs) play a significant role in maintaining visual function. However, these cells are notorious for their limited proliferative capacity in vivo. Current treatment of corneal endothelial dysfunction resorts to corneal transplantation. Herein we describe an ex vivo engineering method to manufacture HCEC grafts suitable for transplantation through reprogramming into neural crest progenitors. METHODS HCECs were isolated by collagenase A from stripped Descemet membrane of cadaveric corneoscleral rims, and induced reprogramming via knockdown with p120 and Kaiso siRNAs on collagen IV-coated atelocollagen. Engineered HCEC grafts were released after assessing their identity, potency, viability, purity and sterility. Phase contrast was used for monitoring cell shape, graft size, and cell density. Immunostaining was used to determine the normal HCEC phenotype with expression of N-cadherin, ZO-1, ATPase, acetyl-α-tubulin, γ-tubulin, p75NTR, α-catenin, β-catenin, and F-actin. Stability of manufactured HCEC graft was evaluated after transit and storage for up to 3 weeks. The pump function of HCEC grafts was measured by lactate efflux. RESULTS One HCEC graft suitable for corneal transplantation was generated from 1/8th of the donor corneoscleral rim with normal hexagonal cell shape, density, and phenotype. The manufactured grafts were stable for up to 3 weeks at 37 °C or up to 1 week at 22 °C in MESCM medium and after transcontinental shipping at room temperature by retaining normal morphology (hexagonal, >2000 cells/mm2, >8 mm diameter), phenotype, and pump function. CONCLUSIONS This regenerative strategy through knockdown with p120 and Kaiso siRNAs can be used to manufacture HCEC grafts with normal phenotype, morphology and pump function following prolonged storage and shipping.
Collapse
Affiliation(s)
| | - Sean Tighe
- R&D Department, BioTissue, Miami, FL, 33126, USA
| | | | - Yuan Zhang
- R&D Department, BioTissue, Miami, FL, 33126, USA
| | - Szu-Yu Chen
- R&D Department, BioTissue, Miami, FL, 33126, USA
| | - Winston W Y Kao
- Department of Ophthalmology, University of Cincinnati, 2600 Clifton Ave, Cincinnati, OH, 45220, USA
| | | |
Collapse
|
5
|
Tavakkoli F, Eleiwa TK, Elhusseiny AM, Damala M, Rai AK, Cheraqpour K, Ansari MH, Doroudian M, H Keshel S, Soleimani M, Djalilian AR, Sangwan VS, Singh V. Corneal stem cells niche and homeostasis impacts in regenerative medicine; concise review. Eur J Ophthalmol 2023:11206721221150065. [PMID: 36604831 DOI: 10.1177/11206721221150065] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The limbal stem cells niche (LSCN) is an optimal microenvironment that provides the limbal epithelial stem cells (LESCs) and strictly regulates their proliferation and differentiation. Disturbing the LSCN homeostasis can lead to limbal stem cell dysfunction (LSCD) and subsequent ocular surface aberrations, such as corneal stromal inflammation, persistent epithelial defects, corneal neovascularisation, lymphangiogenesis, corneal opacification, and conjunctivalization. As ocular surface disorders are considered the second main cause of blindness, it becomes crucial to explore different therapeutic strategies for restoring the functions of the LSCN. A major limitation of corneal transplantation is the current shortage of donor tissue to meet the requirements worldwide. In this context, it becomes mandatory to find an alternative regenerative medicine, such as using cultured limbal epithelial/stromal stem cells, inducing the production of corneal like cells by using other sources of stem cells, and using tissue engineering methods aiming to produce the three-dimensional (3D) printed cornea. Limbal epithelial stem cells have been considered the magic potion for eye treatment. Epithelial and stromal stem cells in the limbal niche hold the responsibility of replenishing the corneal epithelium. These stem cells are being used for transplantation to maintain corneal epithelial integrity and ultimately sustain optimal vision. In this review, we summarised the characteristics of the LSCN and their current and future roles in restoring corneal homeostasis in eyes with LSCD.
Collapse
Affiliation(s)
- Fatemeh Tavakkoli
- Department of Community Health, College of Health Technology, Cihan University, Erbil, Iraq.,SSR Stem Cell Biology Laboratory, Brien Holden Eye Research Centre, Centre for Ocular Regeneration, Hyderabad Eye Research Foundation, L.V. Prasad Eye Institute, Hyderabad, India.,Centre for Genetic Disorders, Banaras Hindu University, Varanasi, India
| | - Taher K Eleiwa
- Department of Ophthalmology, Benha University, Benha, Egypt
| | - Abdelrahman M Elhusseiny
- Department of Ophthalmology, Harvey and Bernice Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Mukesh Damala
- SSR Stem Cell Biology Laboratory, Brien Holden Eye Research Centre, Centre for Ocular Regeneration, Hyderabad Eye Research Foundation, L.V. Prasad Eye Institute, Hyderabad, India.,School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Amit K Rai
- Centre for Genetic Disorders, Banaras Hindu University, Varanasi, India
| | - Kasra Cheraqpour
- Translational Eye Research Center, Farabi Eye Hospital, 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad H Ansari
- Ophthalmic Research Center, Department of Ophthalmology, Labbafinejad Medical Center, 556492Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Doroudian
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, 145440Kharazmi University, Tehran, Iran
| | - Saeed H Keshel
- Department of Tissue Engineering and Applied Cell Sciences, 556492Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Soleimani
- Department of Ophthalmology, 159636Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Ali R Djalilian
- Department of Ophthalmology, 159636Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Vivek Singh
- SSR Stem Cell Biology Laboratory, Brien Holden Eye Research Centre, Centre for Ocular Regeneration, Hyderabad Eye Research Foundation, L.V. Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
6
|
Crosslinking-Induced Corneal Endothelium Dysfunction and Its Protection by Topical Ripasudil Treatment. DISEASE MARKERS 2022; 2022:5179247. [PMID: 35069933 PMCID: PMC8776458 DOI: 10.1155/2022/5179247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/16/2021] [Indexed: 12/31/2022]
Abstract
Purpose To investigate the changes of corneal endothelium under different crosslinking conditions and the protective effect of ripasudil. Methods Corneal crosslinking groups were infiltrated with riboflavin and subsequently irradiated with 0.54 J/cm2 or 1.08 J/cm2 UVA, while noncrosslinking groups included neither UVA nor riboflavin treatment, only 1.08 J/cm2 UVA and only riboflavin treatment. Corneal opacity, variations in corneal endothelial cells, and corneal thickness of all groups were observed by slit lamp, in vivo confocal microscopy, and optical coherence tomography. Immunofluorescence staining and scanning electron microscopy were performed to evaluate changes in the structure and function of the corneal endothelium. The mice that received a corneal crosslinking dose of 1.08 J/cm2 were instilled with ripasudil to explore its protective effect on the corneal endothelium. Results Treatment with UVA and riboflavin caused an increase in corneal opacity and corneal thickness and decreased endothelial cell density. Furthermore, treatment with UVA and riboflavin caused endothelial cell DNA damage and destroyed the tight junction and pump function of the endothelium, while riboflavin or the same dose of UVA alone did not affect the endothelium. Ripasudil reduced DNA damage in endothelial cells, increased the density of cells, and protected the endothelium's integrity and function. Conclusion Riboflavin combined with UVA can damage the corneal endothelium's normal functioning. The corneal endothelium's wound healing is dose-dependent, and the ROCK inhibitor ripasudil maintains the endothelium's pump and barrier functions.
Collapse
|
7
|
Wilson SE, Sampaio LP, Shiju TM, Hilgert GSL, de Oliveira RC. Corneal Opacity: Cell Biological Determinants of the Transition From Transparency to Transient Haze to Scarring Fibrosis, and Resolution, After Injury. Invest Ophthalmol Vis Sci 2022; 63:22. [PMID: 35044454 PMCID: PMC8787546 DOI: 10.1167/iovs.63.1.22] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/22/2021] [Indexed: 12/18/2022] Open
Abstract
Purpose To highlight the cellular, matrix, and hydration changes associated with opacity that occurs in the corneal stroma after injury. Methods Review of the literature. Results The regulated transition of keratocytes to corneal fibroblasts and myofibroblasts, and of bone marrow-derived fibrocytes to myofibroblasts, is in large part modulated by transforming growth factor beta (TGFβ) entry into the stroma after injury to the epithelial basement membrane (EBM) and/or Descemet's membrane. The composition, stoichiometry, and organization of the stromal extracellular matrix components and water is altered by corneal fibroblast and myofibroblast production of large amounts of collagen type I and other extracellular matrix components-resulting in varying levels of stromal opacity, depending on the intensity of the healing response. Regeneration of EBM and/or Descemet's membrane, and stromal cell production of non-EBM collagen type IV, reestablishes control of TGFβ entry and activity, and triggers TGFβ-dependent myofibroblast apoptosis. Eventually, corneal fibroblasts also disappear, and repopulating keratocytes reorganize the disordered extracellular matrix to reestablish transparency. Conclusions Injuries to the cornea produce varying amounts of corneal opacity depending on the magnitude of cellular and molecular responses to injury. The EBM and Descemet's membrane are key regulators of stromal cellularity through their modulation of TGFβ. After injury to the cornea, depending on the severity of the insult, and possibly genetic factors, trace opacity to severe scarring fibrosis develops. Stromal cellularity, and the functions of different cell types, are the major determinants of the level of the stromal opacity.
Collapse
Affiliation(s)
- Steven E. Wilson
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Lycia Pedral Sampaio
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
- Department of Ophthalmology, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | |
Collapse
|
8
|
Cong L, Pan X, Xia Y, Zhang Y, Cheng J, Dong Y. The effects of acute angle closure crisis on corneal endothelial cells in patients with type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2022; 13:956780. [PMID: 36111300 PMCID: PMC9468933 DOI: 10.3389/fendo.2022.956780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/09/2022] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE This study investigated the effects of acute angle closure crisis (AACC) on the corneal endothelial cells in patients with type 2 diabetes mellitus (DM) to identify the factors that cause corneal endothelial cell injury. METHODS We examined 154 patients who visited Qingdao Eye Hospital for AACC in one eye (154 eyes; 28 men and 126 women; mean age of 68 ± 8 years). We divided the participants into non-DM, DM well-control, and DM poor-control groups, with the unaffected eyes used as controls. Each participant was evaluated at the hospital while under AACC. We measured the relevant index and corneal parameters of the participants for statistical analysis. RESULTS There were significant statistical differences in corneal parameters among the three groups. The decreased levels of central endothelial cell density (CD) and the percentage of hexagonal cells (6A) were statistically relevant among the groups (P<0.05). The AACC duration was correlated with CD loss rate among the groups (P<0.05). The DM duration was correlated with CD loss rate in the DM well-control group. Compared with the non-DM group, the level of 6A decreased more significantly in the DM group after AACC (P<0.05). The AACC duration in the DM well-control group was significantly shorter than in the non-DM and DM poor-control groups (P<0.001). The DM poor-control group showed significantly worse visual acuity when compared with the other groups (P<0.05). CONCLUSIONS DM may impact the functional status of corneal endothelial cells. AACC can worsen the corneal endothelium damage in patients with DM. Blood glucose levels and the duration of intraocular hypertension are closely related to the severity of corneal endothelial injury.
Collapse
Affiliation(s)
- Lin Cong
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Qingdao, China
| | - Xiaojing Pan
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Qingdao, China
- *Correspondence: Xiaojing Pan,
| | - Yiping Xia
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao, China
| | - Yangyang Zhang
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Qingdao, China
| | - Jun Cheng
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Qingdao, China
| | - Yanling Dong
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Qingdao, China
| |
Collapse
|
9
|
Chalimeswamy A, Thanuja MY, Ranganath SH, Pandya K, Kompella UB, Srinivas SP. Oxidative Stress Induces a Breakdown of the Cytoskeleton and Tight Junctions of the Corneal Endothelial Cells. J Ocul Pharmacol Ther 2021; 38:74-84. [PMID: 34818079 DOI: 10.1089/jop.2021.0037] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose: To investigate the impact of oxidative stress, which is a hallmark of Fuchs dystrophy, on the barrier function of the corneal endothelial cells. Methods: Experiments were carried out with cultured bovine and porcine corneal endothelial cells. For oxidative stress, cells were supplemented with riboflavin (Rf) and exposed to UV-A (15-30 min) to induce Type-1 photochemical reactions that release H2O2. The effect of the stress on the barrier function was assayed by transendothelial electrical resistance (TER) measurement. In addition, the associated changes in the organization of the microtubules, perijunctional actomyosin ring (PAMR), and ZO-1 were evaluated by immunocytochemistry, which was also repeated after direct exposure to H2O2 (100 μM, 1 h). Results: Exposure to H2O2 led to the disassembly of microtubules and the destruction of PAMR. In parallel, the contiguous locus of ZO-1 was disrupted, marking a loss of barrier integrity. Accordingly, a sustained loss in TER was induced when cells in the Rf-supplemented medium were exposed to UV-A. However, the addition of catalase (7,000 U/mL) to rapidly decompose H2O2 limited the loss in TER. Furthermore, the adverse effects on microtubules, PAMR, and ZO-1 were suppressed by including catalase, ascorbic acid (1 mM; 30 min), or pretreatment with p38 MAP kinase inhibitor (SB-203580; 10 μM, 1 h). Conclusions: Acute oxidative stress induces microtubule disassembly by a p38 MAP kinase-dependent mechanism, leading to the destruction of PAMR and loss of barrier function. The response to oxidative stress is reminiscent of the (TNF-α)-induced breakdown of barrier failure in the corneal endothelium.
Collapse
Affiliation(s)
- Anupama Chalimeswamy
- Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, India.,Bio-INvENT Lab, Department of Chemical Engineering, Siddaganga Institute of Technology, Tumakuru, India
| | | | - Sudhir H Ranganath
- Bio-INvENT Lab, Department of Chemical Engineering, Siddaganga Institute of Technology, Tumakuru, India
| | - Kaveet Pandya
- School of Optometry, Indiana University, Bloomington, Indiana, USA
| | - Uday B Kompella
- Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA
| | | |
Collapse
|
10
|
Usability of abattoir-acquired pig eyes for refractive excimer laser research. Sci Rep 2021; 11:19087. [PMID: 34580392 PMCID: PMC8476548 DOI: 10.1038/s41598-021-98635-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/13/2021] [Indexed: 12/02/2022] Open
Abstract
The purpose of this study was to elucidate, under which conditions abattoir-acquired pig eyes are suitable for refractive excimer laser experiments. Porcine eyes from tunnel-scalded (n = 5) and tank-scalded (n = 10) pigs were compared to unscalded eyes (n = 5) and to eyes scalded in the laboratory (n = 5). The corneal epithelium was removed before an excimer laser was used to perform a − 8.0 D photoablation. Corneal thickness was measured by optical coherence topography before and after photoablation. The ablation depth was determined with a contour measuring station, the morphology of the ablated areas was characterized by scanning electron microscopy and white-light profilometry. The scalded eyes showed an increase in corneal swelling which gained statistical significance in tank-scalded eyes showing a wedge-shaped opaque stromal lesion in the nasal corneal quadrant. A measurable deterioration of photoablation was only found in tank-scalded eyes that exhibited the opaque lesion. Ablated area morphology was smooth and regular in the unscalded and tunnel-scalded eyes. The tank-scalded eyes showed conspicuous wrinkles. While unscalded eyes should always be preferred for excimer laser laboratory experiments, the data suggest that the use of tunnel-scalded eyes may also be acceptable and should be chosen over tank-scalded eyes.
Collapse
|
11
|
Parker J, Dockery P, Preda-Naumescu A, Jager M, van Dijk K, Dapena I, Melles G. Descemet Membrane Endothelial Keratoplasty and Bowman Layer Transplantation: An Anatomic Review and Historical Survey. Ophthalmic Res 2021; 64:532-553. [PMID: 33761502 DOI: 10.1159/000516093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/23/2021] [Indexed: 11/19/2022]
Abstract
For nearly a century, the definitive treatment of many corneal dystrophies and ectactic disorders was limited to penetrating keratoplasty, but over the past 2 decades, a surge of surgical innovation has propelled the treatment of many corneal diseases to more targeted approaches with significantly better visual outcomes. Anterior stromal diseases were first changed through endothelial-sparing techniques, such as deep anterior lamellar keratoplasty, but have more recently transitioned to stromal-sparing approaches. Ultraviolet corneal crosslinking strengthens the cornea and halts progression of keratoconus in >90% of cases. Intracorneal ring segment and corneal allogenic ring segment implantation offer methods to flatten ectatic corneas. However, Bowman layer transplantation - inlay and more recently onlay techniques - has shown promise for treating advanced keratoconus and preventing keratoplasty. The advent of endothelial keratoplasty radically changed the treatment of corneal endothelial dysfunction, and Descemet membrane endothelial keratoplasty specifically offers an average postoperative visual acuity of 20/25 (0.8) with only 8.8% of grafts requiring retransplantation in the first 5 years. Here, we review the rapid innovations for surgical treatment of corneal diseases, spanning from endothelial keratoplasty and endothelial regeneration to anterior lamellar keratoplasty and stromal augmentation, highlighting key steps which may be moving us closer to a "postkeratoplasty" world.
Collapse
Affiliation(s)
- Jack Parker
- Parker Cornea, Birmingham, Alabama, USA.,Netherlands Institute for Innovative Ocular Surgery- USA (NIIOS-USA), San Diego, California, USA
| | - Philip Dockery
- Parker Cornea, Birmingham, Alabama, USA.,Wills Eye Hospital, Philadelphia, Pennsylvania, USA
| | - Ana Preda-Naumescu
- University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Martine Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Korine van Dijk
- Netherlands Institute for Innovative Ocular Surgery (NIIOS), Rotterdam, The Netherlands.,Melles Cornea Clinic Rotterdam, Rotterdam, The Netherlands
| | - Isabel Dapena
- Netherlands Institute for Innovative Ocular Surgery (NIIOS), Rotterdam, The Netherlands.,Melles Cornea Clinic Rotterdam, Rotterdam, The Netherlands
| | - Gerrit Melles
- Parker Cornea, Birmingham, Alabama, USA.,Netherlands Institute for Innovative Ocular Surgery (NIIOS), Rotterdam, The Netherlands.,Melles Cornea Clinic Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
12
|
Fontanil T, Mohamedi Y, Espina-Casado J, Obaya ÁJ, Cobo T, Cal S. Hyalectanase Activities by the ADAMTS Metalloproteases. Int J Mol Sci 2021; 22:ijms22062988. [PMID: 33804223 PMCID: PMC8000579 DOI: 10.3390/ijms22062988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
The hyalectan family is composed of the proteoglycans aggrecan, versican, brevican and neurocan. Hyalectans, also known as lecticans, are components of the extracellular matrix of different tissues and play essential roles in key biological processes including skeletal development, and they are related to the correct maintenance of the vascular and central nervous system. For instance, hyalectans participate in the organization of structures such as perineural nets and in the regulation of neurite outgrowth or brain recovery following a traumatic injury. The ADAMTS (A Disintegrin and Metalloprotease domains, with thrombospondin motifs) family consists of 19 secreted metalloproteases. These enzymes also perform important roles in the structural organization and function of the extracellular matrix through interactions with other matrix components or as a consequence of their catalytic activity. In this regard, some of their preferred substrates are the hyalectans. In fact, ADAMTSs cleave hyalectans not only as a mechanism for clearance or turnover of proteoglycans but also to generate bioactive fragments which display specific functions. In this article we review some of the physiological and pathological effects derived from cleavages of hyalectans mediated by ADAMTSs.
Collapse
Affiliation(s)
- Tania Fontanil
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain; (T.F.); (Y.M.)
- Departamento de Investigación, Instituto Ordóñez, 33012 Oviedo, Spain
| | - Yamina Mohamedi
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain; (T.F.); (Y.M.)
| | - Jorge Espina-Casado
- Departamento de Química Física y Analítica, Universidad de Oviedo, 33006 Oviedo, Spain;
| | - Álvaro J. Obaya
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006 Oviedo, Spain;
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Teresa Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto Asturiano de Odontología, 33006 Oviedo, Spain
- Correspondence: (T.C.); (S.C.); Tel.: +34-985966014 (T.C.); +34-985106282 (S.C.)
| | - Santiago Cal
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain; (T.F.); (Y.M.)
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, 33006 Oviedo, Spain
- Correspondence: (T.C.); (S.C.); Tel.: +34-985966014 (T.C.); +34-985106282 (S.C.)
| |
Collapse
|
13
|
Gore A, Kadar T, Dachir S, Horwitz V. Therapeutic measures for sulfur mustard-induced ocular injury. Toxicol Lett 2021; 340:58-66. [PMID: 33440228 DOI: 10.1016/j.toxlet.2021.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
The use of sulfur mustard (SM) in global terrorism is still a relevant threat to both civilian population and military personnel. Casualties exposed to SM may present mild, moderate or severe acute ocular lesions followed by a complete ocular resolution, chronic lesions or re-emerged ocular pathologies after a latent period. Current treatment for SM-induced ocular injury is based mainly on the clinical manifestation at the different stages of the injury and includes pharmaceutical and surgical interventions. These therapeutic measures are beneficial but not sufficient, and the ocular injury remains a continuous challenge for medical professionals. This review focuses on treatment experience carried out in humans and studied in animal models, for both SM-induced ocular acute injury and late pathology. In general, therapeutic measures are based on clinical features of the ocular injury or on the involvement of specific factors during the ocular injury that point out towards potential treatments. Anti-inflammatory treatments and limbal stem cell transplantation techniques were developed based on the clinical manifestation of the ocular injury. Optional therapies for impaired corneal innervation and endothelium are suggested for future research. Additionally, studies on potential treatments with anti-matrix metalloproteinase (MMP), anti-vascular endothelial growth factor (VEGF) and anti-IL-6 agents are discussed. Consequently, future studies may reveal the potential of additional pharmacological and biological treatments or advanced cellular and molecular biology methods to serve as novel therapeutic measures and techniques for this complicated ocular injury.
Collapse
Affiliation(s)
- Ariel Gore
- Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona, 74100, Israel.
| | - Tamar Kadar
- Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona, 74100, Israel
| | - Shlomit Dachir
- Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona, 74100, Israel
| | - Vered Horwitz
- Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona, 74100, Israel.
| |
Collapse
|
14
|
Jin M, Wang Y, Wang Y, Li Y, Wang G, Liu X, Xue Y, Liu Z, Li C. Protective Effects Oncorneal Endothelium During Intracameral Irrigation Using N-(2)-l-alanyl-l-Glutamine. Front Pharmacol 2020; 11:369. [PMID: 32292346 PMCID: PMC7118711 DOI: 10.3389/fphar.2020.00369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/10/2020] [Indexed: 12/21/2022] Open
Abstract
Corneal endothelial disease is a global sight-threatening disease, and corneal transplantation using donor corneas remains the sole therapeutic option. A previous work demonstrated that N (2)-alanyl-glutamine (Ala-Gln) protected against apoptosis and cellular stress, and maintained intestinal tissue integrity. In this pursuit, the present study aimed to examine the effect of Ala-Gln in the protection of the corneal endothelium and expand its range of potential clinical applications. Mice in the control group were intracamerally irrigated with Ringers lactate injection, whereas those in the experimental group were irrigated with Ringers lactate injection containing Ala-Gln. The mean intraocular pressure increased to 44 ± 3.5 mm Hg during intracameral irrigation (normal range 10.2 ± 0.4 mmHg). In vivo confocal microscopy results showed that the addition of Ala-Gln protected the morphology, structure, and density of the corneal endothelial cells. Optical Coherence Tomography (OCT) measurements showed that corneal thickness was not significantly different between the two groups, because of the immediate corneal edema after irrigation, but the addition of Ala-Gln obviously promoted the recovery of the corneal edema. Scanning electron microscopy indicated that the corneal endothelial cells were severely ruptured and exfoliated in the Ringer’s group accompanied with cellular edema, when compared with the Ala-Gln group. The intracameral irrigation using Ala-Gln protected the structure and expression of cytoskeleton and Na-K-ATPase, which exhibited a regular distribution and significantly increased expression in comparison to Ringer’s group. Furthermore, Ala-Gln maintained the mitochondrial morphology and increased the activity of mitochondria. Moreover, transmission electron microscopy showed that intracameral irrigation of Ala-Gln reversed the ultrastructural changes induced by the acute ocular hypertension in mice. Our study demonstrates that the intracameral irrigation of Ala-Gln effectively maintained the corneal endothelial pump function and barrier function by protecting the mitochondrial function and preventing the rearrangement of cytoskeleton in acute ocular hypertension in mice.
Collapse
Affiliation(s)
- Mengyi Jin
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Yanzi Wang
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Yixin Wang
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Yunpeng Li
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Guoliang Wang
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China.,School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Xuezhi Liu
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Yuhua Xue
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Zuguo Liu
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Cheng Li
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| |
Collapse
|
15
|
Chen A, Osman OB, Harris ZB, Abazri A, Honkanen R, Arbab MH. Investigation of water diffusion dynamics in corneal phantoms using terahertz time-domain spectroscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:1284-1297. [PMID: 32206409 PMCID: PMC7075598 DOI: 10.1364/boe.382826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 05/08/2023]
Abstract
Perturbation of normal corneal water content is a common manifestation of many eye diseases. Terahertz (THz) imaging has the potential to serve as a clinical tool for screening and diagnosing such corneal diseases. In this study, we first investigate the diffusive properties of a corneal phantom using simultaneous THz time-domain spectroscopy (THz-TDS) and gravimetric measurements. We will then utilize a variable-thickness diffusion model combined with a stratified composite-media model to simulate changes in thickness, hydration profile, and the THz-TDS signal as a function of time. The simulated THz-TDS signals show very good agreement with the reflection measurements. Results show that the THz-TDS technique can be used to understand water diffusion dynamics in corneal phantoms as a step towards future in vivo quantitative hydration sensing.
Collapse
Affiliation(s)
- Andrew Chen
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
- Co-first authors with equal contribution
| | - Omar B. Osman
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
- Co-first authors with equal contribution
| | - Zachery B. Harris
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Azin Abazri
- Department of Ophthalmology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Robert Honkanen
- Department of Ophthalmology, Stony Brook University, Stony Brook, NY 11794, USA
| | - M. Hassan Arbab
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
16
|
Abstract
Background Biomechanics introduces numerous technologies to support clinical practice in ophthalmology, with the goal of improving surgical outcomes and to develop new advanced technologies with minimum impact on clinical training. Unfortunately, a few misconceptions on the way that computational methods should be applied to living tissues contributes to a lack of confidence towards computer-based approaches. Methods Corneal biomechanics relies on sound theories of mechanics, including concepts of equilibrium, geometrical measurements, and complex material behaviors. The peculiarities of biological tissues require the consideration of multi-physics, typical of the eye environment, and to adopt customized geometrical models constructed on the basis of advanced optical imaging and in-vivo testing. Results Patient-specific models are able to predict the outcomes of refractive surgery and to exploit the results of in-vivo test to characterize the material properties of the corneal tissue. Conclusions Corneal biomechanics can become an important support to clinical practice, provided that methods are based on the actual multi-physics and use customized geometrical and mechanical models.
Collapse
Affiliation(s)
- Anna Pandolfi
- Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133 Italy
| |
Collapse
|
17
|
Effects of amantadine on corneal endothelium. Exp Eye Res 2019; 181:208-212. [DOI: 10.1016/j.exer.2019.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/18/2019] [Accepted: 02/12/2019] [Indexed: 11/21/2022]
|
18
|
Blackburn BJ, Jenkins MW, Rollins AM, Dupps WJ. A Review of Structural and Biomechanical Changes in the Cornea in Aging, Disease, and Photochemical Crosslinking. Front Bioeng Biotechnol 2019; 7:66. [PMID: 31019909 PMCID: PMC6459081 DOI: 10.3389/fbioe.2019.00066] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/07/2019] [Indexed: 12/27/2022] Open
Abstract
The study of corneal biomechanics is motivated by the tight relationship between biomechanical properties and visual function within the ocular system. For instance, variation in collagen fibril alignment and non-enzymatic crosslinks rank high among structural factors which give rise to the cornea's particular shape and ability to properly focus light. Gradation in these and other factors engender biomechanical changes which can be quantified by a wide variety of techniques. This review summarizes what is known about both the changes in corneal structure and associated changes in corneal biomechanical properties in aging, keratoconic, and photochemically crosslinked corneas. In addition, methods for measuring corneal biomechanics are discussed and the topics are related to both clinical studies and biomechanical modeling simulations.
Collapse
Affiliation(s)
- Brecken J. Blackburn
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of CWRU, Cleveland, OH, United States
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Michael W. Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Andrew M. Rollins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - William J. Dupps
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
19
|
Li G, Zheng J, Gong J, Sameer A, Li X, Zhang Y, Tighe S, Zhu Y, Wang P. Efficacy of Anterior Stromal Puncture Surgery with Corneal Bandage Lens for Bullous Keratopathy. Int J Med Sci 2019; 16:660-664. [PMID: 31217733 PMCID: PMC6566735 DOI: 10.7150/ijms.31669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/07/2019] [Indexed: 12/13/2022] Open
Abstract
Objective: To investigate the safety and efficacy of the combination therapy of anterior stromal puncture (ASP) with bandage contact lens for bullous keratopathy (BK). Methods: Twelve cases (12 eyes) with vision acuity no better than light perception were treated with ASP surgery and bandage contact lens. 200 points punctures were made through the corneal epithelium and Bowman's layer vertically, using fine needles. A soft bandage contact lens was applied immediately and removed 2 weeks later. The severity of irrigating symptoms including pain, photophobia and tearing was graded and calculated before treatment and 1, 2, 4, 12 weeks after the surgery, slit-lamp microscope examination was used to quantify the time for corneal epithelial blisters disappearing, optical coherence tomography (OCT) was used to monitor the central corneal thickness. Results: No cornea infection was observed during the following up period. The average grade scores of the irrigating symptoms was 8.3 ± 2.1 before surgery, while it was reduced to 4.8 ±1.9 two weeks after the surgery (p=0.0003). Slit-lamp microscope examination showed that corneal edema relieved obviously after the operation, the average time for epithelial blisters disappearing was 15.6 ± 4.0 days. The average central corneal thickness of the eyes was 999.3 ±278.0 μm before the treatment, while it was 805.1 ± 145.0 μm four weeks after the treatment, with a statistically significant difference (p=0.043). Conclusions: ASP with bandage contact lens is an effective and safe treatment for patients with BK and low vision that not suitable for corneal transplantation.
Collapse
Affiliation(s)
- Guigang Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Jiao Zheng
- Department of Ophthalmology, Renhe Hospital affiliated to Three Gorges University, Yichang, Hubei Province, 443001, China.,Eye institute, Three Gorges University, Yichang, Hubei Province, 443001, China
| | - Jin Gong
- Department of Ophthalmology, Renhe Hospital affiliated to Three Gorges University, Yichang, Hubei Province, 443001, China.,Eye institute, Three Gorges University, Yichang, Hubei Province, 443001, China
| | - Alataree Sameer
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Xinyu Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Yuan Zhang
- Tissue Tech, Inc., Miami, FL, 33126, USA
| | - Sean Tighe
- Tissue Tech, Inc., Miami, FL, 33126, USA
| | | | - Ping Wang
- Department of Ophthalmology, Renhe Hospital affiliated to Three Gorges University, Yichang, Hubei Province, 443001, China.,Eye institute, Three Gorges University, Yichang, Hubei Province, 443001, China
| |
Collapse
|
20
|
Zhu Q, Zhu Y, Tighe S, Liu Y, Hu M. Engineering of Human Corneal Endothelial Cells In Vitro. Int J Med Sci 2019; 16:507-512. [PMID: 31171901 PMCID: PMC6535652 DOI: 10.7150/ijms.30759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
Human corneal endothelial cells are responsible for controlling corneal transparency, however they are notorious for their limited proliferative capability. Thus, damage to these cells may cause irreversible blindness. Currently, the only way to cure blindness caused by corneal endothelial dysfunction is via corneal transplantation of a cadaver donor cornea with healthy corneal endothelium. Due to severe shortage of donor corneas worldwide, it has become paramount to develop human corneal endothelial grafts in vitro that can subsequently be transplanted in humans. Recently, we have reported effective expansion of human corneal endothelial cells by reprogramming the cells into progenitor status through use of p120-Kaiso siRNA knockdown. This new reprogramming approach circumvents the need of using induced pluripotent stem cells or embryonic stem cells. Successful promotion of this technology will encourage scientists to re-think how "contact inhibition" can safely be perturbed to our benefit, i.e., effective engineering of an in vivo-like tissue while successful maintaining the normal phenotype. In this review, we present current advances in reprogramming corneal endothelial cells in vitro, detail the methods to successful engineer human corneal endothelial grafts, and discuss their future clinical applications to cure corneal blindness.
Collapse
Affiliation(s)
- Qin Zhu
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province (Fourth Affiliated Hospital of Kunming Medical University); Yunnan Eye Institute; Key Laboratory of Yunnan Province for the Prevention and Treatment of ophthalmology (2017DG008); Provincial Innovation Team for Cataract and Ocular Fundus Disease (2017HC010); Expert Workstation of Yao Ke (2017IC064), Kunming, 650021 China
| | - Yingting Zhu
- Tissue Tech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL, 33173 USA
| | - Sean Tighe
- Tissue Tech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL, 33173 USA
| | - Yongsong Liu
- Department of Ophthalmology, Yan' An Hospital of Kunming City, Kunming, 650051, China
| | - Min Hu
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province (Fourth Affiliated Hospital of Kunming Medical University); Yunnan Eye Institute; Key Laboratory of Yunnan Province for the Prevention and Treatment of ophthalmology (2017DG008); Provincial Innovation Team for Cataract and Ocular Fundus Disease (2017HC010); Expert Workstation of Yao Ke (2017IC064), Kunming, 650021 China
| |
Collapse
|
21
|
Li X, Zhang Z, Ye L, Meng J, Zhao Z, Liu Z, Hu J. Acute ocular hypertension disrupts barrier integrity and pump function in rat corneal endothelial cells. Sci Rep 2017; 7:6951. [PMID: 28761172 PMCID: PMC5537405 DOI: 10.1038/s41598-017-07534-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/29/2017] [Indexed: 11/26/2022] Open
Abstract
Acute ocular hypertension (AOH) frequently compromises corneal endothelial cell (CEC) function in clinical practice. This type of stress induces corneal oedema and a decrease in the corneal endothelial cell density (ECD). The anterior chamber of the right eye of Sprague-Dawley rats was irrigated with Balanced Salt Solution (BSS) for two hours, and the left eye served as a control to determine the time-dependent effects of AOH on endothelial cell morphology and function. The average intraocular pressure (IOP) increased to 82.6 ± 2.3 mmHg (normal range: 10.2 ± 0.4 mmHg) during anterior irrigation. Very soon after initiating irrigation, corneal oedema became evident and the cornea exhibited a significant increase in permeability to FITC-dextran. The peripheral ECD was significantly reduced, and the morphology of CECs became irregular and multiform. The structures of the zonula occludens-1 (ZO-1) and F-actin were severely disrupted. In addtion, Na,K-ATPase exhibited a dispersed expression pattern. Two days after irrigation, obvious CEC proliferation was observed, the ECD recovered to a normal level, and F-actin was dispersed throughout the cytoplasm. Seven days later, the CEC structure and function were nearly normalized. Based on the results obtained using this model, an acute IOP crisis exerts transient deleterious effects on CEC structure and function in rats.
Collapse
Affiliation(s)
- Xian Li
- Eye Institute of Xiamen University, Provincial Key Laboratory of Ophthalmology and Vision Science, Fujian, 361005, China.,Department of Ophthalmology, The Second Affiliated Hospital of the University of South China, Hunan, 421001, China
| | - Zhenhao Zhang
- Eye Institute of Xiamen University, Provincial Key Laboratory of Ophthalmology and Vision Science, Fujian, 361005, China.,Medical Technology Institute of Xuzhou Medical College, Jiangsu, 221004, China
| | - Lijun Ye
- Eye Institute of Xiamen University, Provincial Key Laboratory of Ophthalmology and Vision Science, Fujian, 361005, China
| | - Jufeng Meng
- Eye Institute of Xiamen University, Provincial Key Laboratory of Ophthalmology and Vision Science, Fujian, 361005, China
| | - Zhongyang Zhao
- Eye Institute of Xiamen University, Provincial Key Laboratory of Ophthalmology and Vision Science, Fujian, 361005, China
| | - Zuguo Liu
- Eye Institute of Xiamen University, Provincial Key Laboratory of Ophthalmology and Vision Science, Fujian, 361005, China.
| | - Jiaoyue Hu
- Eye Institute of Xiamen University, Provincial Key Laboratory of Ophthalmology and Vision Science, Fujian, 361005, China.
| |
Collapse
|
22
|
Evaluation of Endothelial Pump Function in Fuchs Endothelial Dystrophy Before and After Endothelial Keratoplasty. Cornea 2017; 35:878-83. [PMID: 27055221 DOI: 10.1097/ico.0000000000000821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To evaluate the endothelial pump function in vivo after Descemet stripping automated endothelial keratoplasty (DSAEK). METHODS In a prospective controlled trial, a group of 17 patients with Fuchs endothelial corneal dystrophy (FECD) eligible for DSAEK surgery and a group of 15 patients with cataract but with normal corneas eligible for cataract surgery (controls) were formed. A low oxygen-permeable contact lens was used to induce corneal edema. Changes in central corneal thickness were monitored as an indirect measure of endothelial cell pump function. Experiments were performed before surgery and repeated 12 months after surgery. RESULTS Comparing the FECD and control groups before surgery, there was 24.8% (13.5-36.1) more edema in the FECD group after 2 hours (P < 0.001) and 19.9% (8.6-31.3) more edema in the FECD group after 3 hours (P < 0.001). In the FECD group, there was 15% (3.1-26.9) less edema after DSAEK than before surgery (P = 0.015) after 3 hours. Comparing the DSAEK-treated eyes with the control eyes 12 months after surgery; there was 12.8% (3.5-22.1) more edema in the DSAEK group after 2 hours (P = 0.007), but after 3 hours, the percentages of edema were similar (P = 0.11). CONCLUSIONS Twelve months after DSAEK surgery, the grafted endothelium cleared the induced edema as fast as the control group, indicating a viable and near-normal endothelial pump function. However, significant differences in the deswelling patterns were detected, which may be caused by the added corneal stroma after DSAEK.
Collapse
|
23
|
Liu Y, Sun H, Guo P, Hu M, Zhang Y, Tighe S, Chen S, Zhu Y. Characterization and Prospective of Human Corneal Endothelial Progenitors. Int J Med Sci 2017; 14:705-710. [PMID: 28824304 PMCID: PMC5562123 DOI: 10.7150/ijms.19018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 04/21/2017] [Indexed: 12/15/2022] Open
Abstract
Corneal endothelial cells play a critical role in maintaining corneal transparency and dysfunction of these cells caused by aging, diseases (such as Fuch's dystrophy), injury or surgical trauma, which can lead to corneal edema and blindness. Due to their limited proliferative capacity in vivo, the only treatment method is via transplantation of a cadaver donor cornea. However, there is a severe global shortage of donor corneas. To circumvent such issues, tissue engineering of corneal tissue is a viable option thanks to the recent discoveries in this field. In this review, we summarize the recent advances in reprogramming adult human corneal endothelial cells into their progenitor status, the expansion methods and characteristics of human corneal endothelial progenitors, and their potential clinical applications as corneal endothelial cell grafts.
Collapse
Affiliation(s)
- Yongsong Liu
- Department of Ophthalmology, Yan' An Hospital of Kunming City, Kunming, 650051, China
| | - Hong Sun
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ping Guo
- Shenzhen Eye Hospital, School of Optometry & Ophthalmology of Shenzhen University, Shenzhen Key Laboratory of Department of Ophthalmology, Shenzhen, 518000, China
| | - Min Hu
- Department of Ophthalmology, the Second People's Hospital of Yunnan Province, Kunming, 650021, China
| | - Yuan Zhang
- Research and Development Department, TissueTech, Inc., 7000 SW 97th Avenue, Suite 212, Miami, FL 33173, USA
| | - Sean Tighe
- Research and Development Department, TissueTech, Inc., 7000 SW 97th Avenue, Suite 212, Miami, FL 33173, USA
| | - Shuangling Chen
- Research and Development Department, TissueTech, Inc., 7000 SW 97th Avenue, Suite 212, Miami, FL 33173, USA
| | - Yingting Zhu
- Research and Development Department, TissueTech, Inc., 7000 SW 97th Avenue, Suite 212, Miami, FL 33173, USA
| |
Collapse
|
24
|
Nielsen E. Fuchs' endothelial corneal dystrophy: pathology and treatment outcome. Acta Ophthalmol 2016. [DOI: 10.1111/aos.13311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Esben Nielsen
- Department of Health; Aarhus University; Aarhus Denmark
- Department of Ophthalmology; Aarhus University Hospital; Denmark
| |
Collapse
|
25
|
Senescence Mediated by p16 INK4a Impedes Reprogramming of Human Corneal Endothelial Cells into Neural Crest Progenitors. Sci Rep 2016; 6:35166. [PMID: 27739458 PMCID: PMC5064359 DOI: 10.1038/srep35166] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/26/2016] [Indexed: 12/13/2022] Open
Abstract
Human corneal endothelial cells (HCECs) have limited proliferative capacity due to “contact-inhibition” at G1 phase. Such contact-inhibition can be delayed from Day 21 to Day 42 by switching EGF-containing SHEM to LIF/bFGF-containing MESCM through transient activation of LIF-JAK1-STAT3 signaling that delays eventual nuclear translocation of p16INK4a. Using the latter system, we have reported a novel tissue engineering technique by implementing 5 weekly knockdowns with p120 catenin (p120) and Kaiso siRNAs since Day 7 to achieve effective expansion of HCEC monolayers to a transplantable size with a normal HCEC density, through reprogramming of HCECs into neural crest progenitors by activating p120-Kaiso-RhoA-ROCK-canonical BMP signaling. Herein, we noted that a single knockdown with p120-Kaiso siRNAs at Day 42 failed to achieve such reprogramming when contact inhibition transitioned to senescence with nuclear translocation of p16INK4a. In contrast, 5 weekly knockdowns with p120-Kaiso siRNAs since Day 7 precluded senescence mediated by p16INK4a by inducing nuclear translocation of Bmi1 because of sustained activation of JAK2-STAT3 signaling downstream of p120-Kaiso-RhoA-ROCK signaling. STAT3 or Bmi1 siRNA impeded nuclear exclusion of p16INK4a and suppressed the reprogramming induced by p120-Kaiso siRNAs, suggesting that another important engineering strategy of HCEC lies in prevention of senescence mediated by nuclear translocation of p16INK4a.
Collapse
|
26
|
Cheng X, Petsche SJ, Pinsky PM. A structural model for the in vivo human cornea including collagen-swelling interaction. J R Soc Interface 2016; 12:20150241. [PMID: 26156299 DOI: 10.1098/rsif.2015.0241] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A structural model of the in vivo cornea, which accounts for tissue swelling behaviour, for the three-dimensional organization of stromal fibres and for collagen-swelling interaction, is proposed. Modelled as a binary electrolyte gel in thermodynamic equilibrium, the stromal electrostatic free energy is based on the mean-field approximation. To account for active endothelial ionic transport in the in vivo cornea, which modulates osmotic pressure and hydration, stromal mobile ions are shown to satisfy a modified Boltzmann distribution. The elasticity of the stromal collagen network is modelled based on three-dimensional collagen orientation probability distributions for every point in the stroma obtained by synthesizing X-ray diffraction data for azimuthal angle distributions and second harmonic-generated image processing for inclination angle distributions. The model is implemented in a finite-element framework and employed to predict free and confined swelling of stroma in an ionic bath. For the in vivo cornea, the model is used to predict corneal swelling due to increasing intraocular pressure (IOP) and is adapted to model swelling in Fuchs' corneal dystrophy. The biomechanical response of the in vivo cornea to a typical LASIK surgery for myopia is analysed, including tissue fluid pressure and swelling responses. The model provides a new interpretation of the corneal active hydration control (pump-leak) mechanism based on osmotic pressure modulation. The results also illustrate the structural necessity of fibre inclination in stabilizing the corneal refractive surface with respect to changes in tissue hydration and IOP.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Steven J Petsche
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Peter M Pinsky
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
27
|
Comparison of the corneal biomechanical properties, optic nerve head topographic parameters, and retinal nerve fiber layer thickness measurements in diabetic and non-diabetic primary open-angle glaucoma. Int Ophthalmol 2016; 36:727-36. [DOI: 10.1007/s10792-016-0191-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/28/2016] [Indexed: 10/22/2022]
|
28
|
Assessment of Full-Eye Response to Osmotic Stress in Mouse Model In Vivo Using Optical Coherence Tomography. J Ophthalmol 2015; 2015:568509. [PMID: 26491552 PMCID: PMC4605377 DOI: 10.1155/2015/568509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/11/2015] [Accepted: 09/13/2015] [Indexed: 11/17/2022] Open
Abstract
NaCl based solutions were applied as osmotic stress agents to alter the hydration state of the mouse eye. Full-eye responses to these osmotic challenges were monitored in vivo using a custom-built optical coherence tomography (OCT) with an extended imaging range of 12.38 mm. Dynamic changes in the mouse eye were quantified based on the OCT images using several parameters, including the central corneal thickness (CCT), the anterior chamber depth (ACD), the crystalline lens thickness (LT), the cornea-retina distance (CRD), the iris curvature (IC), and the lens scattering intensity (LSI). Apparent but reversible changes in the morphology of almost all the ocular components and the light transparency of the lens are exhibited. Particularly, the ocular dehydration induced by the hypertonic challenges resulted in a closing of the iridocorneal angle and an opacification of the lens. Our results indicated that the ocular hydration is an important physiological process which might be correlated with various ocular disorders, such as dry eye, cataract, and angle-closure glaucoma, and would affect the biometry and imaging of the eye. OCT uniquely enables the comprehensive study of the dynamic full-eye responses to the ocular hydration in vivo.
Collapse
|
29
|
Zhu YT, Tighe S, Chen SL, John T, Kao WY, Tseng SCG. Engineering of Human Corneal Endothelial Grafts. CURRENT OPHTHALMOLOGY REPORTS 2015; 3:207-217. [PMID: 26509105 DOI: 10.1007/s40135-015-0077-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human corneal endothelial cells (HCEC) play a pivotal role in maintaining corneal transparency. Unlike in other species, HCEC are notorious for their limited proliferative capacity in vivo after diseases, injury, aging, and surgery. Persistent HCEC dysfunction leads to sight-threatening bullous keratopathy with either an insufficient cell density or retrocorneal membrane due to endothelial-mesenchymal transition (EMT). Presently, the only solution to restore vision in eyes inflicted with bullous keratopathy or retrocorneal membrane relies upon transplantation of a cadaver human donor cornea containing a healthy corneal endothelium. Due to a severe global shortage of donor corneas, in conjunction with an increasing trend toward endothelial keratoplasty, it is opportune to develop a tissue engineering strategy to produce HCEC grafts. Prior attempts of producing these grafts by unlocking the contact inhibition-mediated mitotic block using trypsin-EDTA and culturing of single HCEC in a bFGF-containing medium run the risk of losing the normal phenotype to EMT by activating canonical Wnt signaling and TGF-β signaling. Herein, we summarize our novel approach in engineering HCEC grafts based on selective activation of p120-Kaiso signaling that is coordinated with activation of Rho-ROCK-canonical BMP signaling to reprogram HCEC into neural crest progenitors. Successful commercialization of this engineering technology will not only fulfill the global unmet need but also encourage the scientific community to re-think how cell-cell junctions can be safely perturbed to uncover novel therapeutic potentials in other model systems.
Collapse
Affiliation(s)
- Ying-Ting Zhu
- R&D Department, Tissue Tech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, 7000 SW 97 Ave #212, Miami, FL, 33173, USA
| | - Sean Tighe
- R&D Department, Tissue Tech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, 7000 SW 97 Ave #212, Miami, FL, 33173, USA
| | - Shuang-Ling Chen
- R&D Department, Tissue Tech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, 7000 SW 97 Ave #212, Miami, FL, 33173, USA
| | - Thomas John
- Department of Ophthalmology, Loyola University at Chicago, 2160 1 Ave, Maywood, IL 60153, USA
| | - Winston Y Kao
- Department of Ophthalmology, University of Cincinnati, 2600 Clifton Ave, Cincinnati, OH, 45220, USA
| | - Scheffer C G Tseng
- R&D Department, Tissue Tech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, 7000 SW 97 Ave #212, Miami, FL 33173, USA, Telephone: (305) 274-1299
| |
Collapse
|
30
|
Akova-Budak B, Kıvanç SA. Does corneal hysteresis correlate with endothelial cell density? Med Sci Monit 2015; 21:1460-3. [PMID: 25994302 PMCID: PMC4450604 DOI: 10.12659/msm.893589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Our aim was to determine if there is a correlation between corneal biomechanical properties, endothelial cell count, and corneal pachymetry in healthy corneas. Material/Methods Ninety-two eyes of all subjects underwent complete ocular examination, including intraocular pressure measurement by Goldmann applanation tonometer, objective refraction, and slit-lamp biomicroscopy. Topographic measurements and corneal pachymetry were performed using a Scheimpflug-based (Pentacam, Oculus, Germany) corneal topographer. Corneal hysteresis (CH) and corneal resistance factor (CRF) were measured with an Ocular Response Analyzer (ORA, Reichert Ophthalmic Instruments, Buffalo, NY). Endothelial cell count measurement was done using a specular microscope (CellChek, Konan, USA). Results Right eye values of the subjects were taken for the study. The mean CH was 11.5±1.7 mmHg and the mean CRF was 11.2±1.4 mmHg. Mean intraocular pressure was 15.3±2.3 mmHg. The mean endothelial cell count was 2754±205 cells/mm2. No correlation was found between biomechanical properties of cornea and endothelial cell count. There was a significant positive correlation between CH, CRF, and corneal thickness (p<0.001; r=0.79). Conclusions The corneal biomechanical properties significantly correlated with corneal thickness. We found no correlation between CH and CRF with the endothelial cell density in normal subjects.
Collapse
Affiliation(s)
- Berna Akova-Budak
- Department of Ophthalmology, Uludag University, School of Medicine, Bursa, Turkey
| | - Sertaç Argun Kıvanç
- Department of Ophthalmology, Uludag University, School of Medicine, Bursa, Turkey
| |
Collapse
|
31
|
Zhu YT, Li F, Han B, Tighe S, Zhang S, Chen SY, Liu X, Tseng SCG. Activation of RhoA-ROCK-BMP signaling reprograms adult human corneal endothelial cells. ACTA ACUST UNITED AC 2014; 206:799-811. [PMID: 25202030 PMCID: PMC4164941 DOI: 10.1083/jcb.201404032] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Activation of RhoA-ROCK-BMP signaling reprograms adult human corneal endothelial cells into neural crest–like progenitors, which effectively form corneal endothelial monolayers that may eliminate the need for corneal transplantation. Currently there are limited treatment options for corneal blindness caused by dysfunctional corneal endothelial cells. The primary treatment involves transplantation of healthy donor human corneal endothelial cells, but a global shortage of donor corneas necessitates other options. Conventional tissue approaches for corneal endothelial cells are based on EDTA-trypsin treatment and run the risk of irreversible endothelial mesenchymal transition by activating canonical Wingless-related integration site (Wnt) and TGF-β signaling. Herein, we demonstrate an alternative strategy that avoids disruption of cell–cell junctions and instead activates Ras homologue gene family A (RhoA)–Rho-associated protein kinase (ROCK)–canonical bone morphogenic protein signaling to reprogram adult human corneal endothelial cells to neural crest–like progenitors via activation of the miR302b-Oct4-Sox2-Nanog network. This approach allowed us to engineer eight human corneal endothelial monolayers of transplantable size, with a normal density and phenotype from one corneoscleral rim. Given that a similar signal network also exists in the retinal pigment epithelium, this partial reprogramming approach may have widespread relevance and potential for treating degenerative diseases.
Collapse
Affiliation(s)
- Ying-Ting Zhu
- TissueTech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL 33173
| | - Fu Li
- Pediatric Research Institute and Department of Pediatric Hematology, Qilu Children's Hospital, Shandong University, Jinan, Shandong 250022, People's Republic of China
| | - Bo Han
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, People's Republic of China
| | - Sean Tighe
- TissueTech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL 33173
| | - Suzhen Zhang
- TissueTech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL 33173
| | - Szu-Yu Chen
- TissueTech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL 33173
| | - Xin Liu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, People's Republic of China
| | - Scheffer C G Tseng
- TissueTech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL 33173
| |
Collapse
|
32
|
Zhu YT, Han B, Li F, Chen SY, Tighe S, Zhang S, Tseng SCG. Knockdown of both p120 catenin and Kaiso promotes expansion of human corneal endothelial monolayers via RhoA-ROCK-noncanonical BMP-NFκB pathway. Invest Ophthalmol Vis Sci 2014; 55:1509-18. [PMID: 24474278 DOI: 10.1167/iovs.13-13633] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To determine the signaling pathway involved in expanding contact-inhibited human corneal endothelial cells (HCECs) using p120 and Kaiso small interfering RNAs (siRNAs). METHODS Expansion of HCEC monolayers on collagen IV in SHEM using p120 siRNA was optimized regarding various dosage, frequency, and starting date before being added Kaiso siRNA or various inhibitors of Rho, ROCK, NFκB, and TAK1. Phase contrast micrographs were used for monitoring cell shape, monolayer size, and cell density. Immunostaining was used to determine cytolocalization of BrdU, p120, pNFkB, F-actin, α-catenin, β-catenin, LEF1, Na+/K+-ATPase, N-cadherin, ZO-1, and S100A4. Western blotting was used to determine the protein level of RhoA and RhoA-guanosine-5'-triphosphate (GTP). RESULTS The HCEC monolayer size in diameter was expanded from 2.1 ± 0.4 mm to 4.3 ± 0.3 mm (P < 0.05) by increasing p120 siRNA from 40 nM to 100 nM starting at day 7, to 5.0 ± 0.4 mm (P < 0.05) by adding 100 nM Kaiso siRNA, to 6.8 ± 0.3 mm by using one-fourth corneoscleral rim (P < 0.05), and to 8.1 ± 0.5 mm by using one-half corneoscleral rim (P < 0.05). Such proliferative effect required activation of RhoA-ROCK-noncanonical bone morphogenic protein (BMP) signaling and nuclear translocation of phosphorylated nuclear factor kappa-light-chain-enhancer of activated B cells (pNFκB). After withdrawal of siRNAs for 1 week, the resultant HCEC monolayer maintained a hexagonal shape, the average cell density of 2254 ± 87 mm(2) (n = 3), and normal expression patterns of F-actin, α-catenin, β-catenin, N-cadherin, ZO-1, and Na+/K+-ATPase without S100A4 and alpha-smooth muscle actin (α-SMA). CONCLUSIONS The optimized knockdown with p120 and Kaiso siRNAs further expands the size of HCEC monolayers without endothelial mesenchymal transition (EMT) via selective activation of p120/Kaiso signaling that requires the RhoA-ROCK-noncanonical BMP-NFkB signaling.
Collapse
Affiliation(s)
- Ying-Ting Zhu
- Tissue Tech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, Florida
| | | | | | | | | | | | | |
Collapse
|
33
|
Teichmann J, Valtink M, Nitschke M, Gramm S, Funk RHW, Engelmann K, Werner C. Tissue engineering of the corneal endothelium: a review of carrier materials. J Funct Biomater 2013; 4:178-208. [PMID: 24956190 PMCID: PMC4030930 DOI: 10.3390/jfb4040178] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 09/13/2013] [Accepted: 09/24/2013] [Indexed: 12/13/2022] Open
Abstract
Functional impairment of the human corneal endothelium can lead to corneal blindness. In order to meet the high demand for transplants with an appropriate human corneal endothelial cell density as a prerequisite for corneal function, several tissue engineering techniques have been developed to generate transplantable endothelial cell sheets. These approaches range from the use of natural membranes, biological polymers and biosynthetic material compositions, to completely synthetic materials as matrices for corneal endothelial cell sheet generation. This review gives an overview about currently used materials for the generation of transplantable corneal endothelial cell sheets with a special focus on thermo-responsive polymer coatings.
Collapse
Affiliation(s)
- Juliane Teichmann
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, Institute of Biofunctional Polymer Materials, Hohe Straße 6, Dresden 01069, Germany.
| | - Monika Valtink
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany.
| | - Mirko Nitschke
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, Institute of Biofunctional Polymer Materials, Hohe Straße 6, Dresden 01069, Germany.
| | - Stefan Gramm
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, Institute of Biofunctional Polymer Materials, Hohe Straße 6, Dresden 01069, Germany.
| | - Richard H W Funk
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany.
| | - Katrin Engelmann
- CRTD/DFG-Center for Regenerative Therapies Dresden-Cluster of Excellence, Fetscherstraße 105, Dresden 01307, Germany.
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, Institute of Biofunctional Polymer Materials, Hohe Straße 6, Dresden 01069, Germany.
| |
Collapse
|
34
|
Gordon SR. Fibronectin antibody labels corneal stromal collagen fibrils in situ along their length and circumference and demonstrates distinct staining along the cell and stromal interfaces of Descemet's membrane. Curr Eye Res 2013; 39:312-6. [PMID: 24144005 DOI: 10.3109/02713683.2013.841260] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE/AIM OF THE STUDY An immunoperoxidase cytochemical study of fibronectin localization in the rat corneal stroma and Descemet's membrane was conducted following organ culture to determine whether stromal swelling allowed better primary antibody penetration into the normally tough fibrous corneal stroma. MATERIALS AND METHODS Following 24 h organ culture, corneas were fixed in 4% paraformaldehyde, washed and stained overnight at 4 °C in anti-fibronectin followed by washing and incubation in an appropriate secondary antibody and exposure to protein A-HRP. Cytochemical processing was carried out in a DAB-containing medium followed by dehydration and Epon embedding. RESULTS Observations of the stromal lamellae revealed the presence of a novel punctate staining pattern along the length of the collagen fibrils that extended around the fibril's circumference. Measurements on the peroxidase reaction product spacing indicated a periodicity of approximately 20.69 ± 3.57 nm along the fibril's length. Light microscopic immunocytochemistry revealed the presence of fibronectin staining occurred within the endothelial cell layer but only along the DM/stromal interface. Electron microscopic observations however, revealed that fibronectin staining occurred in distinct linear patterns along the length of both the endothelial and stromal DM interfaces. DISCUSSION Results indicate that organ culture mediated swelling helps facilitate the penetration of primary antibody into the corneal stroma. Observations suggest a novel association exists between fibronectin and stromal collagen fibrils that helps to mediate the arrangement and organization of the stromal extracellular matrix. Results also definitively indicate that fibronectin is deposited along both DM interfaces suggesting that it plays a role in the adhesion of both the endothelial cell layer and stroma to Descemet's membrane to help maintain the tissue architecture within this region of the cornea.
Collapse
Affiliation(s)
- Sheldon R Gordon
- Department of Biological Sciences, Oakland University , Rochester, MI , USA
| |
Collapse
|
35
|
Park YW, Jeong MB, Lee ER, Lee Y, Ahn JS, Kim SH, Seo K. Acute changes in central corneal thickness according to experimental adjustment of intraocular pressure in normal canine eyes. J Vet Med Sci 2013; 75:1479-83. [PMID: 23856815 PMCID: PMC3942985 DOI: 10.1292/jvms.13-0174] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Central corneal thickness (CCT) can be a promising source of glaucoma monitoring and
diagnosis. This study evaluated changes in CCT according to experimental adjustment of
intraocular pressure (IOP) in canine eyes. To adjust and measure IOP, each eye was
cannulated with two 26-gauge needles under inhalant anesthesia. One needle was connected
to a pressure transducer, and the other was connected to an adjustable bag of physiologic
saline. IOP was stepwise increased from 10 mmHg to 70 mmHg in 10 mmHg increments (Group
T). IOP was maintained at 15 mmHg (Group C15), 30 mmHg (Group C30), 45 mmHg (Group C45),
60 mmHg (Group C60) and 75 mmHg (Group C75) during the experiment. CCT was measured with
an ultrasonic pachymeter every 10 min after cannulation. There was a significant
difference in the effect of time on CCT (P<0.001) and difference in
CCT (dCCT; P<0.001) between groups. The CCT of group C15 remained
constant during the experiment. However, group T showed an initial decrease and then an
increase after passing the lowest point. Group C30 showed decreasing values for 30 min,
after which the values remained constant. The values in Group C45 showed no changes for 40
min and then increased. The values in group C60 showed no change for 20 min and then
increased. Group C75 showed a steady increase. In conclusion, the CCT showed two core
changes according to increased IOP. This study provides essential basic data to enable
further investigation into the association of IOP and CCT in dogs.
Collapse
Affiliation(s)
- Young-Woo Park
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and BK21 Program for Veterinary Science, Seoul National University, 1 Daehak-dong, Gwanak-gu, Seoul 151-742, Korea
| | | | | | | | | | | | | |
Collapse
|
36
|
Moshirfar M, Edmonds JN, Behunin NL, Christiansen SM. Corneal biomechanics in iatrogenic ectasia and keratoconus: A review of the literature. Oman J Ophthalmol 2013; 6:12-7. [PMID: 23772119 PMCID: PMC3678190 DOI: 10.4103/0974-620x.111895] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Ocular Response Analyzer (ORA) (Reichert Ophthalmic Instruments, Buffalo, NY) allows direct measurement of corneal biomechanical properties. Since its introduction, many studies have sought to elucidate the clinical applications of corneal hysteresis (CH) and corneal resistance factor (CRF). More recently, detailed corneal deformation signal waveform analysis (WA) has potentially expanded the diagnostic capabilities of the ORA. In this review, the role of CH, CRF, and WA are examined in keratoconus (KC) and iatrogenic ectasia (IE). The PubMed database was searched electronically for peer-reviewed literature in July 2012 and August 2012 without date restrictions. The search strategy included medical subject heading (MeSH) and natural language terms to retrieve references on corneal biomechanics, CH, CRF, corneal deformation signal WA, IE, and KC. The evidence suggests that while CH and CRF are poor screening tools when used alone, increased sensitivity and specificity of KC and IE screening result when these parameters are combined with tomography and topography. Recent advances in WA are promising, but little is currently understood about its biomechanical and clinical relevance. Future studies should seek to refine the screening protocols for KC and IE as well as define the clinical applicability of WA parameters.
Collapse
Affiliation(s)
- Majid Moshirfar
- Department of Ophthalmology, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | | | | | |
Collapse
|
37
|
Paris FDS, Gonçalves ED, Campos MSDQ, Sato ÉH, Dua HS, Gomes JÁP. Amniotic membrane transplantation versus anterior stromal puncture in bullous keratopathy: a comparative study. Br J Ophthalmol 2013; 97:980-4. [DOI: 10.1136/bjophthalmol-2013-303081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Zavala J, López Jaime GR, Rodríguez Barrientos CA, Valdez-Garcia J. Corneal endothelium: developmental strategies for regeneration. Eye (Lond) 2013; 27:579-88. [PMID: 23470788 DOI: 10.1038/eye.2013.15] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The main treatment available for restoration of the corneal endothelium is keratoplasty. This procedure is faced with several difficulties, including the shortage of donor tissue, post-surgical complications associated with the use of drugs to prevent immune rejection, and a significant increase in the occurrence of glaucoma. Recently, surgical procedures such as Descemet's stripping endothelial keratoplasty have focused on the transplant of corneal endothelium, yielding better visual results but still facing the need for donor tissue. The emergent strategies in the field of cell biology and tissue cultivation of corneal endothelial cells aim at the production of transplantable endothelial cell sheets. Cell therapy focuses on the culture of corneal endothelial cells retrieved from the donor, in the donor's cornea, followed by transplantation into the recipient. Recently, research has focused on overcoming the challenge of harvesting human corneal endothelial cells and the generation of new biomembranes to be used as cell scaffolds in surgical procedures. The use of corneal endothelial precursors from the peripheral cornea has also demonstrated to be effective and represents a valuable tool for reducing the risk of rejection in allogeneic transplants. Several animal model reports also support the use of adult stem cells as therapy for corneal diseases. Current results represent important progresses in the development of new strategies based on alternative sources of tissue for the treatment of corneal endotheliopathies. Different databases were used to search literature: PubMed, Google Books, MD Consult, Google Scholar, Gene Cards, and NCBI Books. The main search terms used were: 'cornea AND embryology AND transcription factors', 'human endothelial keratoplasty AND risk factors', '(cornea OR corneal) AND (endothelium OR endothelial) AND cell culture', 'mesenchymal stem cells AND cell therapy', 'mesenchymal stem cells AND cornea', and 'stem cells AND (cornea OR corneal) AND (endothelial OR endothelium)'.
Collapse
Affiliation(s)
- J Zavala
- Ophthalmology Research Chair, Tecnologico de Monterrey, School of Medicine and Health Sciences, Monterrey, México
| | | | | | | |
Collapse
|
39
|
Cunanan C. Corneal Inlays and Onlays. Biomater Sci 2013. [DOI: 10.1016/b978-0-08-087780-8.00079-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Chaurasia SS, Champakalakshmi R, Li A, Poh R, Tan XW, Lakshminarayanan R, Lim CT, Tan DT, Mehta JS. Effect of fibrin glue on the biomechanical properties of human Descemet's membrane. PLoS One 2012; 7:e37456. [PMID: 22662156 PMCID: PMC3360777 DOI: 10.1371/journal.pone.0037456] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 04/21/2012] [Indexed: 01/06/2023] Open
Abstract
Background Corneal transplantation has rapidly evolved from full-thickness penetrating keratoplasty (PK) to selective tissue corneal transplantation, where only the diseased portions of the patient's corneal tissue are replaced with healthy donor tissue. Descemet's membrane endothelial keratoplasty (DMEK) performed in patients with corneal endothelial dysfunction is one such example where only a single layer of endothelial cells with its basement membrane (10–15 µm in thickness), Descemet's membrane (DM) is replaced. It is challenging to replace this membrane due to its intrinsic property to roll in an aqueous environment. The main objective of this study was to determine the effects of fibrin glue (FG) on the biomechanical properties of DM using atomic force microscopy (AFM) and relates these properties to membrane folding propensity. Methodology/Principal Findings Fibrin glue was sprayed using the EasySpray applicator system, and the biomechanical properties of human DM were determined by AFM. We studied the changes in the “rolling up” tendency of DM by examining the changes in the elasticity and flexural rigidity after the application of FG. Surface topography was assessed using scanning electron microscopy (SEM) and AFM imaging. Treatment with FG not only stabilized and stiffened DM but also led to a significant increase in hysteresis of the glue-treated membrane. In addition, flexural or bending rigidity values also increased in FG-treated membranes. Conclusions/Significance Our results suggest that fibrin glue provides rigidity to the DM/endothelial cell complex that may aid in subsequent manipulation by maintaining tissue integrity.
Collapse
Affiliation(s)
- Shyam S. Chaurasia
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Ravi Champakalakshmi
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Ang Li
- Department of Bioengineering and Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Rebekah Poh
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Xiao Wei Tan
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore, Singapore
| | | | - Chwee T. Lim
- Department of Bioengineering and Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
- Mechanobiology Institute, Singapore, Singapore
| | - Donald T. Tan
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore, Singapore
- Singapore National Eye Centre, Singapore, Singapore
| | - Jodhbir S. Mehta
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore, Singapore
- Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Clinical Sciences, Duke-NUS Graduate Medical School, Singapore, Singapore
- * E-mail:
| |
Collapse
|
41
|
Sheerin AN, Smith SK, Jennert‐Burston K, Brook AJ, Allen MC, Ibrahim B, Jones D, Wallis C, Engelmann K, Rhys‐Williams W, Faragher RGA, Kipling D. Characterization of cellular senescence mechanisms in human corneal endothelial cells. Aging Cell 2012; 11:234-40. [PMID: 22128747 PMCID: PMC3440103 DOI: 10.1111/j.1474-9726.2011.00776.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The human cornea is a tri-laminar structure composed of several cell types with substantial mitotic potential. Age-related changes in the cornea are associated with declining visual acuity and the onset of overt age-related corneal diseases. Corneal transplantation is commonly used to restore vision in patients with damaged or diseased corneas. However, the supply of donor tissue is limited, and thus there is considerable interest in the development of tissue-engineered alternatives. A major obstacle to these approaches is the short replicative lifespan of primary human corneal endothelial cells (HCEC). Accordingly, a comprehensive investigation of the signalling pathways and mechanisms underpinning proliferative lifespan and senescence in HCEC was undertaken. The effects of exogenous human telomerase reverse transcriptase expression, p53 knockdown, disruption of the pRb pathway by over-expression of CDK4 and reduced oxygen concentration on the lifespan of primary HCEC were evaluated. We provide proof-of-principle that forced expression of telomerase, when combined with either p53 knockdown or CDK4 over-expression, is sufficient to produce immortalized HCEC lines. The resultant cell lines express an HCEC-specific transcriptional fingerprint, and retain expression of the corneal endothelial temperature-sensitive potassium channel, suggesting that significant dedifferentiation does not occur as a result of these modes of immortalization. Exploiting these insights into proliferative lifespan barriers in HCEC will underpin the development of novel strategies for cell-based therapies in the human cornea.
Collapse
Affiliation(s)
- Angela N. Sheerin
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK
| | - S. Kaye Smith
- School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Katrin Jennert‐Burston
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK
| | - Amy J. Brook
- School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Marcus C. Allen
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK
| | - Badr Ibrahim
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK
| | - Dawn Jones
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK
| | - Corrin Wallis
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK
| | - Katrin Engelmann
- Department of Ophthalmology, Klinikum Chemnitz GmbH, Klinik für Augenheilkunde, Flemmingstraße 2, 09116 Chemnitz, Dresden, Germany
- DFG‐Center for Regenerative Therapies Dresden, Tatzberg 47/49, D‐01307 Dresden, Germany
| | - William Rhys‐Williams
- Destiny Pharma Ltd., Sussex Innovation Centre, Science Park Square, Falmer, Brighton BN1 9SB, UK
| | - Richard G. A. Faragher
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK
| | - David Kipling
- School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
42
|
Doutch JJ, Quantock AJ, Joyce NC, Meek KM. Ultraviolet light transmission through the human corneal stroma is reduced in the periphery. Biophys J 2012; 102:1258-64. [PMID: 22455908 DOI: 10.1016/j.bpj.2012.02.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 01/25/2012] [Accepted: 02/06/2012] [Indexed: 12/13/2022] Open
Abstract
This article investigates in vitro light transmission through the human cornea in the ultraviolet (UV) portion of the electromagnetic spectrum as a function of position across the cornea from center to periphery. Spectrophotometry was used to measure UV transmission in the wavelength range 310-400 nm, from the central cornea to its periphery. UV transmission decreases away from the center, and this is attributed to scattering and absorbance. Corneal endothelial cells, which line the back of the cornea and are more numerous in the periphery, therefore receive a lower dose of UV than do those in the central cornea. This is consistent with the recent observation that endothelial cells in the corneal periphery exhibit less nuclear oxidative DNA damage than those in the central cornea.
Collapse
Affiliation(s)
- James J Doutch
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | | | | | | |
Collapse
|
43
|
Olszewski J, Marzec E, Kulza M, Samborski W. Implications of the alpha dispersion for studies on interaction of tobacco smoke--corneal tissue. Colloids Surf B Biointerfaces 2012; 90:109-12. [PMID: 22037475 DOI: 10.1016/j.colsurfb.2011.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 10/05/2011] [Indexed: 12/11/2022]
Abstract
In this work, we have carried out a dielectric study to determine the effect of tobacco smoke on the rat corneal function. Measurements were performed over the frequency range of 500 Hz-100 kHz in air and at the temperature of 35°C. The frequency dependencies of the loss tangent for both healthy and smoky cornea exhibit two peaks with different width occurring as a narrow at 2 kHz and a broad at around 16 kHz. The distribution parameter α at 2 kHz has a value of about 0.3, which increases to 0.6 at 16 kHz. The magnitude of the permittivity decrement at 2 and 16 kHz is about two and four times higher, respectively, for the smoky cornea than that for the healthy one. These dielectric studies indicate that the present method is useful in detection of the effect of tobacco smoke exposure on the corneal behavior.
Collapse
Affiliation(s)
- J Olszewski
- Department of Bionics and Bioimpedance, Poznań University of Medical Sciences, Poznań, Poland
| | | | | | | |
Collapse
|
44
|
Zhao M, Chalmers L, Cao L, Vieira AC, Mannis M, Reid B. Electrical signaling in control of ocular cell behaviors. Prog Retin Eye Res 2012; 31:65-88. [PMID: 22020127 PMCID: PMC3242826 DOI: 10.1016/j.preteyeres.2011.10.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 10/01/2011] [Accepted: 10/04/2011] [Indexed: 12/13/2022]
Abstract
Epithelia of the cornea, lens and retina contain a vast array of ion channels and pumps. Together they produce a polarized flow of ions in and out of cells, as well as across the epithelia. These naturally occurring ion fluxes are essential to the hydration and metabolism of the ocular tissues, especially for the avascular cornea and lens. The directional transport of ions generates electric fields and currents in those tissues. Applied electric fields affect migration, division and proliferation of ocular cells which are important in homeostasis and healing of the ocular tissues. Abnormalities in any of those aspects may underlie many ocular diseases, for example chronic corneal ulcers, posterior capsule opacity after cataract surgery, and retinopathies. Electric field-inducing cellular responses, termed electrical signaling here, therefore may be an unexpected yet powerful mechanism in regulating ocular cell behavior. Both endogenous electric fields and applied electric fields could be exploited to regulate ocular cells. We aim to briefly describe the physiology of the naturally occurring electrical activities in the corneal, lens, and retinal epithelia, to provide experimental evidence of the effects of electric fields on ocular cell behaviors, and to suggest possible clinical implications.
Collapse
Affiliation(s)
- Min Zhao
- Department of Dermatology, UC Davis School of Medicine, 2921 Stockton Blvd., Sacramento, CA 95817, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Tang J, Liu J. Variance of speed of sound and correlation with acoustic impedance in canine corneas. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:1714-1721. [PMID: 21821348 DOI: 10.1016/j.ultrasmedbio.2011.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 06/16/2011] [Accepted: 06/20/2011] [Indexed: 05/31/2023]
Abstract
The clinical standard for measuring corneal thickness is ultrasound pachymetry that assumes a constant speed of sound. The purpose of this study was to examine the variance of speed of sound and its relationship with acoustic impedance in healthy eyes of canines with a large age span. Corneal speed of sound and acoustic impedance were measured in 34 canine eyes at room temperature (21 ± 1°C). The mean speed of sound was 1577 ± 10 m/s ranging from 1553 to 1594 m/s. There was a strong correlation between speed of sound and acoustic impedance (R = 0.84, p < 0.001). Corneal speed of sound had a small variance in healthy canines over 1-year-old, but was significantly lower in younger canines suggesting an age effect. The strong correlation between corneal speed of sound and acoustic impedance may offer a potential means to noninvasively detect abnormal speed of sound for more accurate corneal thickness estimation.
Collapse
Affiliation(s)
- Junhua Tang
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
46
|
Measurement of corneal endothelial impedance with non-invasive external electrodes--a theoretical study. Med Eng Phys 2011; 34:195-201. [PMID: 21835678 DOI: 10.1016/j.medengphy.2011.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 07/11/2011] [Accepted: 07/13/2011] [Indexed: 12/13/2022]
Abstract
The corneal endothelial cell layer function is critical for the maintenance of hydration and transparency of the cornea. Recent advances in corneal lamellar transplantation point to the need for reliable, non-invasive and rapid endothelial function assessment. Findings using an invasive electrode in an experimental animal model have suggested an association between bioimpedance parameters and endothelial cell function. Currently, however there is no clinical device that allows for non-invasive measurements of endothelial layer electrical impedance. This report is a finite element simulation study that models the human eye. It evaluates the feasibility of using external non-invasive electrodes to detect changes in endothelial layer electrical properties as a function of electrode location and measurement frequencies. The findings show that the ratio between the potential recorded at low and high frequencies is sensitive to changes in endothelial resistivity as well as endothelial capacitance. Moreover, the optimal electrode configuration yielding the highest sensitivity is one where the current injecting electrodes are oppose to each other and the voltage recording electrodes are adjacent to the current injecting electrodes. This first-order theoretical study suggests that a non-invasive device which measures electrical properties of the endothelial layer from the exterior of the eye could be developed. Clearly further animal and human studies are required to develop a reliable clinical tool.
Collapse
|
47
|
Bolívar G, Teus MA, Hernández-Verdejo JL. Short-term effect of topical brimonidine tartrate on intrastromal corneal pressure in rabbits. J Refract Surg 2011; 26:533-5. [PMID: 20349857 DOI: 10.3928/1081597x-20100310-01] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 02/04/2010] [Indexed: 11/20/2022]
Abstract
PURPOSE Because topical brimonidine tartrate has been reported to decrease flap adherence in the early postoperative period after LASIK, its effect on the intrastromal corneal pressure (ICP) was evaluated. METHODS An interventional, prospective, animal study was performed. Intrastromal corneal pressure was recorded for 45 minutes in eight eyes of rabbits treated with topical brimonidine tartrate three times daily for 3 consecutive days (study group); eight contralateral eyes were treated with artificial tears (control group). All measurements were performed by the same, masked investigator. RESULTS Mean ICP was -4.00 +/- 2.90 mmHg, -6.70 +/- 3.00 mmHg, and -9.00 +/- 4.50 mmHg at 15, 30, and 45 minutes, respectively, in the control group. In the study group (brimonidine-treated eyes), the ICP readings were +2.75 +/- 2.90 mmHg, -2.50 +/- 13.00 mmHg, and -8.50 +/- 5.00 mmHg at the same time points, respectively. The differences in the ICP between both groups were statistically significant at 15 minutes (P = .01), but no significant difference was found at 30 or 45 minutes (P = .20 and P = .80, respectively). CONCLUSIONS Topical treatment with brimonidine tartrate induces a significant decrease in ICP at 15 minutes. This effect on ICP may explain the decreased corneal flap adherence reported in eyes treated with this drug.
Collapse
Affiliation(s)
- Gema Bolívar
- Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain.
| | | | | |
Collapse
|
48
|
Faramarzi A, Javadi MA, Jabbarpoor Bonyadi MH, Yaseri M. Changes in central corneal thickness after congenital cataract surgery. J Cataract Refract Surg 2010; 36:2041-7. [DOI: 10.1016/j.jcrs.2010.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 07/06/2010] [Accepted: 07/10/2010] [Indexed: 11/30/2022]
|
49
|
Abstract
The corneal endothelium maintains stromal deturgescence, which is a prerequisite for corneal transparency. The principal challenge to stromal deturgescence is the swelling pressure associated with the hydrophilic glycosaminoglycans in the stroma. This negative pressure induces fluid leak into the stroma from the anterior chamber, but the rate of leak is restrained by the tight junctions of the endothelium. This role of the endothelium represents its barrier function. In healthy cornea, the fluid leak is counterbalanced by an active fluid pump mechanism associated with the endothelium itself. Although this pump-leak hypothesis was postulated several decades ago, the mechanisms underlying regulation of the balance between the pump and leak functions remain largely unknown. In the last couple of decades, the ion transport systems that support the fluid pump activity have been discovered. In contrast, despite significant evidence for corneal edema secondary to endothelial barrier dysfunction, the molecular aspects underlying its regulation are relatively unknown. Recent findings in our laboratory, however, indicate that barrier integrity (i.e., structural and functional integrity of the tight junctions) of the endothelium is sensitive to remodeling of its peri-junctional actomyosin ring, which is located at the apical junctional complex. This review provides a focused perspective on dynamic regulation of the barrier integrity of endothelium vis-à-vis plasticity of the peri-junctional actomyosin ring and its association with cell signaling downstream of small GTPases of the Rho family. Based on findings to date, it appears that development of specific pharmacological strategies to treat corneal edema in response to inflammatory stress would be possible in the near future.
Collapse
|
50
|
Hogan ZS, Brown KL, Ishola A, Gatimu J, Flucker L, Huff JW. Effects of Divalent Cations on Bovine Corneal Stromal Swelling Rates. Curr Eye Res 2009; 33:677-82. [PMID: 18696343 DOI: 10.1080/02713680802322605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Zachary Scott Hogan
- Biophysics and Physiology Laboratory, Department of Biology, University of West Georgia, Carrollton, Georgia, USA
| | - Kimberly Leigh Brown
- Biophysics and Physiology Laboratory, Department of Biology, University of West Georgia, Carrollton, Georgia, USA
| | - Adenike Ishola
- Biophysics and Physiology Laboratory, Department of Biology, University of West Georgia, Carrollton, Georgia, USA
| | - Jane Gatimu
- Biophysics and Physiology Laboratory, Department of Biology, University of West Georgia, Carrollton, Georgia, USA
| | - LaQuetta Flucker
- Biophysics and Physiology Laboratory, Department of Biology, University of West Georgia, Carrollton, Georgia, USA
| | - Joseph William Huff
- Biophysics and Physiology Laboratory, Department of Biology, University of West Georgia, Carrollton, Georgia, USA
| |
Collapse
|