1
|
Engfer ZJ, Palczewski K. The multifaceted roles of retinoids in eye development, vision, and retinal degenerative diseases. Curr Top Dev Biol 2024; 161:235-296. [PMID: 39870435 DOI: 10.1016/bs.ctdb.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Vitamin A (all-trans-retinol; at-Rol) and its derivatives, known as retinoids, have been adopted by vertebrates to serve as visual chromophores and signaling molecules, particularly in the eye/retina. Few tissues rely on retinoids as heavily as the retina, and the study of genetically modified mouse models with deficiencies in specific retinoid-metabolizing proteins has allowed us to gain insight into the unique or redundant roles of these proteins in at-Rol uptake and storage, or their downstream roles in retinal development and function. These processes occur during embryogenesis and continue throughout life. This review delves into the role of these genes in supporting retinal function and maps the impact that genetically modified mouse models have had in studying retinoid-related genes. These models display distinct perturbations in retinoid biochemistry, physiology, and metabolic flux, mirroring human ocular diseases.
Collapse
Affiliation(s)
- Zachary J Engfer
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States; Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States.
| | - Krzysztof Palczewski
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States; Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States; Department of Chemistry, University of California Irvine, Irvine, CA, United States; Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States.
| |
Collapse
|
2
|
Widjaja-Adhi MAK, Golczak M. The molecular aspects of absorption and metabolism of carotenoids and retinoids in vertebrates. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158571. [PMID: 31770587 PMCID: PMC7244374 DOI: 10.1016/j.bbalip.2019.158571] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023]
Abstract
Vitamin A is an essential nutrient necessary for numerous basic physiological functions, including reproduction and development, immune cell differentiation and communication, as well as the perception of light. To evade the dire consequences of vitamin A deficiency, vertebrates have evolved specialized metabolic pathways that enable the absorption, transport, and storage of vitamin A acquired from dietary sources as preformed retinoids or provitamin A carotenoids. This evolutionary advantage requires a complex interplay between numerous specialized retinoid-transport proteins, receptors, and enzymes. Recent advances in molecular and structural biology resulted in a rapid expansion of our understanding of these processes at the molecular level. This progress opened new avenues for the therapeutic manipulation of retinoid homeostasis. In this review, we summarize current research related to the biochemistry of carotenoid and retinoid-processing proteins with special emphasis on the structural aspects of their physiological actions. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Made Airanthi K Widjaja-Adhi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| | - Marcin Golczak
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America; Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America.
| |
Collapse
|
3
|
Tsin A, Betts-Obregon B, Grigsby J. Visual cycle proteins: Structure, function, and roles in human retinal disease. J Biol Chem 2018; 293:13016-13021. [PMID: 30002120 DOI: 10.1074/jbc.aw118.003228] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here, we seek to summarize the current understanding of the biochemical and molecular events mediated by visual cycle molecules in the eye. The structures and functions of selected visual cycle proteins and their roles in human retinal diseases are also highlighted. Genetic mutations and malfunctions of these proteins provide etiological evidence that many ocular diseases arise from anomalies of retinoid (vitamin A) metabolism and related visual processes. Genetic retinal disorders such as retinitis pigmentosa, Leber's congenital amaurosis, and Stargardt's disease are linked to structural changes in visual cycle proteins. Moreover, recent reports suggest that visual cycle proteins may also play a role in the development of diabetic retinopathy. Basic science has laid the groundwork for finding a cure for many of these blindness-causing afflictions, but much work remains. Some translational research projects have advanced to the clinical trial stage, while many others are still in progress, and more are at the ideas stage and remain yet to be tested. Some examples of these studies are discussed. Recent and future progress in our understanding of the visual cycle will inform intervention strategies to preserve human vision and prevent blindness.
Collapse
Affiliation(s)
- Andrew Tsin
- From the Department of Biomedical Sciences, University of Texas Rio Grande Valley School of Medicine, Edinburg, Texas 78541,
| | - Brandi Betts-Obregon
- From the Department of Biomedical Sciences, University of Texas Rio Grande Valley School of Medicine, Edinburg, Texas 78541
| | - Jeffery Grigsby
- Vision Health Specialties, Midland, Texas 79707.,the College of Optometry, University of Houston, Houston, Texas 77204, and.,the Department of Laboratory Science and Primary Care, School of Health Professions, Texas Tech University Health Science Center, Midland, Texas 79705
| |
Collapse
|
4
|
Sharma R, Schwarz C, Hunter JJ, Palczewska G, Palczewski K, Williams DR. Formation and Clearance of All-Trans-Retinol in Rods Investigated in the Living Primate Eye With Two-Photon Ophthalmoscopy. Invest Ophthalmol Vis Sci 2017; 58:604-613. [PMID: 28129424 PMCID: PMC5283085 DOI: 10.1167/iovs.16-20061] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Two-photon excited fluorescence (TPEF) imaging has potential as a functional tool for tracking visual pigment regeneration in the living eye. Previous studies have shown that all-trans-retinol is likely the chief source of time-varying TPEF from photoreceptors. Endogenous TPEF from retinol could provide the specificity desired for tracking the visual cycle. However, in vivo characterization of native retinol kinetics is complicated by visual stimulation from the imaging beam. We have developed an imaging scheme for overcoming these challenges and monitored the formation and clearance of retinol. Methods Three macaques were imaged by using an in vivo two-photon ophthalmoscope. Endogenous TPEF was excited at 730 nm and recorded through the eye's pupil for more than 90 seconds. Two-photon excited fluorescence increased with onset of light and plateaued within 40 seconds, at which point, brief incremental stimuli were delivered at 561 nm. The responses of rods to stimulation were analyzed by using first-order kinetics. Results Two-photon excited fluorescence resulting from retinol production corresponded to the fraction of rhodopsin bleached. The photosensitivity of rhodopsin was estimated to be 6.88 ± 5.50 log scotopic troland. The rate of retinol clearance depended on intensity of incremental stimulation. Clearance was faster for stronger stimuli and time constants ranged from 50 to 300 seconds. Conclusions This study demonstrates a method for rapidly measuring the rate of clearance of retinol in vivo. Moreover, TPEF generated due to retinol can be used as a measure of rhodopsin depletion, similar to densitometry. This enhances the utility of two-photon ophthalmoscopy as a technique for evaluating the visual cycle in the living eye.
Collapse
Affiliation(s)
- Robin Sharma
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Christina Schwarz
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Jennifer J Hunter
- Center for Visual Science, University of Rochester, Rochester, New York, United States 2Flaum Eye Institute, University of Rochester, Rochester, New York, United States 3Biomedical Engineering, University of Rochester, Rochester, New York, United States
| | | | - Krzysztof Palczewski
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States
| | - David R Williams
- Center for Visual Science, University of Rochester, Rochester, New York, United States 2Flaum Eye Institute, University of Rochester, Rochester, New York, United States 6The Institute of Optics, University of Rochester, Rochester, New York, United States
| |
Collapse
|
5
|
Lee M, Li S, Sato K, Jin M. Interphotoreceptor Retinoid-Binding Protein Mitigates Cellular Oxidative Stress and Mitochondrial Dysfunction Induced by All-trans-Retinal. Invest Ophthalmol Vis Sci 2016; 57:1553-62. [PMID: 27046120 PMCID: PMC4824376 DOI: 10.1167/iovs.15-18551] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose Point and null mutations in interphotoreceptor retinoid-binding protein (IRBP) cause retinal dystrophy in affected patients and IRBP-deficient mice with unknown mechanism. This study investigated whether IRBP protects cells from damages induced by all-trans-retinal (atRAL), which was increased in the Irbp−/− retina. Methods Wild-type and Irbp−/− mice retinal explants in buffer with or without purified IBRP were exposed to 800 lux light for different times and subjected to retinoid analysis by high-performance liquid chromatography. Purity of IRBP was determined by Coomassie Brilliant Blue staining and immunoblot analysis. Cellular damages induced by atRAL in the presence or absence of IRBP were evaluated in the mouse photoreceptor-derived 661W cells. Cell viability and death were measured by 3-(4,5-dimethyl-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) and TUNEL assays. Expression and modification levels of retinal proteins were determined by immunoblot analysis. Intracellular reactive oxygen species (ROS) and nitric oxide (NO) were detected with fluorogenic dyes and confocal microscopy. Mitochondrial membrane potential was analyzed by using JC-1 fluorescent probe and a flow cytometer. Results Content of atRAL in Irbp−/− retinal explants exposed to light for 40 minutes was significantly higher than that in wild-type retinas under the same light conditions. All-trans-retinal caused increase in cell death, tumor necrosis factor activation, and Adam17 upregulation in 661W cells. NADPH oxidase-1 (NOX1) upregulation, ROS generation, NO-mediated protein S-nitrosylation, and mitochondrial dysfunction were also observed in 661W cells treated with atRAL. These cytotoxic effects were significantly attenuated in the presence of IRBP. Conclusions Interphotoreceptor retinoid-binding protein is required for preventing accumulation of retinal atRAL, which causes inflammation, oxidative stress, and mitochondrial dysfunction of the cells.
Collapse
|
6
|
McKeown AS, Pitale PM, Kraft TW. Signalling beyond photon absorption: extracellular retinoids and growth factors modulate rod photoreceptor sensitivity. J Physiol 2016; 594:1841-54. [PMID: 26691896 DOI: 10.1113/jp271650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/18/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS We propose that the end product of chromophore bleaching in rod photoreceptors, all-trans retinol, is part of a feedback loop that increases the sensitivity of the phototransduction cascade in rods. A previously described light-induced hypersensitivity in rods, termed adaptive potentiation, is reduced by exogenously applied all-trans retinol but not all-trans retinal. This potentiation is produced by insulin-like growth factor-1, whose binding proteins are located in the extracellular matrix, even in our isolated retina preparation after removal of the retinal pigmented epithelium. Simple modelling suggests that the light stimuli used in the present study will produce sufficient all-trans retinol within the interphotoreceptor matrix to explain the potentiation effect. ABSTRACT Photoreceptors translate the absorption of photons into electrical signals for propagation through the visual system. Mammalian photoreceptor signalling has largely been studied in isolated cells, and such studies have necessarily avoided the complex environment of supportive proteins that surround the photoreceptors. The interphotoreceptor matrix (IPM) contains an array of proteins that aid in both structural maintenance and cellular homeostasis, including chromophore turnover. In signalling photon absorption, the chromophore 11-cis retinal is first isomerized to all-trans retinal, followed by conversion to all-trans retinol (ROL) for removal from the photoreceptor. Interphotoreceptor retinoid-binding protein (IRBP) is the most abundant protein in the IPM, and it promotes the removal of bleached chromophores and recycling in the nearby retinal pigment epithelium. By studying the light responses of isolated mouse retinas, we demonstrate that ROL can act as a feedback signal onto photoreceptors that influences the sensitivity of phototransduction. In addition to IRBP, the IPM also contains insulin-like growth factor-1 (IGF-1) and its associated binding proteins, although their functions have not yet been described. We demonstrate that extracellular application of physiological concentrations of IGF-1 can increase rod photoreceptor sensitivity in mammalian retinas. We also determine that chromophores and growth factors can limit the range of a newly described form of photoreceptor light adaptation. Finally, fluorescent antibodies demonstrate the presence of IRBP and IGFBP-3 in isolated retinas. A simple model of the formation and release of ROL into the extracellular space quantitatively describes this novel feedback loop.
Collapse
Affiliation(s)
| | | | - Timothy W Kraft
- Department of Vision Sciences.,Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
7
|
Yang GQ, Chen T, Tao Y, Zhang ZM. Recent advances in the dark adaptation investigations. Int J Ophthalmol 2015; 8:1245-52. [PMID: 26682182 DOI: 10.3980/j.issn.2222-3959.2015.06.31] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/28/2015] [Indexed: 12/15/2022] Open
Abstract
Dark adaptation is a highly sensitive neural function and may be the first symptom of many status including the physiologic and pathologic entity, suggesting that it could be instrumental for diagnose. However, shortcomings such as the lack of standardized parameters, the long duration of examination, and subjective randomness would substantially impede the use of dark adaptation in clinical work. In this review we summarize the recent research about the dark adaptation, including two visual cycles-canonical and cone-specific visual cycle, affecting factors and the methods for measuring dark adaptation. In the opinions of authors, intensive investigations are needed to be done for the widely use of this significant visual function in clinic.
Collapse
Affiliation(s)
- Guo-Qing Yang
- Department of Clinical Aerospace Medicine, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Tao Chen
- Department of Clinical Aerospace Medicine, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Ye Tao
- Department of Ophthalmology, Beidaihe Hospital of PLA, Beidaihe 066100, Hebei Province, China
| | - Zuo-Ming Zhang
- Department of Clinical Aerospace Medicine, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| |
Collapse
|
8
|
Ghosh D, Haswell KM, Sprada M, Gonzalez-Fernandez F. Structure of zebrafish IRBP reveals fatty acid binding. Exp Eye Res 2015; 140:149-158. [PMID: 26344741 DOI: 10.1016/j.exer.2015.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 08/22/2015] [Accepted: 08/31/2015] [Indexed: 10/23/2022]
Abstract
Interphotoreceptor retinoid-binding protein (IRBP) has a remarkable role in targeting and protecting all-trans and 11-cis retinol, and 11-cis retinal during the rod and cone visual cycles. Little is known about how the correct retinoid is efficiently delivered and removed from the correct cell at the required time. It has been proposed that different fatty composition at that the outer-segments and retinal-pigmented epithelium have an important role is regulating the delivery and uptake of the visual cycle retinoids at the cell-interphotoreceptor-matrix interface. Although this suggests intriguing mechanisms for the role of local fatty acids in visual-cycle retinoid trafficking, nothing is known about the structural basis of IRBP-fatty acid interactions. Such regulation may be mediated through IRBP's unusual repeating homologous modules, each containing about 300 amino acids. We have been investigating structure-function relationships of Zebrafish IRBP (zIRBP), which has only two tandem modules (z1 and z2), as a model for the more complex four-module mammalian IRBP's. Here we report the first X-ray crystal structure of a teleost IRBP, and the only structure with a bound ligand. The X-ray structure of z1, determined at 1.90 Å resolution, reveals a two-domain organization of the module (domains A and B). A deep hydrophobic pocket with a single bound molecule of oleic acid was identified within the N-terminal domain A. In fluorescence titrations assays, oleic acid displaced all-trans retinol from zIRBP. Our study, which provides the first structure of an IRBP with bound ligand, supports a potential role for fatty acids in regulating retinoid binding.
Collapse
Affiliation(s)
- Debashis Ghosh
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, USA.
| | - Karen M Haswell
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Molly Sprada
- SUNY Eye Institute, State University of New York, USA
| | - Federico Gonzalez-Fernandez
- Medical Research & Development Service, G.V. (Sonny) Veterans Affairs Medical Center, Jackson, MS, USA; Departments of Ophthalmology and Pathology, University of Mississippi Medical Center, Jackson, MS, USA; SUNY Eye Institute, State University of New York, USA.
| |
Collapse
|
9
|
Gonzalez-Fernandez F, Betts-Obregon B, Yust B, Mimun J, Sung D, Sardar D, Tsin AT. Interphotoreceptor retinoid-binding protein protects retinoids from photodegradation. Photochem Photobiol 2015; 91:371-8. [PMID: 25565073 DOI: 10.1111/php.12416] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/16/2014] [Indexed: 12/20/2022]
Abstract
Retinol degrades rapidly in light into a variety of photoproducts. It is remarkable that visual cycle retinoids can evade photodegradation as they are exchanged between the photoreceptors, retinal pigment epithelium and Müller glia. Within the interphotoreceptor matrix, all-trans retinol, 11-cis retinol and retinal are bound by interphotoreceptor retinoid-binding protein (IRBP). Apart from its role in retinoid trafficking and targeting, could IRBP have a photoprotective function? HPLC was used to evaluate the ability of IRBP to protect all-trans and 11-cis retinols from photodegradation when exposed to incandescent light (0 to 8842 μW cm(-2)); time periods of 0-60 min, and bIRBP: retinol molar ratios of 1:1 to 1:5. bIRBP afforded a significant prevention of both all-trans and 11-cis retinol to rapid photodegradation. The effect was significant over the entire light intensity range tested, and extended to the bIRBP: retinol ratio 1:5. In view of the continual exposure of the retina to light, and the high oxidative stress in the outer retina, our results suggest IRBP may have an important protective role in the visual cycle by reducing photodegradation of all-trans and 11-cis retinols. This role of IRBP is particularly relevant in the high flux conditions of the cone visual cycle.
Collapse
Affiliation(s)
- Federico Gonzalez-Fernandez
- Medical Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS; Departments of Ophthalmology & Pathology, University of Mississippi School of Medicine, Jackson, MS; SUNY Eye Institute, State University of New York, Buffalo, NY
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Although the functional significance of the metastasic tumor antigen (MTA) family of chromatin remodeling proteins in the pathobiology of cancer is fairly well recognized, the physiological role of MTA proteins continues to be an understudied research area and is just beginning to be recognized. Similar to cancer cells, MTA1 also modulates the expression of target genes in normal cells either by acting as a corepressor or coactivator. In addition, physiological functions of MTA proteins are likely to be influenced by its differential expression, subcellular localization, and regulation by upstream modulators and extracellular signals. This review summarizes our current understanding of the physiological functions of the MTA proteins in model systems. In particular, we highlight recent advances of the role MTA proteins play in the brain, eye, circadian rhythm, mammary gland biology, spermatogenesis, liver, immunomodulation and inflammation, cellular radio-sensitivity, and hematopoiesis and differentiation. Based on the growth of knowledge regarding the exciting new facets of the MTA family of proteins in biology and medicine, we speculate that the next burst of findings in this field may reveal further molecular regulatory insights of non-redundant functions of MTA coregulators in the normal physiology as well as in pathological conditions outside cancer.
Collapse
Affiliation(s)
- Nirmalya Sen
- Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC, 20037, USA
| | | | | |
Collapse
|
11
|
Betts-Obregon BS, Gonzalez-Fernandez F, Tsin AT. Interphotoreceptor retinoid-binding protein (IRBP) promotes retinol uptake and release by rat Müller cells (rMC-1) in vitro: implications for the cone visual cycle. Invest Ophthalmol Vis Sci 2014; 55:6265-71. [PMID: 25183762 DOI: 10.1167/iovs.14-14721] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Interphotoreceptor retinoid-binding protein's (IRBP) role in facilitating the exchange of retinoids between rod and cone photoreceptors, RPE, and Müller cells in the visual cycle remains a mystery. Interphotoreceptor retinoid-binding protein's ability to bind the pericellular matrix of the cone outer segment and Müller cell villi suggests a function in all-trans and 11-cis retinol targeted trafficking in the cone visual cycle. We hypothesize that IRBP facilitates delivery and uptake of all-trans retinol to and release of 11-cis retinol from rat Müller cells (rMC-1). METHODS Rat Müller cells were incubated with all-trans retinol and BSA or bovine IRBP (bIRBP). Retinoids in the cell homogenates and conditioned media were analyzed by high performance liquid chromatography (HPLC). RESULTS Cells incubated with 10 μM retinol and BSA had 2100 pmol of all-trans retinol per milligram homogenate protein compared with 3450 pmol when retinol was delivered by bIRBP; these cells also had 450 pmol all-trans retinyl ester per milligram when retinol was delivered by BSA compared with 270 pmol when retinol was delivered by bIRBP. Conditioned media from cells incubated with retinol delivered by BSA did not contain11-cis retinol. However, cells with retinol delivered by bIRBP released 130 pmol/mL of 11-cis retinol into the cell media. Incubation with 5.0 mM deferoxamine (an iron chelator) reduced IRBP-dependent 11-cis retinol retrieval by 60%. CONCLUSIONS Promoting Müller cell uptake of all-trans retinol and release of 11-cis retinol is a previously unrecognized function of IRBP that may be critical to cone function and integrity.
Collapse
Affiliation(s)
- Brandi S Betts-Obregon
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States
| | - Federico Gonzalez-Fernandez
- Medical Research Service, Veterans Affairs Medical Center, Buffalo, New York, New York, United States Departments of Ophthalmology (Ross Eye Institute) and Pathology & Anatomic Sciences; Graduate Program in Neurosciences, SUNY Eye Institute, State University of New York, Buffalo, New York, United States
| | - Andrew T Tsin
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States
| |
Collapse
|
12
|
Receptor interacting protein kinase-mediated necrosis contributes to cone and rod photoreceptor degeneration in the retina lacking interphotoreceptor retinoid-binding protein. J Neurosci 2013; 33:17458-68. [PMID: 24174679 DOI: 10.1523/jneurosci.1380-13.2013] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Interphotoreceptor retinoid-binding protein (IRBP) secreted by photoreceptors plays a pivotal role in photoreceptor survival with an unknown mechanism. A mutation in the human IRBP has been linked to retinitis pigmentosa, a progressive retinal degenerative disease. Mice lacking IRBP display severe early and progressive photoreceptor degeneration. However, the signaling pathway(s) leading to photoreceptor death in IRBP-deficient mice remains poorly understood. Here, we show that amounts of tumor necrosis factor-α (TNF-α) in the interphotoreceptor matrix and retinas of Irbp(-/-) mice were increased more than 10-fold and fivefold, respectively, compared with those in wild-type mice. Moreover, TNF-α receptor 1, an important membrane death receptor that mediates both programmed apoptosis and necrosis, was also significantly increased in Irbp(-/-) retina, and was colocalized with peanut agglutinin to the Irbp(-/-) cone outer segments. Although these death signaling proteins were increased, the caspase-dependent and independent apoptotic pathways were mildly activated in the Irbp(-/-) retinas, suggesting that other cell death mechanism(s) also contributes to the extensive photoreceptor degeneration in Irbp(-/-) retina. We found that receptor interacting protein 1 and 3 (RIP1 and RIP3) kinases, the intracellular key mediators of TNF-induced cellular necrosis, were elevated at least threefold in the Irbp(-/-) retinas. Moreover, pharmacological inhibition of RIP1 kinase significantly prevented cone and rod photoreceptor degeneration in Irbp(-/-) mice. These results reveal that RIP kinase-mediated necrosis strongly contributes to cone and rod degeneration in Irbp(-/-) mice, implicating the TNF-RIP pathway as a potential therapeutic target to prevent or delay photoreceptor degeneration in patients with retinitis pigmentosa caused by IRBP mutation.
Collapse
|
13
|
Garlipp MA, Gonzalez-Fernandez F. Cone outer segment and Müller microvilli pericellular matrices provide binding domains for interphotoreceptor retinoid-binding protein (IRBP). Exp Eye Res 2013; 113:192-202. [DOI: 10.1016/j.exer.2013.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 01/24/2013] [Accepted: 02/04/2013] [Indexed: 10/27/2022]
|
14
|
Li S, Yang Z, Hu J, Gordon WC, Bazan NG, Haas AL, Bok D, Jin M. Secretory defect and cytotoxicity: the potential disease mechanisms for the retinitis pigmentosa (RP)-associated interphotoreceptor retinoid-binding protein (IRBP). J Biol Chem 2013; 288:11395-406. [PMID: 23486466 PMCID: PMC3630842 DOI: 10.1074/jbc.m112.418251] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Interphotoreceptor retinoid-binding protein (IRBP) secreted by photoreceptors plays a pivotal role in photoreceptor survival and function. Recently, a D1080N mutation in IRBP was found in patients with retinitis pigmentosa, a frequent cause of retinal degeneration. The molecular and cellular bases for pathogenicity of the mutation are unknown. Here, we show that the mutation abolishes secretion of IRBP and results in formation of insoluble high molecular weight complexes via disulfide bonds. Co-expression of protein disulfide isomerase A2 that regulates disulfide bond formation or introduction of double Cys-to-Ala substitutions at positions 304 and 1175 in D1080N IRBP promoted secretion of the mutated IRBP. D1080N IRBP was not transported to the Golgi apparatus, but accumulated in the endoplasmic reticulum (ER), bound with the ER-resident chaperone proteins such as BiP, protein disulfide isomerase, and heat shock proteins. Splicing of X-box-binding protein-1 mRNA, expression of activating transcription factor 4 (ATF4), and cleavage of ATF6 were significantly increased in cells expressing D1080N IRBP. Moreover, D1080N IRBP induced up-regulation and nuclear translocation of the C/EBP homologous protein, a proapoptotic transcription factor associated with the unfolded protein response. These results indicate that loss of normal function (nonsecretion) and gain of cytotoxic function (ER stress) are involved in the disease mechanisms of D1080N IRBP. Chemical chaperones and low temperature, which help proper folding of many mutated proteins, significantly rescued secretion of D1080N IRBP, suggesting that misfolding is the molecular basis for pathogenicity of D1080N substitution and that chemical chaperones are therapeutic candidates for the mutation-caused blinding disease.
Collapse
Affiliation(s)
- Songhua Li
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Garlipp MA, Nowak KR, Gonzalez-Fernandez F. Cone outer segment extracellular matrix as binding domain for interphotoreceptor retinoid-binding protein. J Comp Neurol 2012; 520:756-69. [PMID: 21935947 DOI: 10.1002/cne.22773] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cones are critically dependent on interphotoreceptor retinoid-binding protein (IRBP) for retinoid delivery in the visual cycle. Cone-dominant vertebrates offer an opportunity to uncover the molecular basis of IRBP's role in this process. Here, we explore the association of IRBP with the interphotoreceptor matrix (IPM) of cones vs. rods in cone dominant retinas from chicken (Gallus domesticus), turkey (Meleagris gallopavo), and pig (Sus scrofa). Retinas were detached and fixed directly or washed in saline prior to fixation. Disassociated photoreceptors with adherent matrix were also prepared. Under 2 mM CaCl(2) , insoluble matrix was delaminated from saline washed retinas. The distribution of IRBP, as well as glycans binding peanut agglutinin (cone matrix) and wheat germ agglutinin (rod/cone matrix), was defined by confocal microscopy. Retina flat mounts showed IRBP diffusely distributed in an interconnecting, lattice-like pattern throughout the entire matrix. Saline wash replaced this pattern with fluorescent annuli surrounding individual cone outer segments. In isolated cones and matrix sheets, IRBP colocalized with the peanut agglutinin binding matrix glycans. Our results reveal a wash-resistant association of IRBP with a matrix domain immediately surrounding cone outer segments. The cone matrix sheath may be responsible for IRBP-mediated cone targeting of 11-cis retinoids.
Collapse
Affiliation(s)
- Mary Alice Garlipp
- Graduate Program in Neuroscience, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York 14209, USA
| | | | | |
Collapse
|
16
|
Reuter T. Fifty years of dark adaptation 1961–2011. Vision Res 2011; 51:2243-62. [DOI: 10.1016/j.visres.2011.08.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 08/24/2011] [Accepted: 08/24/2011] [Indexed: 02/07/2023]
|
17
|
Wisard J, Faulkner A, Chrenek MA, Waxweiler T, Waxweiler W, Donmoyer C, Liou GI, Craft CM, Schmid GF, Boatright JH, Pardue MT, Nickerson JM. Exaggerated eye growth in IRBP-deficient mice in early development. Invest Ophthalmol Vis Sci 2011; 52:5804-11. [PMID: 21642628 DOI: 10.1167/iovs.10-7129] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Because interphotoreceptor retinoid-binding protein (IRBP) is expressed before being needed in its presumptive role in the visual cycle, we tested whether it controls eye growth during development. METHODS The eyes of congenic IRBP knockout (KO) and C57BL/6J wild-type (WT) mice ranging in age from postnatal day (P)2 to P440 were compared by histology, laser micrometry, cycloplegic photorefractions, and partial coherence interferometry. RESULTS The size and weight of IRBP KO mouse eyes were greater than those of the WT mouse, even before eye-opening. Excessive ocular enlargement started between P7 and P10, with KO retinal arc lengths becoming greater compared with WT from P10 through P30 (18%; P < 0.01). The outer nuclear layer (ONL) of KO retinas became 20% thinner between P12 to P25, and progressed to 38% thinner at P30. At P30, there were 30% fewer cones per vertical section in KO than in WT retinas. Bromodeoxyuridine (BrdU) labeling indicated the same number of retinal cells were born in KO and WT mice. A spike in apoptosis was observed in KO outer nuclear layer at P25. These changes in size were accompanied by a large decrease in hyperopic refractive error, which reached -4.56 ± 0.70 diopters (D) versus +9.98 ± 0.993 D (mean ± SD) in WT, by postnatal day 60 (P60). CONCLUSIONS; In addition to its role in the visual cycle, IRBP is needed for normal eye development. How IRBP mediates ocular development is unknown.
Collapse
Affiliation(s)
- Jeffrey Wisard
- Department of Ophthalmology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Blakeley LR, Chen C, Chen CK, Chen J, Crouch RK, Travis GH, Koutalos Y. Rod outer segment retinol formation is independent of Abca4, arrestin, rhodopsin kinase, and rhodopsin palmitylation. Invest Ophthalmol Vis Sci 2011; 52:3483-91. [PMID: 21398289 DOI: 10.1167/iovs.10-6694] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The reactive aldehyde all-trans retinal is released in rod photoreceptor outer segments by photoactivated rhodopsin and is eliminated through reduction to all-trans retinol. This study was undertaken to determine whether all-trans retinol formation depends on Abca4, arrestin, rhodopsin kinase, and the palmitylation of rhodopsin, all of which are factors that affect the release and sequestration of all-trans retinal. METHODS Experiments were performed in isolated retinas and single living rods derived from 129/sv wild-type mice and Abca4-, arrestin-, and rhodopsin kinase-deficient mice and in genetically modified mice containing unpalmitylated rhodopsin. Formation of all-trans retinol was measured by imaging its fluorescence and by HPLC of retina extracts. The release of all-trans retinal from photoactivated rhodopsin was measured in purified rod outer segment membranes according to the increase in tryptophan fluorescence. All experiments were performed at 37°C. RESULTS The kinetics of all-trans retinol formation in the different types of genetically modified mice are in reasonable agreement with those in wild-type animals. The kinetics of all-trans retinol formation in 129/sv mice are similar to those in C57BL/6, although the latter are known to regenerate rhodopsin much more slowly. The release of all-trans retinal from rhodopsin in purified membranes is significantly faster than the formation of all-trans retinol in intact cells and is independent of the presence of the palmitate groups. CONCLUSIONS The regeneration of rhodopsin and the recycling of its chromophore are not strongly coupled. Neither the activities of Abca4, rhodopsin kinase, and arrestin, nor the palmitylation of rhodopsin affects the formation of all-trans retinol.
Collapse
Affiliation(s)
- Lorie R Blakeley
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Kusakabe TG, Takimoto N, Jin M, Tsuda M. Evolution and the origin of the visual retinoid cycle in vertebrates. Philos Trans R Soc Lond B Biol Sci 2009; 364:2897-910. [PMID: 19720652 PMCID: PMC2781855 DOI: 10.1098/rstb.2009.0043] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Absorption of a photon by visual pigments induces isomerization of 11-cis-retinaldehyde (RAL) chromophore to all-trans-RAL. Since the opsins lacking 11-cis-RAL lose light sensitivity, sustained vision requires continuous regeneration of 11-cis-RAL via the process called 'visual cycle'. Protostomes and vertebrates use essentially different machinery of visual pigment regeneration, and the origin and early evolution of the vertebrate visual cycle is an unsolved mystery. Here we compare visual retinoid cycles between different photoreceptors of vertebrates, including rods, cones and non-visual photoreceptors, as well as between vertebrates and invertebrates. The visual cycle systems in ascidians, the closest living relatives of vertebrates, show an intermediate state between vertebrates and non-chordate invertebrates. The ascidian larva may use retinochrome-like opsin as the major isomerase. The entire process of the visual cycle can occur inside the photoreceptor cells with distinct subcellular compartmentalization, although the visual cycle components are also present in surrounding non-photoreceptor cells. The adult ascidian probably uses RPE65 isomerase, and trans-to-cis isomerization may occur in distinct cellular compartments, which is similar to the vertebrate situation. The complete transition to the sophisticated retinoid cycle of vertebrates may have required acquisition of new genes, such as interphotoreceptor retinoid-binding protein, and functional evolution of the visual cycle genes.
Collapse
Affiliation(s)
- Takehiro G. Kusakabe
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako-gun, Hyogo 678-1297, Japan
| | - Noriko Takimoto
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako-gun, Hyogo 678-1297, Japan
| | - Minghao Jin
- Department of Ophthalmology and Neuroscience Center, LSU School of Medicine, 2020 Gravier Street, Suite D, New Orleans, LA 70112, USA
| | - Motoyuki Tsuda
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
| |
Collapse
|
20
|
Gonzalez-Fernandez F, Bevilacqua T, Lee KI, Chandrashekar R, Hsu L, Garlipp MA, Griswold JB, Crouch RK, Ghosh D. Retinol-binding site in interphotoreceptor retinoid-binding protein (IRBP): a novel hydrophobic cavity. Invest Ophthalmol Vis Sci 2009; 50:5577-86. [PMID: 19608538 DOI: 10.1167/iovs.08-1857] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Interphotoreceptor retinoid-binding protein (IRBP) appears to target and protect retinoids during the visual cycle. X-ray crystallographic studies had noted a betabetaalpha-spiral fold shared with crotonases and C-terminal protein transferases. The shallow cleft formed by the fold was assumed to represent the retinol-binding site. However, a second hydrophobic site consisting of a highly restricted cavity was more recently appreciated during in silico ligand-docking studies. In this study, the ligand-binding environment within the second module of Xenopus IRBP (X2IRBP) is defined. METHODS Pristine recombinant polypeptide corresponding to X2IRBP was expressed in a soluble form and purified to homogeneity without its fusion tag. Phenylalanine was substituted for tryptophan at each of the putative retinol-binding domains (W450F, hydrophobic cavity; W587F, shallow cleft). Binding of 11-cis and all-trans retinol were observed in titrations monitoring retinol fluorescence enhancement, quenching of tryptophan fluorescence, and energy transfer. The effect of oleic acid on retinol binding was also examined. RESULTS A ligand-binding stoichiometry of approximately 1:1 was observed for 11-cis and all-trans with K(d) in the tens of nanomolar range. The substitution mutants showed little effect on retinol binding in titrations after fluorescence enhancement. However, the W450F and not the W587F mutant showed a markedly reduced capacity for fluorescence quenching for both 11-cis and all-trans retinol. Oleic acid inhibited the binding of 11-cis and all-trans retinol in an apparent noncompetitive manner. CONCLUSIONS The binding site for 11-cis and all-trans retinol is a novel hydrophobic cavity that is highly restrictive and probably distinct from the long chain fatty acid-binding site.
Collapse
|
21
|
The role of interphotoreceptor retinoid-binding protein on the translocation of visual retinoids and function of cone photoreceptors. J Neurosci 2009; 29:1486-95. [PMID: 19193895 DOI: 10.1523/jneurosci.3882-08.2009] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The first event in light perception is absorption of a photon by the retinaldehyde chromophore of an opsin pigment in a rod or cone photoreceptor cell. This induces isomerization of the chromophore, rendering the bleached pigment insensitive to light. Restoration of light sensitivity requires chemical reisomerization of retinaldehyde via a multistep enzyme pathway, called the visual cycle, in cells of the retinal pigment epithelium (RPE). Interphotoreceptor retinoid-binding protein (IRBP) is present in the extracellular space between photoreceptors and the RPE. IRBP is known to bind visual retinoids. Previous studies on irbp(-/-) mice suggested that IRBP plays an insignificant role in opsin-pigment regeneration. However, the mice in these studies were uncontrolled for a severe mutation in the rpe65 gene. Rpe65 catalyzes the rate-limiting step in the visual cycle. Here, we examined the phenotype in irbp(-/-) mice homozygous for the wild-type (Leu450) rpe65 gene. We show that lack of IRBP causes delayed transfer of newly synthesized chromophore from RPE to photoreceptors. Removal of bleached chromophore from photoreceptors is also delayed in irbp(-/-) retinas after light exposure. It was previously shown that rods degenerate in irbp(-/-) mice. Here, we show that cones and rods degenerate at similar rates. However, cones are more affected functionally and show greater reductions in outer segment length than rods in irbp(-/-) mice. The disproportionate reductions in cone function and outer-segment length appear to result from mistrafficking of cone opsins due to impaired delivery of retinaldehyde chromophore, which functions as a chaperone for cone opsins but not rhodopsin.
Collapse
|
22
|
Imanishi Y, Lodowski K, Koutalos Y. Two-photon microscopy: shedding light on the chemistry of vision. Biochemistry 2007; 46:9674-84. [PMID: 17676772 PMCID: PMC2718834 DOI: 10.1021/bi701055g] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Two-photon microscopy (TPM) has come to occupy a prominent place in modern biological research with its ability to resolve the three-dimensional distribution of molecules deep inside living tissue. TPM can employ two different types of signals, fluorescence and second harmonic generation, to image biological structures with subcellular resolution. Two-photon excited fluorescence imaging is a powerful technique with which to monitor the dynamic behavior of the chemical components of tissues, whereas second harmonic imaging provides novel ways to study their spatial organization. Using TPM, great strides have been made toward understanding the metabolism, structure, signal transduction, and signal transmission in the eye. These include the characterization of the spatial distribution, transport, and metabolism of the endogenous retinoids, molecules essential for the detection of light, as well as the elucidation of the architecture of the living cornea. In this review, we present and discuss the current applications of TPM for the chemical and structural imaging of the eye. In addition, we address what we see as the future potential of TPM for eye research. This relatively new method of microscopy has been the subject of numerous technical improvements in terms of the optics and indicators used, improvements that should lead to more detailed biochemical characterizations of the eyes of live animals and even to imaging of the human eye in vivo.
Collapse
Affiliation(s)
- Yoshikazu Imanishi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
- To whom correspondence should be addressed:Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965. Phone: 216-368-5226. Fax: 216-368-1300. E-mail: (Y. I.); Department of Ophthalmology, Medical University of South, Carolina, Charleston, South Carolina 29425. Phone:843-792-9180. Fax: 843-792-1723. E-mail:(Y. K.)
| | - Kerrie Lodowski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Yiannis Koutalos
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South, Carolina
- To whom correspondence should be addressed:Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965. Phone: 216-368-5226. Fax: 216-368-1300. E-mail: (Y. I.); Department of Ophthalmology, Medical University of South, Carolina, Charleston, South Carolina 29425. Phone:843-792-9180. Fax: 843-792-1723. E-mail:(Y. K.)
| |
Collapse
|
23
|
Wu Q, Blakeley LR, Cornwall MC, Crouch RK, Wiggert BN, Koutalos Y. Interphotoreceptor retinoid-binding protein is the physiologically relevant carrier that removes retinol from rod photoreceptor outer segments. Biochemistry 2007; 46:8669-79. [PMID: 17602665 PMCID: PMC2568998 DOI: 10.1021/bi7004619] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Light detection by vertebrate rod photoreceptor outer segments results in the destruction of the visual pigment, rhodopsin, as its retinyl moiety is photoisomerized from 11-cis to all-trans. The regeneration of rhodopsin is necessary for vision and begins with the release of the all-trans retinal and its reduction to all-trans retinol. Retinol is then transported out of the rod outer segment for further processing. We used fluorescence imaging to monitor retinol fluorescence and quantify the kinetics of its formation and clearance after rhodopsin bleaching in the outer segments of living isolated frog (Rana pipiens) rod photoreceptors. We independently measured the release of all-trans retinal from bleached rhodopsin in frog rod outer segment membranes and the rate of all-trans retinol removal by the lipophilic carriers interphotoreceptor retinoid binding protein (IRBP) and serum albumin. We find that the kinetics of all-trans retinol formation in frog rod outer segments after rhodopsin bleaching are to a good first approximation determined by the kinetics of all-trans retinal release from the bleached pigment. For the physiological concentrations of carriers, the rate of retinol removal from the outer segment is determined by IRBP concentration, whereas the effect of serum albumin is negligible. The results indicate the presence of a specific interaction between IRBP and the rod outer segment, probably mediated by a receptor. The effect of different concentrations of IRBP on the rate of retinol removal shows no cooperativity and has an EC50 of 40 micromol/L.
Collapse
Affiliation(s)
| | | | | | | | | | - Yiannis Koutalos
- * Corresponding author, Tel: (843)-792-9180, Fax: (843)-792-1723, e-mail:
| |
Collapse
|
24
|
Gonzalez-Fernandez F, Ghosh D. Focus on Molecules: interphotoreceptor retinoid-binding protein (IRBP). Exp Eye Res 2007; 86:169-70. [PMID: 17222825 DOI: 10.1016/j.exer.2006.09.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2006] [Revised: 09/06/2006] [Accepted: 09/07/2006] [Indexed: 11/28/2022]
|
25
|
Kolesnikov AV, Ala-Laurila P, Shukolyukov SA, Crouch RK, Wiggert B, Estevez ME, Govardovskii VI, Cornwall MC. Visual cycle and its metabolic support in gecko photoreceptors. Vision Res 2006; 47:363-74. [PMID: 17049961 DOI: 10.1016/j.visres.2006.08.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 08/15/2006] [Accepted: 08/16/2006] [Indexed: 11/30/2022]
Abstract
Photoreceptors of nocturnal geckos are transmuted cones that acquired rod morphological and physiological properties but retained cone-type phototransduction proteins. We have used microspectrophotometry and microfluorometry of solitary isolated green-sensitive photoreceptors of Tokay gecko to study the initial stages of the visual cycle within these cells. These stages are the photolysis of the visual pigment, the reduction of all-trans retinal to all-trans retinol, and the clearance of all-trans retinol from the outer segment (OS) into the interphotoreceptor space. We show that the rates of decay of metaproducts (all-trans retinal release) and retinal-to-retinol reduction are intermediate between those of typical rods and cones. Clearance of retinol from the OS proceeds at a rate that is typical of rods and is greatly accelerated by exposure to interphotoreceptor retinoid-binding protein, IRBP. The rate of retinal release from metaproducts is independent of the position within the OS, while its conversion to retinol is strongly spatially non-uniform, being the fastest at the OS base and slowest at the tip. This spatial gradient of retinol production is abolished by dialysis of saponin-permeabilized OSs with exogenous NADPH or substrates for its production by the hexose monophosphate pathway (NADP+glucose-6-phosphate or 6-phosphogluconate, glucose-6-phosphate alone). Following dialysis by these agents, retinol production is accelerated by several-fold compared to the fastest rates observed in intact cells in standard Ringer solution. We propose that the speed of retinol production is set by the availability of NADPH which in turn depends on ATP supply within the outer segment. We also suggest that principal source of this ATP is from mitochondria located within the ellipsoid region of the inner segment.
Collapse
Affiliation(s)
- A V Kolesnikov
- Institute for Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ala-Laurila P, Kolesnikov AV, Crouch RK, Tsina E, Shukolyukov SA, Govardovskii VI, Koutalos Y, Wiggert B, Estevez ME, Cornwall MC. Visual cycle: Dependence of retinol production and removal on photoproduct decay and cell morphology. ACTA ACUST UNITED AC 2006; 128:153-69. [PMID: 16847097 PMCID: PMC2151530 DOI: 10.1085/jgp.200609557] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The visual cycle is a chain of biochemical reactions that regenerate visual pigment following exposure to light. Initial steps, the liberation of all-trans retinal and its reduction to all-trans retinol by retinol dehydrogenase (RDH), take place in photoreceptors. We performed comparative microspectrophotometric and microfluorometric measurements on a variety of rod and cone photoreceptors isolated from salamander retinae to correlate the rates of photoproduct decay and retinol production. Metapigment decay rate was spatially uniform within outer segments and 50-70 times faster in the cells that contained cone-type pigment (SWS2 and M/LWS) compared to cells with rod-type pigment (RH1). Retinol production rate was strongly position dependent, fastest at the base of outer segments. Retinol production rate was 10-40 times faster in cones with cone pigments (SWS2 and M/LWS) than in the basal OS of rods containing rod pigment (RH1). Production rate was approximately five times faster in rods containing cone pigment (SWS2) than the rate in basal OS of rods containing the rod pigment (RH1). We show that retinol production is defined either by metapigment decay rate or RDH reaction rate, depending on cell type or outer segment region, whereas retinol removal is defined by the surface-to-volume ratio of the outer segment and the availability of retinoid binding protein (IRBP). The more rapid rates of retinol production in cones compared to rods are consistent with the more rapid operation of the visual cycle in these cells.
Collapse
Affiliation(s)
- Petri Ala-Laurila
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|