1
|
Schloesser L, Klose SM, Mauschitz MM, Abdullah Z, Finger RP. The role of immune modulators in age-related macular degeneration. Surv Ophthalmol 2024; 69:851-869. [PMID: 39097172 DOI: 10.1016/j.survophthal.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
We provide an overview of the expanding literature on the role of cytokines and immune mediators in pathophysiology of age-related macular degeneration (AMD). Although many immunological mediators have been linked to AMD pathophysiology, the broader mechanistic picture remains unclear with substantial variations in the levels of evidence supporting these mediators. Therefore, we reviewed the literature considering the varying levels of supporting evidence. A Medical Subject Headings (MeSH) term-based literature research was conducted in September, 2023, consisting of the MeSH terms "cytokine" and "Age-related macular degeneration" connected by the operator "AND". After screening the publications by title, abstract, and full text, a total of 146 publications were included. The proinflammatory cytokines IL-1β (especially in basic research studies), IL-6, IL-8, IL-18, TNF-α, and MCP-1 are the most extensively characterised cytokines/chemokines, highlighting the role of local inflammasome activation and altered macrophage function in the AMD pathophysiology. Among the antiinflammatory mediators IL-4, IL-10, and TGF-β were found to be the most extensively characterised, with IL-4 driving and IL-10 and TGF-β suppressing disease progression. Despite the extensive literature on this topic, a profound understanding of AMD pathophysiology has not yet been achieved. Therefore, further studies are needed to identify potential therapeutic targets, followed by clinical studies.
Collapse
Affiliation(s)
- Lukas Schloesser
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Sara M Klose
- Institute of Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany; Asia-Pacific Centre for Animal Health, Faculty of Science, University of Melbourne, Melbourne, Australia
| | | | - Zeinab Abdullah
- Institute of Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany
| | - Robert P Finger
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
2
|
Gnanaguru G, Mackey A, Choi EY, Arta A, Rossato FA, Gero TW, Urquhart AJ, Scott DA, D'Amore PA, Ng YSE. Discovery of sterically-hindered phenol compounds with potent cytoprotective activities against ox-LDL-induced retinal pigment epithelial cell death as a potential pharmacotherapy. Free Radic Biol Med 2022; 178:360-368. [PMID: 34843917 PMCID: PMC8758799 DOI: 10.1016/j.freeradbiomed.2021.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/22/2021] [Accepted: 11/19/2021] [Indexed: 01/03/2023]
Abstract
Late-stage dry age-related macular degeneration (AMD) or geographic atrophy (GA) is an irreversible blinding condition characterized by degeneration of retinal pigment epithelium (RPE) and the associated photoreceptors. Clinical and genetic evidence supports a role for dysfunctional lipid processing and accumulation of harmful oxidized lipids in the pathogenesis of GA. Using an oxidized low-density lipoprotein (ox-LDL)-induced RPE death assay, we screened and identified sterically-hindered phenol compounds with potent protective activities for RPE. The phenol-containing PPARγ agonist, troglitazone, protected against ox-LDL-induced RPE cell death, whereas other more potent PPARγ agonists did not protect RPE cells. Knockdown of PPARγ did not affect the protective activity of troglitazone in RPE, confirming the protective function is not due to the thiazolidine (TZD) group of troglitazone. Prototypical hindered phenol trolox and its analogs potently protected against ox-LDL-induced RPE cell death whereas potent antioxidants without the phenol group failed to protect RPE. Hindered phenols preserved lysosomal integrity against ox-LDL-induced damage and FITC-labeled trolox was localized to the lysosomes in RPE cells. Analogs of trolox inhibited reactive oxygen species (ROS) formation induced by ox-LDL uptake in a dose-dependent fashion and were effective at sub-micromolar concentrations. Treatment with trolox analog 2,2,5,7,8-pentamethyl-6-chromanol (PMC) significantly induced the expression of the lysosomal protein NPC-1 and reduced intracellular cholesterol level upon ox-LDL uptake. Our data indicate that the lysosomal-localized hindered phenols are uniquely potent in protecting the RPE against the toxic effects of ox-LDL, and may represent a novel pharmacotherapy to preserve the vision in patients with GA.
Collapse
Affiliation(s)
- Gopalan Gnanaguru
- Harvard Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
| | - Ashley Mackey
- Harvard Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
| | - Eun Young Choi
- Harvard Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
| | - Anthoula Arta
- Harvard Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Department of Health Technology, Institut for Sundhedsteknologi, Lyngby, Denmark
| | - Franco Aparecido Rossato
- Harvard Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
| | - Thomas W Gero
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Andrew J Urquhart
- Department of Health Technology, Institut for Sundhedsteknologi, Lyngby, Denmark
| | - David A Scott
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Patricia A D'Amore
- Harvard Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
| | - Yin Shan E Ng
- Harvard Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA.
| |
Collapse
|
3
|
Landowski M, Bowes Rickman C. Targeting Lipid Metabolism for the Treatment of Age-Related Macular Degeneration: Insights from Preclinical Mouse Models. J Ocul Pharmacol Ther 2021; 38:3-32. [PMID: 34788573 PMCID: PMC8817708 DOI: 10.1089/jop.2021.0067] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Age-related macular degeneration (AMD) is a major leading cause of irreversible visual impairment in the world with limited therapeutic interventions. Histological, biochemical, genetic, and epidemiological studies strongly implicate dysregulated lipid metabolism in the retinal pigmented epithelium (RPE) in AMD pathobiology. However, effective therapies targeting lipid metabolism still need to be identified and developed for this blinding disease. To test lipid metabolism-targeting therapies, preclinical AMD mouse models are needed to establish therapeutic efficacy and the role of lipid metabolism in the development of AMD-like pathology. In this review, we provide a comprehensive overview of current AMD mouse models available to researchers that could be used to provide preclinical evidence supporting therapies targeting lipid metabolism for AMD. Based on previous studies of AMD mouse models, we discuss strategies to modulate lipid metabolism as well as examples of studies evaluating lipid-targeting therapeutics to restore lipid processing in the RPE. The use of AMD mouse models may lead to worthy lipid-targeting candidate therapies for clinical trials to prevent the blindness caused by AMD.
Collapse
Affiliation(s)
- Michael Landowski
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA.,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Catherine Bowes Rickman
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
4
|
Gallenga CE, Lonardi M, Pacetti S, Violanti SS, Tassinari P, Di Virgilio F, Tognon M, Perri P. Molecular Mechanisms Related to Oxidative Stress in Retinitis Pigmentosa. Antioxidants (Basel) 2021; 10:antiox10060848. [PMID: 34073310 PMCID: PMC8229325 DOI: 10.3390/antiox10060848] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022] Open
Abstract
Retinitis pigmentosa (RP) is an inherited retinopathy. Nevertheless, non-genetic biological factors play a central role in its pathogenesis and progression, including inflammation, autophagy and oxidative stress. The retina is particularly affected by oxidative stress due to its high metabolic rate and oxygen consumption as well as photosensitizer molecules inside the photoreceptors being constantly subjected to light/oxidative stress, which induces accumulation of ROS in RPE, caused by damaged photoreceptor’s daily recycling. Oxidative DNA damage is a key regulator of microglial activation and photoreceptor degeneration in RP, as well as mutations in endogenous antioxidant pathways involved in DNA repair, oxidative stress protection and activation of antioxidant enzymes (MUTYH, CERKL and GLO1 genes, respectively). Moreover, exposure to oxidative stress alters the expression of micro-RNA (miRNAs) and of long non-codingRNA (lncRNAs), which might be implicated in RP etiopathogenesis and progression, modifying gene expression and cellular response to oxidative stress. The upregulation of the P2X7 receptor (P2X7R) also seems to be involved, causing pro-inflammatory cytokines and ROS release by macrophages and microglia, contributing to neuroinflammatory and neurodegenerative progression in RP. The multiple pathways analysed demonstrate that oxidative microglial activation may trigger the vicious cycle of non-resolved neuroinflammation and degeneration, suggesting that microglia may be a key therapy target of oxidative stress in RP.
Collapse
Affiliation(s)
- Carla Enrica Gallenga
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.E.G.); (F.D.V.); (M.T.)
| | - Maria Lonardi
- Department of Specialized Surgery, Section of Ophthalmology, Sant’Anna University Hospital, 44121 Ferrara, Italy; (M.L.); (S.P.); (P.T.)
| | - Sofia Pacetti
- Department of Specialized Surgery, Section of Ophthalmology, Sant’Anna University Hospital, 44121 Ferrara, Italy; (M.L.); (S.P.); (P.T.)
| | - Sara Silvia Violanti
- Department of Head and Neck, Section of Ophthalmology, San Paolo Hospital, 17100 Savona, Italy;
| | - Paolo Tassinari
- Department of Specialized Surgery, Section of Ophthalmology, Sant’Anna University Hospital, 44121 Ferrara, Italy; (M.L.); (S.P.); (P.T.)
| | - Francesco Di Virgilio
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.E.G.); (F.D.V.); (M.T.)
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.E.G.); (F.D.V.); (M.T.)
| | - Paolo Perri
- Department of Neuroscience and Rehabilitation, Section of Ophthalmology, University of Ferrara, 44121 Ferrara, Italy
- Correspondence:
| |
Collapse
|
5
|
Abstract
Cholesterol is a quantitatively and biologically significant constituent of all mammalian cell membrane, including those that comprise the retina. Retinal cholesterol homeostasis entails the interplay between de novo synthesis, uptake, intraretinal sterol transport, metabolism, and efflux. Defects in these complex processes are associated with several congenital and age-related disorders of the visual system. Herein, we provide an overview of the following topics: (a) cholesterol synthesis in the neural retina; (b) lipoprotein uptake and intraretinal sterol transport in the neural retina and the retinal pigment epithelium (RPE); (c) cholesterol efflux from the neural retina and the RPE; and (d) biology and pathobiology of defects in sterol synthesis and sterol oxidation in the neural retina and the RPE. We focus, in particular, on studies involving animal models of monogenic disorders pertinent to the above topics, as well as in vitro models using biochemical, metabolic, and omic approaches. We also identify current knowledge gaps and opportunities in the field that beg further research in this topic area.
Collapse
Affiliation(s)
- Sriganesh Ramachandra Rao
- Departments of Ophthalmology and Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY, USA
| | - Steven J Fliesler
- Departments of Ophthalmology and Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY, USA.
| |
Collapse
|
6
|
Fu D, Yu JY, Connell AR, Hookham MB, McLeese RH, Lyons TJ. Effects of Modified Low-Density Lipoproteins and Fenofibrate on an Outer Blood-Retina Barrier Model: Implications for Diabetic Retinopathy. J Ocul Pharmacol Ther 2020; 36:754-764. [PMID: 33107777 PMCID: PMC7757531 DOI: 10.1089/jop.2020.0068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Purpose: There is a lack of treatment for early diabetic retinopathy (DR), including blood-retina barrier (BRB) breakdown. The robust clinical benefit of fenofibrate in DR provides an opportunity to explore disease mechanisms and therapeutic targets. We have previously found that modified lipoproteins contribute to DR and that fenofibrate protects the inner BRB. We now investigate (1) whether modified lipoproteins elicit outer BRB injury and (2) whether fenofibrate may alleviate such damage. Methods: Human retinal pigment epithelium ARPE-19 cells were cultured in semipermeable transwells to establish a monolayer barrier and then exposed to heavily oxidized, glycated low-density lipoprotein (HOG-LDL, 25–300 mg/L, up to 24 h) versus native (N)-LDL. Transepithelial electric resistance (TEER) and FITC-dextran permeability were measured. The effects of fenofibrate, its active metabolite fenofibric acid, and other peroxisome proliferator-activated receptor (PPARα) agonists (gemfibrozil, bezafibrate, and WY14643) were evaluated, with and without the PPARα antagonist GW6471 or the adenosine monophosphate-activated protein kinase (AMPK) inhibitor Compound C. Results: HOG-LDL induced concentration- and time-dependent barrier impairment, decreasing TEER and increasing dextran leakage, effects that were amplified by high glucose. Fenofibric acid, but not fenofibrate, gemfibrozil, bezafibrate, or WY14643, attenuated barrier impairment. This effect was reversed significantly by Compound C, but not by GW6471. Conclusions: Modified lipoproteins elicited outer BRB injury in an experimental model, which was reduced by fenofibric acid through a PPARα-independent, AMPK-mediated mechanism. These findings suggest a protective role of fenofibric acid on the outer BRB in diabetic retina.
Collapse
Affiliation(s)
- Dongxu Fu
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Jeremy Y Yu
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom.,Division of Endocrinology, Diabetes and Metabolic Diseases, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Anna R Connell
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Michelle B Hookham
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Rebecca H McLeese
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom.,Division of Endocrinology, Diabetes and Metabolic Diseases, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Timothy J Lyons
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Northern Ireland, United Kingdom.,Division of Endocrinology, Diabetes and Metabolic Diseases, Medical University of South Carolina, Charleston, South Carolina, USA.,Diabetes Free SC, BlueCross BlueShield of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
7
|
Huang P, Liu W, Chen J, Hu Y, Wang Y, Sun J, Feng J. TRIM31 inhibits NLRP3 inflammasome and pyroptosis of retinal pigment epithelial cells through ubiquitination of NLRP3. Cell Biol Int 2020; 44:2213-2219. [PMID: 32716108 DOI: 10.1002/cbin.11429] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 11/12/2022]
Abstract
NOD-like receptor protein 3 (NLRP3) is associated with age-related macular degeneration (AMD). Retinal pigment epithelial (RPE) cells serve as the immune defense of macula, and their dysfunction causes clinically relevant changes in AMD. In the present study, oxidized low-density lipoprotein (ox-LDL) activated the NLRP3 inflammasome in human RPE cell line ARPE-19. Our data showed that the expression of NLRP3, interleukin-1β (IL-1β), and caspase-1 and the release of IL-1β in ARPE-19 cells were substantially increased by ox-LDL, whereas the addition of NLRP3 inhibitor INF39 dose-dependently reversed the effect of ox-LDL. Overexpression of tripartite motif-containing protein 31 (TRIM31) also suppressed the effect of ox-LDL in ARPE-19 cells. TRIM31 knockdown had similar effects with ox-LDL but INF39 could block the effect of TRIM31 knockdown. Moreover, TRIM31 could interact with NLRP3 in ARPE-19 cells. Overexpression of TRIM31 increased NLRP3 ubiquitination. In conclusion, the results propose that TRIM31 could enhance NLRP3 ubiquitination, therefore inhibiting NLRP3 inflammasome and pyroptosis in human RPE cells.
Collapse
Affiliation(s)
- Peirong Huang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Photomedicine Division, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Vitreo-Retina Division, Shanghai Key Laboratory of Fundus Disease, Shanghai, China
| | - Wenjia Liu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Photomedicine Division, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Vitreo-Retina Division, Shanghai Key Laboratory of Fundus Disease, Shanghai, China
| | - Jieqiong Chen
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Photomedicine Division, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Yifan Hu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Photomedicine Division, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Vitreo-Retina Division, Shanghai Key Laboratory of Fundus Disease, Shanghai, China
| | - Yuwei Wang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Photomedicine Division, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Vitreo-Retina Division, Shanghai Key Laboratory of Fundus Disease, Shanghai, China
| | - Junran Sun
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Photomedicine Division, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Vitreo-Retina Division, Shanghai Key Laboratory of Fundus Disease, Shanghai, China
| | - Jingyang Feng
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Photomedicine Division, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Vitreo-Retina Division, Shanghai Key Laboratory of Fundus Disease, Shanghai, China
| |
Collapse
|
8
|
Donato L, Bramanti P, Scimone C, Rinaldi C, Giorgianni F, Beranova-Giorgianni S, Koirala D, D'Angelo R, Sidoti A. miRNAexpression profile of retinal pigment epithelial cells under oxidative stress conditions. FEBS Open Bio 2018; 8:219-233. [PMID: 29435412 PMCID: PMC5794457 DOI: 10.1002/2211-5463.12360] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 11/03/2017] [Accepted: 11/24/2017] [Indexed: 12/22/2022] Open
Abstract
Deep analysis of regulative mechanisms of transcription and translation in eukaryotes could improve knowledge of many genetic pathologies such as retinitis pigmentosa (RP). New layers of complexity have recently emerged with the discovery that ‘junk’ DNA is transcribed and, among these, miRNAs have assumed a preponderant role. We compared changes in the expression of miRNAs obtained from whole transcriptome analyses, between two groups of retinal pigment epithelium (RPE) cells, one untreated and the other exposed to the oxidant agent oxidized low‐density lipoprotein (oxLDL), examining four time points (1, 2, 4 and 6 h). We found that 23 miRNAs exhibited altered expression in the treated samples, targeting genes involved in several biochemical pathways, many of them associated to RP for the first time, such as those mediated by insulin receptor signaling and son of sevenless. Moreover, five RP causative genes (KLHL7, RDH11,CERKL, AIPL1 and USH1G) emerged as already validated targets of five altered miRNAs (hsa‐miR‐1307, hsa‐miR‐3064, hsa‐miR‐4709, hsa‐miR‐3615 and hsa‐miR‐637), suggesting a tight connection between induced oxidative stress and RP development and progression. This miRNA expression analysis of oxidative stress‐induced RPE cells has discovered new regulative functions of miRNAs in RP that should lead to the discovery of new ways to regulate the etiopathogenesis of RP.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging Division of Medical Biotechnologies and Preventive Medicine University of Messina Italy.,Department of Cutting-Edge Medicine and Therapies Biomolecular Strategies and Neuroscience Section of Neuroscience-applied, Molecular Genetics and Predictive MedicineI.E.M E.S.T. Palermo Italy
| | | | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging Division of Medical Biotechnologies and Preventive Medicine University of Messina Italy.,Department of Cutting-Edge Medicine and Therapies Biomolecular Strategies and Neuroscience Section of Neuroscience-applied, Molecular Genetics and Predictive MedicineI.E.M E.S.T. Palermo Italy
| | - Carmela Rinaldi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging Division of Medical Biotechnologies and Preventive Medicine University of Messina Italy
| | | | | | | | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging Division of Medical Biotechnologies and Preventive Medicine University of Messina Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging Division of Medical Biotechnologies and Preventive Medicine University of Messina Italy.,Department of Cutting-Edge Medicine and Therapies Biomolecular Strategies and Neuroscience Section of Neuroscience-applied, Molecular Genetics and Predictive MedicineI.E.M E.S.T. Palermo Italy
| |
Collapse
|
9
|
Abbadie C, Pluquet O, Pourtier A. Epithelial cell senescence: an adaptive response to pre-carcinogenic stresses? Cell Mol Life Sci 2017; 74:4471-4509. [PMID: 28707011 PMCID: PMC11107641 DOI: 10.1007/s00018-017-2587-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/27/2017] [Accepted: 07/06/2017] [Indexed: 01/01/2023]
Abstract
Senescence is a cell state occurring in vitro and in vivo after successive replication cycles and/or upon exposition to various stressors. It is characterized by a strong cell cycle arrest associated with several molecular, metabolic and morphologic changes. The accumulation of senescent cells in tissues and organs with time plays a role in organismal aging and in several age-associated disorders and pathologies. Moreover, several therapeutic interventions are able to prematurely induce senescence. It is, therefore, tremendously important to characterize in-depth, the mechanisms by which senescence is induced, as well as the precise properties of senescent cells. For historical reasons, senescence is often studied with fibroblast models. Other cell types, however, much more relevant regarding the structure and function of vital organs and/or regarding pathologies, are regrettably often neglected. In this article, we will clarify what is known on senescence of epithelial cells and highlight what distinguishes it from, and what makes it like, replicative senescence of fibroblasts taken as a standard.
Collapse
Affiliation(s)
- Corinne Abbadie
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, 59000, Lille, France.
| | - Olivier Pluquet
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, 59000, Lille, France
| | - Albin Pourtier
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, 59000, Lille, France
| |
Collapse
|
10
|
Friedrich U, Datta S, Schubert T, Plössl K, Schneider M, Grassmann F, Fuchshofer R, Tiefenbach KJ, Längst G, Weber BHF. Synonymous variants in HTRA1 implicated in AMD susceptibility impair its capacity to regulate TGF-β signaling. Hum Mol Genet 2015; 24:6361-73. [PMID: 26310622 DOI: 10.1093/hmg/ddv346] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/19/2015] [Indexed: 12/16/2023] Open
Abstract
High-temperature requirement A1 (HTRA1) is a secreted serine protease reported to play a role in the development of several cancers and neurodegenerative diseases. Still, the mechanism underlying the disease processes largely remains undetermined. In age-related macular degeneration (AMD), a common cause of vision impairment and blindness in industrialized societies, two synonymous polymorphisms (rs1049331:C>T, and rs2293870:G>T) in exon 1 of the HTRA1 gene were associated with a high risk to develop disease. Here, we show that the two polymorphisms result in a protein with altered thermophoretic properties upon heat-induced unfolding, trypsin accessibility and secretion behavior, suggesting unique structural features of the AMD-risk-associated HTRA1 protein. Applying MicroScale Thermophoresis and protease digestion analysis, we demonstrate direct binding and proteolysis of transforming growth factor β1 (TGF-β1) by normal HTRA1 but not the AMD-risk-associated isoform. As a consequence, both HTRA1 isoforms strongly differed in their ability to control TGF-β mediated signaling, as revealed by reporter assays targeting the TGF-β1-induced serpin peptidase inhibitor (SERPINE1, alias PAI-1) promoter. In addition, structurally altered HTRA1 led to an impaired autocrine TGF-β signaling in microglia, as measured by a strong down-regulation of downstream effectors of the TGF-β cascade such as phosphorylated SMAD2 and PAI-1 expression. Taken together, our findings demonstrate the effects of two synonymous HTRA1 variants on protein structure and protein interaction with TGF-β1. As a consequence, this leads to an impairment of TGF-β signaling and microglial regulation. Functional implications of the altered properties on AMD pathogenesis remain to be clarified.
Collapse
Affiliation(s)
- Ulrike Friedrich
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Shyamtanu Datta
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Thomas Schubert
- Department of Biochemistry, University of Regensburg, 2bind GmbH, Josef Engert Straße 13, 93053 Regensburg, Germany
| | - Karolina Plössl
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | | | - Felix Grassmann
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | | | - Klaus-Jürgen Tiefenbach
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany and
| | - Gernot Längst
- Department of Biochemistry, University of Regensburg
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany,
| |
Collapse
|
11
|
Abstract
Milk has been considered as a natural source of nutrition for decades. Milk is known to be nutrient-rich which aids the growth and development of the human body. Milk contains both macro- and micronutrients. Breast milk is widely regarded as the optimal source of neonatal nutrition due to its composition of carbohydrates, proteins, minerals and antibodies. However, despite the wide use of milk products, investigations into the role of milk in degenerative diseases have been limited. This review will examine the relationship between the β-casein gene found in bovine milk and disease states by using age-related macular degeneration as an example.
Collapse
|
12
|
Fischer T. [The age-related macular degeneration as a vascular disease/part of systemic vasculopathy: contributions to its pathogenesis]. Orv Hetil 2015; 156:358-65. [PMID: 25702256 DOI: 10.1556/oh.2015.30017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The wall of blood vessels including those in choroids may be harmed by several repeated and/or prolonged mechanical, physical, chemical, microbiological, immunologic, and genetic impacts (risk factors), which may trigger a protracted response, the so-called host defense response. As a consequence, pathological changes resulting in vascular injury (e. g. atherosclerosis, age-related macular degeneration) may be evolved. Risk factors can also act directly on the endothelium through an increased production of reactive oxygen species promoting an endothelial activation, which leads to endothelial dysfunction, the onset of vascular disease. Thus, endothelial dysfunction is a link between the harmful stimulus and vascular injury; any kind of harmful stimuli may trigger the defensive chain that results in inflammation that may lead to vascular injury. It has been shown that even early age-related macular degeneration is associated with the presence of diffuse arterial disease and patients with early age-related macular degeneration demonstrate signs of systemic and retinal vascular alterations. Chronic inflammation, a feature of AMD, is tightly linked to diseases associated with ED: AMD is accompanied by a general inflammatory response, in the form of complement system activation, similar to that observed in degenerative vascular diseases such as atherosclerosis. All these facts indicate that age-related macular degeneration may be a vascular disease (or part of a systemic vasculopathy). This recognition could have therapeutic implications because restoration of endothelial dysfunction may prevent the development or improve vascular disease resulting in prevention or improvement of age-related macular degeneration as well.
Collapse
|
13
|
Docosahexaenoic acid aggravates photooxidative damage in retinal pigment epithelial cells via lipid peroxidation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 140:85-93. [PMID: 25108204 DOI: 10.1016/j.jphotobiol.2014.07.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 11/27/2022]
Abstract
Docosahexaenoic acid (DHA, 22:6n-3), a long-chain polyunsaturated fatty acid (PUFA) with important functions in normal human retinal activity and vision development, is recommended to promote brain and eye development. However, recent research has revealed that increased DHA level in the retina due to linoleic acid-rich diet heightens the vulnerability of the retina to photooxidative stress. Thus, many scholars have analyzed the potential risks of DHA intake on retinal damage. This study evaluated the potential adverse effects of DHA intake on individuals usually exposed to high-light intensity conditions using a visible light-induced retinal pigment epithelium (RPE) cell damage model in vitro. Results showed that DHA promoted the proliferation of RPE cells without any cytotoxicity under dark conditions. However, DHA supplement elicited deleterious effects on RPE cells under high-intensity light conditions. That is, DHA supplement inhibited cellular proliferation, destroyed cell membrane integrity, enhanced cellular senescence, increased vascular endothelial growth factor (VEGF) release, and decreased phagocytic function. Moreover, DHA supplement increased the intracellular and extracellular levels of reactive oxygen species and the extracellular level of lipid peroxidation products under high-intensity light conditions. These results demonstrate that DHA increases the vulnerability of the retina to light damage through lipid peroxidation.
Collapse
|
14
|
Yating Q, Yuan Y, wei Z, Qing G, xingwei W, Qiu Q, Lili Y. Oxidized LDL Induces Apoptosis of Human Retinal Pigment Epithelium Through Activation of ERK-Bax/Bcl-2 Signaling Pathways. Curr Eye Res 2014; 40:415-22. [DOI: 10.3109/02713683.2014.927507] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Yu AL, Birke K, Lorenz RL, Welge-Lussen U. Constitutive Expression of HCA2in Human Retina and Primary Human Retinal Pigment Epithelial Cells. Curr Eye Res 2013; 39:487-92. [DOI: 10.3109/02713683.2013.848900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
16
|
Yuan Y, Wang W, Wang B, Zhu H, Zhang B, Feng M. Delivery of hydrophilic drug doxorubicin hydrochloride-targeted liver using apoAI as carrier. J Drug Target 2013; 21:367-74. [PMID: 23600747 DOI: 10.3109/1061186x.2012.757769] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
High-density lipoprotein (HDL) particles can deliver cholesterol from peripheral tissues to the liver through apolipoprotein A1 (Apo A1), which specifically binds to the scavenger receptor class B type 1 (SR-B1) receptor on the surface of hepatocytes. Therefore, ApoA1 can be potentially used to target drugs to the liver. In this study, we successfully loaded doxorubicin hydrochloride (Dox or Dox-HCl), which is a hydrophilic drug used in a wide variety of clinical applications, into the core of reconstituted HDL (rHDL prepared by apoAI and egg phospholipids) to form a doxorubicin-HDL complex (rHDL-Dox). The MTT assays showed that rHDL-Dox particles also had higher cytotoxicity against several cells lines compared to free drug or Dox encapsulated into liposomes. A cellular uptake assay demonstrated that rHDL-Dox had higher absorption in SR-BI receptor positive liver cells. Importantly, in vivo experiments showed that rHDL-Dox can reduce tumor growth more effectively than liposomes. In addition, an in vitro hemolysis assay showed that rHDL-Dox caused only limited hemolysis in the case of high doses. Taken together, our findings indicate that rHDL is a safe and effective drug delivery system for targeting liver.
Collapse
Affiliation(s)
- Yuan Yuan
- School of Pharmacy, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
PURPOSE To determine whether there is an association between hepatic lipase (LIPC) and age-related macular degeneration (AMD) in two independent Caucasian cohorts. METHODS A discovery cohort of 1626 patients with advanced AMD and 859 normal controls and a replication cohort of 2159 cases and 1150 controls were genotyped for two single-nucleotide polymorphisms (SNPs) in the promoter region of LIPC. The associations between the SNPs and AMD were examined by χ(2) tests. RESULTS In the discovery cohort, rs493258 and rs10468017 were both associated with advanced AMD (P=9.63E-3 and P=0.048, respectively). The association was corroborated in the replication cohort (P=4.48E-03 for rs493258 and P=0.015 for rs10468017). Combined analysis resulted in even more significant associations (P=1.21E-04 for rs493258 and P=1.67E-03 for rs10468017). CONCLUSION The LIPC promoter variants rs493258 and rs10468017 were associated with advanced AMD in two independent Caucasian populations, confirming that LIPC polymorphisms may be a genetic risk factor for AMD in the Caucasian population.
Collapse
|
18
|
Abstract
Clinical epidemiological studies have revealed relatively weak, yet statistically significant, associations between dyslipidemia/dyslipoproteinemia and diabetic retinopathy (DR). Recent large interventional studies, however, demonstrated an unexpectedly robust efficacy of fenofibrate on the development of DR, possibly independent of plasma lipids. To unify the apparent discrepancies, we hypothesize that plasma lipoproteins play an indirect but important role in DR, contingent on the integrity of the blood-retina-barrier (BRB). In retinas with an intact BRB, plasma lipoproteins may be largely irrelevant; however, important effects become operative after the BRB is impaired in diabetes, leading to lipoprotein extravasation and subsequent modification, hence toxicity to the neighbouring retinal cells. In this hypothesis, BRB leakage is the key, plasma lipoprotein concentrations mainly modulate its consequences, and fenofibrate has intra-retinal actions. This review summarizes our current knowledge of the direct effects and mechanisms of modified lipoproteins on retinal cells and their potential contribution to the pathogenesis of DR.
Collapse
Affiliation(s)
- Jeremy Y Yu
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Northern Ireland, UK
| | - Timothy J Lyons
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Northern Ireland, UK ; Harold Hamm Diabetes Center and Section of Endocrinology and Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
19
|
Biological effects of cigarette smoke in cultured human retinal pigment epithelial cells. PLoS One 2012; 7:e48501. [PMID: 23155386 PMCID: PMC3498276 DOI: 10.1371/journal.pone.0048501] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 09/26/2012] [Indexed: 12/24/2022] Open
Abstract
The goal of the present study was to determine whether treatment with cigarette smoke extract (CSE) induces cell loss, cellular senescence, and extracellular matrix (ECM) synthesis in primary human retinal pigment epithelial (RPE) cells. Primary cultured human RPE cells were exposed to 2, 4, 8, and 12% of CSE concentration for 24 hours. Cell loss was detected by cell viability assay. Lipid peroxidation was assessed by loss of cis-parinaric acid (PNA) fluorescence. Senescence-associated ß-galactosidase (SA-ß-Gal) activity was detected by histochemical staining. Expression of apolipoprotein J (Apo J), connective tissue growth factor (CTGF), fibronectin, and laminin were examined by real-time PCR, western blot, or ELISA experiments. The results showed that exposure of cells to 12% of CSE concentration induced cell death, while treatment of cells with 2, 4, and 8% CSE increased lipid peroxidation. Exposure to 8% of CSE markedly increased the number of SA-ß-Gal positive cells to up to 82%, and the mRNA expression of Apo J, CTGF, and fibronectin by approximately 3–4 fold. Treatment with 8% of CSE also increased the protein expression of Apo J and CTGF and the secretion of fibronectin and laminin. Thus, treatment with CSE can induce cell loss, senescent changes, and ECM synthesis in primary human RPE cells. It may be speculated that cigarette smoke could be involved in cellular events in RPE cells as seen in age-related macular degeneration.
Collapse
|
20
|
Oxidized low density lipoprotein-induced senescence of retinal pigment epithelial cells is followed by outer blood–retinal barrier dysfunction. Int J Biochem Cell Biol 2012; 44:808-14. [DOI: 10.1016/j.biocel.2012.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 01/30/2012] [Accepted: 02/05/2012] [Indexed: 01/12/2023]
|
21
|
Yin L, Shi Y, Liu X, Zhang H, Gong Y, Gu Q, Wu X, Xu X. A Rat Model for Studying the Biological Effects of Circulating LDL in the Choriocapillaris-BrM-RPE Complex. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:541-9. [DOI: 10.1016/j.ajpath.2011.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 10/11/2011] [Accepted: 10/13/2011] [Indexed: 10/15/2022]
|
22
|
Blueberry anthocyanins: protection against ageing and light-induced damage in retinal pigment epithelial cells. Br J Nutr 2011; 108:16-27. [PMID: 22018225 DOI: 10.1017/s000711451100523x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Retinal pigment epithelium (RPE) cells are vital for retinal health. However, they are susceptible to injury with ageing and exposure to excessive light, including UV (100-380 nm) and visible (380-760 nm) radiation. To evaluate the protective effect of blueberry anthocyanins on RPE cells, in vitro cell models of replicative senescent and light-induced damage were established in the present study. After purification and fractionation, blueberry anthocyanin extracts (BAE) were yielded with total anthocyanin contents of 31·0 (SD 0·5) % and were used in this study. Replicative senescence of RPE cells was induced by repeatedly passaging cells from the fourth passage to the tenth. From the fifth passage, cultured RPE cells began to enter a replicative senescence, exhibiting reduced cell proliferation along with an increase in the number of β-galactosidase-positive cells. RPE cells maintained high cell viability (P < 0·01) and a low (P < 0·01) percentage of β-galactosidase-positive cells when treated with 0·1 μg/ml BAE. In contrast, after exposure to 2500 (SD 500) lx light (420-800 nm) for 12 h, RPE cells in the positive control (light exposure, no BAE treatment) exhibited premature senescence, low (P < 0·01) cell viability and increased (P < 0·01) vascular endothelial growth factor (VEGF) release compared with negative control cells, which were not subjected to light irradiation and BAE exposure. Correspondingly, BAE is beneficial to RPE cells by protecting these cells against light-induced damage through the suppression of ageing and apoptosis as well as the down-regulation of the over-expressed VEGF to normal level. These results demonstrate that BAE is efficacious against senescence and light-induced damage of RPE cells.
Collapse
|
23
|
Feehan M, Hartman J, Durante R, Morrison MA, Miller JW, Kim IK, DeAngelis MM. Identifying subtypes of patients with neovascular age-related macular degeneration by genotypic and cardiovascular risk characteristics. BMC MEDICAL GENETICS 2011; 12:83. [PMID: 21682878 PMCID: PMC3141628 DOI: 10.1186/1471-2350-12-83] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 06/17/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND One of the challenges in the interpretation of studies showing associations between environmental and genotypic data with disease outcomes such as neovascular age-related macular degeneration (AMD) is understanding the phenotypic heterogeneity within a patient population with regard to any risk factor associated with the condition. This is critical when considering the potential therapeutic response of patients to any drug developed to treat the condition. In the present study, we identify patient subtypes or clusters which could represent several different targets for treatment development, based on genetic pathways in AMD and cardiovascular pathology. METHODS We identified a sample of patients with neovascular AMD, that in previous studies had been shown to be at elevated risk for the disease through environmental factors such as cigarette smoking and genetic variants including the complement factor H gene (CFH) on chromosome 1q25 and variants in the ARMS2/HtrA serine peptidase 1 (HTRA1) gene(s) on chromosome 10q26. We conducted a multivariate segmentation analysis of 253 of these patients utilizing available epidemiologic and genetic data. RESULTS In a multivariate model, cigarette smoking failed to differentiate subtypes of patients. However, four meaningfully distinct clusters of patients were identified that were most strongly differentiated by their cardiovascular health status (histories of hypercholesterolemia and hypertension), and the alleles of ARMS2/HTRA1 rs1049331. CONCLUSIONS These results have significant personalized medicine implications for drug developers attempting to determine the effective size of the treatable neovascular AMD population. Patient subtypes or clusters may represent different targets for therapeutic development based on genetic pathways in AMD and cardiovascular pathology, and treatments developed that may elevate CV risk, may be ill advised for certain of the clusters identified.
Collapse
Affiliation(s)
- Michael Feehan
- Observant LLC, 1601 Trapelo Road, Waltham, MA, 02451, USA
| | - John Hartman
- Observant LLC, 1601 Trapelo Road, Waltham, MA, 02451, USA
| | | | - Margaux A Morrison
- Ocular Molecular Genetics Institute and the Retina Service, Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA, 02114, USA
- 3 Ophthalmology and Visual Sciences, University of Utah, Moran Eye Center, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Joan W Miller
- Ocular Molecular Genetics Institute and the Retina Service, Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA, 02114, USA
| | - Ivana K Kim
- Ocular Molecular Genetics Institute and the Retina Service, Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA, 02114, USA
| | - Margaret M DeAngelis
- Ocular Molecular Genetics Institute and the Retina Service, Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA, 02114, USA
- 3 Ophthalmology and Visual Sciences, University of Utah, Moran Eye Center, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| |
Collapse
|
24
|
Yin L, Wu X, Gong Y, Shi Y, Qiu Y, Zhang H, Liu X, Gu Q. OX-LDL Up-Regulates the Vascular Endothelial Growth Factor-to-Pigment Epithelium-Derived Factor Ratio in Human Retinal Pigment Epithelial Cells. Curr Eye Res 2011; 36:379-85. [DOI: 10.3109/02713683.2010.537427] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
25
|
Silveira AC, Morrison MA, Ji F, Xu H, Reinecke JB, Adams SM, Arneberg TM, Janssian M, Lee JE, Yuan Y, Schaumberg DA, Kotoula MG, Tsironi EE, Tsiloulis AN, Chatzoulis DZ, Miller JW, Kim IK, Hageman GS, Farrer LA, Haider NB, DeAngelis MM. Convergence of linkage, gene expression and association data demonstrates the influence of the RAR-related orphan receptor alpha (RORA) gene on neovascular AMD: a systems biology based approach. Vision Res 2009; 50:698-715. [PMID: 19786043 DOI: 10.1016/j.visres.2009.09.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 09/04/2009] [Accepted: 09/18/2009] [Indexed: 12/28/2022]
Abstract
To identify novel genes and pathways associated with AMD, we performed microarray gene expression and linkage analysis which implicated the candidate gene, retinoic acid receptor-related orphan receptor alpha (RORA, 15q). Subsequent genotyping of 159 RORA single nucleotide polymorphisms (SNPs) in a family-based cohort, followed by replication in an unrelated case-control cohort, demonstrated that SNPs and haplotypes located in intron 1 were significantly associated with neovascular AMD risk in both cohorts. This is the first report demonstrating a possible role for RORA, a receptor for cholesterol, in the pathophysiology of AMD. Moreover, we found a significant interaction between RORA and the ARMS2/HTRA1 locus suggesting a novel pathway underlying AMD pathophysiology.
Collapse
Affiliation(s)
- Alexandra C Silveira
- Ocular Molecular Genetics Institute and Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|