1
|
Zheng Y, Zhao Y, He W, Wang Y, Cao Z, Yang H, Wang W, Li S. Novel organic selenium source hydroxy-selenomethionine counteracts the blood-milk barrier disruption and inflammatory response of mice under heat stress. Front Immunol 2022; 13:1054128. [PMID: 36532046 PMCID: PMC9757697 DOI: 10.3389/fimmu.2022.1054128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/03/2022] [Indexed: 12/05/2022] Open
Abstract
Heat stress (HS) in summer has caused huge economic losses to animal husbandry production recently. When mammary gland is exposed to high temperatures, it will cause blood-milk barrier damage. Hydroxy-selenomethionine (HMSeBA) is a new selenium source with better guarantee of animals' production performance under stress, but whether it has protective effect on heat stress-induced blood-milk damage is still unclear. We established mammary epithelial cells and mice heat stress injury models to fill this research gap, and hope to provide theoretical basis for using HMSeBA to alleviate heat stress damage mammary gland. The results showed that (1) Heat stress significantly decreases in vitro transepithelial electrical resistance (TEER) and cell viability (P < 0.01), and significantly decreases clinical score, histological score, and total alveoli area of mice mammary gland tissue (P < 0.01). (2) HMSeBA significantly increases TEER and fluorescein sodium leakage of HS-induced monolayer BMECs (P < 0.01), significantly improves the milk production and total area of alveoli (P < 0.01), and reduces clinical score, histological score, mRNA expression of heat stress-related proteins, and inflammatory cytokines release of heat-stressed mice (P < 0.01). (3) HMSeBA significantly improves tight junction structure damage, and significantly up-regulated the expression of tight junction proteins (ZO-1, claudin 1, and occludin) as well as signal molecules PI3K, AKT, and mTOR (P < 0.01) in heat-stressed mammary tissue. (4) HMSeBA significantly increases glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), and superoxide dismutase release (SOD) (P < 0.01) and significantly reduce malondialdehyde (MDA) expression (P < 0.01) in heat-stressed mammary tissue. In conclusion, this study implemented heat-stressed cell and mice model and showed that HMSeBA significantly regulate antioxidant capacity, inhibited inflammation, and regulate tight junction proteins expression in blood-milk barrier via PI3K/AKT/mTOR signaling pathway, so as to alleviate mammary gland damage and ensure its structure and function integrity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Wang
- *Correspondence: Wei Wang, ; Shengli Li,
| | - Shengli Li
- *Correspondence: Wei Wang, ; Shengli Li,
| |
Collapse
|
2
|
Mitani A, Kobayashi T, Hayashi Y, Matsushita N, Matsushita S, Nakao S, Takahira N, Shiraishi A, Ohashi Y. Characterization of doxycycline-dependent inducible Simian Virus 40 large T antigen immortalized human conjunctival epithelial cell line. PLoS One 2019; 14:e0222454. [PMID: 31509592 PMCID: PMC6738650 DOI: 10.1371/journal.pone.0222454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/29/2019] [Indexed: 11/19/2022] Open
Abstract
PURPOSE To present the properties of a newly developed immortalized human conjunctival epithelial cell (iHCjEC) line. METHODS iHCjECs were developed to induce Simian Virus 40 large T-antigen (SV40LT) by incorporating lentivirus in a tetracycline (Tet)-regulated gene-expression system into primary cultures of human conjunctival epithelial cells. The population doubling time and morphology of the iHCjECs were analyzed. The expressions of CK13, CK19, CK12, and MUC1, MUC4, MUC16, and MUC5AC were determined by real time PCR and immunohistochemically under different culture conditions. The organotypic culture model in which iHCjECs were cultured on rabbit conjunctival fibroblast-embedded collagen gel was used to characterize the iHCjECs. RESULTS The iHCjECs cultured with doxycycline (Dox) continued to proliferate for at least 20 passages and had a cobblestone-like appearance. The expressions of CK13 and CK19 but not CK12 were detected in the iHCjECs, and the expression of CK13 increased in culture media lacking Dox (Dox-). The expressions of MUC1, MUC4, MUC16, and MUC5AC were detected in iHCjECs, and a relatively strong immunostaining of MUC5AC was detected with Dox(-) added 5% FBS. Stratified iHCjECs were observed in organotypic culture at 5 days. CONCLUSION The iHCjECs had high proliferation rates and abilities to control the differentiation potency to control the expression of SV40 LT-antigen with Tet-regulated gene-expression system. They are able to express the mucin gene repertoire of their native epithelia. The iHCjECs can be a useful experimental cell line to study conjunctival epithelial cell characteristics and for pathophysiological and toxicological studies.
Collapse
Affiliation(s)
- Arisa Mitani
- Department of Ophthalmology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
- * E-mail:
| | - Takeshi Kobayashi
- Department of Ophthalmology and Regenerative Medicine, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Yasuhito Hayashi
- Department of Ophthalmology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Natsuki Matsushita
- Division of Laboratory Animal Research, Aichi Medical University, Nagakute, Aichi, Japan
- Translational Research Center, Ehime University Hospital, Toon, Ehime, Japan
| | - Sachi Matsushita
- Translational Research Center, Ehime University Hospital, Toon, Ehime, Japan
- Department of Biochemistry, Aichi Gakuin University School of Dentistry, Nagoya, Japan
| | - Saori Nakao
- Department of Ophthalmology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Naoko Takahira
- Department of Ophthalmology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Atsushi Shiraishi
- Department of Ophthalmology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
- Translational Research Center, Ehime University Hospital, Toon, Ehime, Japan
| | - Yuichi Ohashi
- Department of Ophthalmology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| |
Collapse
|
3
|
Bhattacharya D, Yu L, Wang M. Expression patterns of conjunctival mucin 5AC and aquaporin 5 in response to acute dry eye stress. PLoS One 2017; 12:e0187188. [PMID: 29112967 PMCID: PMC5675386 DOI: 10.1371/journal.pone.0187188] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/16/2017] [Indexed: 12/17/2022] Open
Abstract
The relationship between aquaporin (AQP) 5 and mucin (MUC) 5AC in the conjunctiva was investigated in response to acute dry eye (DE) stress. A mixed-mechanism rabbit DE model, in which the main lacrimal gland, Harderian gland, and nictitating membrane were resected, was further explored in this study. Conjunctival impression cytology specimens were harvested before excision (BE) and up to 3 months after excision (AE) in 8 (16 eyes) male New Zealand White rabbits, and immunoblotting was employed to assess the expression of AQP5 and MUC5AC. It was observed that AQP5 and MUC5AC showed a positive, synchronous expression pattern with progressive upregulation at protein level up to 2 months AE. At 3 months, the expression of both proteins decreased, but was still higher than that of BE. Such a synchronous relationship was further observed in mouse conjunctiva epithelium primary cells under hyperosmotic condition. Moreover, the co-immunoprecipitation of AQP5 and MUC5AC suggested a possible physical interaction between the two molecules. Our data indicates that conjunctival AQP5 and MUC5AC act synchronously in response to acute DE stress.
Collapse
Affiliation(s)
- Dhruva Bhattacharya
- Department of Ophthalmology and Vision Science, University of Arizona College of Medicine, Tucson, Arizona, United States of America
| | - Li Yu
- Shenzhen Key Laboratory of Ophthalmology, Jinan University Shenzhen Eye Hospital, Shenzhen, Guangdong, PR China
- Shenzhen Ocular Trauma and Stem Cell Differentiation Service, Shenzhen, Guangdong, PR China
- Shenzhen University College of Optometry, Shenzhen, Guangdong, PR China
| | - Mingwu Wang
- Department of Ophthalmology and Vision Science, University of Arizona College of Medicine, Tucson, Arizona, United States of America
- NeuVision Medical Institute, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
4
|
Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ. TEER measurement techniques for in vitro barrier model systems. ACTA ACUST UNITED AC 2015; 20:107-26. [PMID: 25586998 DOI: 10.1177/2211068214561025] [Citation(s) in RCA: 1417] [Impact Index Per Article: 141.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transepithelial/transendothelial electrical resistance (TEER) is a widely accepted quantitative technique to measure the integrity of tight junction dynamics in cell culture models of endothelial and epithelial monolayers. TEER values are strong indicators of the integrity of the cellular barriers before they are evaluated for transport of drugs or chemicals. TEER measurements can be performed in real time without cell damage and generally are based on measuring ohmic resistance or measuring impedance across a wide spectrum of frequencies. The measurements for various cell types have been reported with commercially available measurement systems and also with custom-built microfluidic implementations. Some of the barrier models that have been widely characterized using TEER include the blood-brain barrier (BBB), gastrointestinal (GI) tract, and pulmonary models. Variations in these values can arise due to factors such as temperature, medium formulation, and passage number of cells. The aim of this article is to review the different TEER measurement techniques and analyze their strengths and weaknesses, determine the significance of TEER in drug toxicity studies, examine the various in vitro models and microfluidic organs-on-chips implementations using TEER measurements in some widely studied barrier models (BBB, GI tract, and pulmonary), and discuss the various factors that can affect TEER measurements.
Collapse
Affiliation(s)
- Balaji Srinivasan
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA
| | - Aditya Reddy Kolli
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA
| | | | | | | | - James J Hickman
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA Biomolecular Science Center, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
5
|
Sarmento B, Andrade F, da Silva SB, Rodrigues F, das Neves J, Ferreira D. Cell-based in vitro models for predicting drug permeability. Expert Opin Drug Metab Toxicol 2012; 8:607-21. [PMID: 22424145 DOI: 10.1517/17425255.2012.673586] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION In vitro cell models have been used to predict drug permeation in early stages of drug development, since they represent an easy and reproducible method, allowing the tracking of drug absorption rate and mechanism, with an advantageous cost-benefit ratio. Such cell-based models are mainly composed of immortalized cells with an intrinsic ability to grow in a monolayer when seeded in permeable supports, maintaining their physiologic characteristics regarding epithelium cell physiology and functionality. AREAS COVERED This review summarizes the most important intestinal, pulmonary, nasal, vaginal, rectal, ocular and skin cell-based in vitro models for predicting the permeability of drugs. Moreover, the similitude between in vitro cell models and in vivo conditions are discussed, providing evidence that each model may provisionally resemble different drug absorption route. EXPERT OPINION Despite the widespread use of in vitro cell models for drug permeability and absorption evaluation purposes, a detailed study on the properties of these models and their in vitro-in vivo correlation compared with human data are required to further use in order to consider a future drug discovery optimization and clinical development.
Collapse
Affiliation(s)
- Bruno Sarmento
- Department of Pharmaceutical Technology, LTF/CICF, Faculty of Pharmacy, University of Porto, Portugal.
| | | | | | | | | | | |
Collapse
|
6
|
Barar J, Asadi M, Mortazavi-Tabatabaei SA, Omidi Y. Ocular Drug Delivery; Impact of in vitro Cell Culture Models. J Ophthalmic Vis Res 2009; 4. [PMID: 23198080 PMCID: PMC3498862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Normal vision depends on the optimal function of ocular barriers and intact membranes that selectively regulate the environment of ocular tissues. Novel pharmacotherapeutic modalities have aimed to overcome such biological barriers which impede efficient ocular drug delivery. To determine the impact of ocular barriers on research related to ophthalmic drug delivery and targeting, herein we provide a review of the literature on isolated primary or immortalized cell culture models which can be used for evaluation of ocular barriers. In vitro cell cultures are valuable tools which serve investigations on ocular barriers such as corneal and conjunctival epithelium, retinal pigment epithelium and retinal capillary endothelium, and can provide platforms for further investigations. Ocular barrier-based cell culture systems can be simply set up and used for drug delivery and targeting purposes as well as for pathological and toxicological research.
Collapse
Affiliation(s)
- Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Asadi
- School of Advanced Biomedical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran,School of Advanced Biomedical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran,Correspondence to: Yadollah Omidi, PhD. Associate Professor of Pharmaceutical Nanobiotechnology; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Tel: +98 411 3367914, Fax:+98 411 3367929; e-mail:
| |
Collapse
|