1
|
Youngblood HA, Harris EF, Lankford KP, Garfinkel V, Hulleman JD, Lieberman RL. Monitoring mutant myocilin secretion and localization in trabecular meshwork cell cultures using a protein complementation-based luminescence assay. Exp Eye Res 2025; 255:110333. [PMID: 40081751 DOI: 10.1016/j.exer.2025.110333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/22/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Approximately 2-4 % of adult onset and 10 % of juvenile onset cases of primary open angle glaucoma can be attributed to non-synonymous coding mutations in MYOC. One of the key characteristics of a pathogenic MYOC mutant is the inability of the resulting protein to be secreted from trabecular meshwork cells. Instead, pathogenic myocilin variants accumulate in the endoplasmic reticulum. Typically, localization of MYOC mutants is compared to wild-type myocilin in cellular secretion assays that use immunoblot to detect myocilin in extracellular media, alongside intracellular soluble and insoluble (aggregated) fractions. Here, we implement a new method that utilizes a complement-based luminescence method in which an 11-residue HiBiT tag is appended to myocilin and complements a truncated nanoluciferase. The method allows for highly sensitive luminescence detection and does not require immunoblot. We tested non-synonymous coding variants T377R, D384G, D395ins, C433Y, T455K, and L486F, in an established immortalized trabecular meshwork cell line. Secretion was tested in 96-well plate format, revealing poor secretion for these mutants compared to wild-type myocilin. For assays conducted in 6-well plates, myocilin mutants were accumulated in intracellular fractions. HiBiT luminescence signals correlated well with immunofluorescence as well as immunoblot but is more sensitive than the latter. Overall, our study demonstrates that complement-based detection of mutant myocilin using luminescence allows for facile and sensitive detection of myocilin localization and has confirmed secretion defects for six variants.
Collapse
Affiliation(s)
| | - Ethan F Harris
- School of Chemistry & Biochemistry, Georgia Institute of Technology, USA
| | - Kaylee P Lankford
- Department of Ophthalmology, University of Texas Southwestern Medical Center, USA
| | - Victoria Garfinkel
- Department of Ophthalmology, University of Texas Southwestern Medical Center, USA
| | - John D Hulleman
- Department of Ophthalmology, University of Texas Southwestern Medical Center, USA; Department of Ophthalmology and Visual Neurosciences, University of Minnesota, USA.
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, USA.
| |
Collapse
|
2
|
Youngblood HA, Harris EF, Lankford KP, Garfinkel V, Hulleman JD, Lieberman RL. Monitoring mutant myocilin secretion and localization in trabecular meshwork cell cultures using a protein complementation-based luminescence assay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640780. [PMID: 40093141 PMCID: PMC11908155 DOI: 10.1101/2025.02.28.640780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Approximately 2-4% of adult onset and 10% of juvenile onset cases of primary open angle glaucoma can be attributed to non-synonymous coding mutations in MYOC. One of the key characteristics of a pathogenic MYOC mutant is the inability of the resulting protein to be secreted from trabecular meshwork cells. Instead, pathogenic myocilin variants accumulate in the endoplasmic reticulum. Typically, localization of MYOC mutants is compared to wild-type myocilin in cellular secretion assays that use immunoblot to detect myocilin in extracellular media, alongside intracellular soluble and insoluble (aggregated) fractions. Here, we implement a new method that utilizes a complement-based luminescence method in which an 11-residue HiBiT tag is appended to myocilin and complements a truncated nanoluciferase. The method allows for highly sensitive luminescence detection and does not require immunoblot. We tested non-synonymous coding variants T377R, D384G, D395ins, C433Y, T455K, and L486F, in an established immortalized trabecular meshwork cell line. Secretion was tested in 96-well plate format, revealing poor secretion for these mutants compared to wild-type myocilin. For assays conducted in 6-well plates, myocilin mutants were accumulated in intracellular fractions. HiBiT luminescence signals correlated well with immunofluorescence as well as immunoblot but is more sensitive than the latter. Overall, our study demonstrates that complement-based detection of mutant myocilin using luminescence allows for facile and sensitive detection of myocilin localization and has confirmed secretion defects for seven variants.
Collapse
Affiliation(s)
| | - Ethan F Harris
- School of Chemistry & Biochemistry, Georgia Institute of Technology
| | - Kaylee P Lankford
- Department of Ophthalmology, University of Texas Southwestern Medical Center
| | - Victoria Garfinkel
- Department of Ophthalmology, University of Texas Southwestern Medical Center
| | - John D Hulleman
- Department of Ophthalmology, University of Texas Southwestern Medical Center
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota
| | | |
Collapse
|
3
|
Saccuzzo EG, Youngblood HA, Lieberman RL. Myocilin misfolding and glaucoma: A 20-year update. Prog Retin Eye Res 2023; 95:101188. [PMID: 37217093 PMCID: PMC10330797 DOI: 10.1016/j.preteyeres.2023.101188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Mutations in the gene MYOC account for approximately 5% of cases of primary open angle glaucoma (POAG). MYOC encodes for the protein myocilin, a multimeric secreted glycoprotein composed of N-terminal coiled-coil (CC) and leucine zipper (LZ) domains that are connected via a disordered linker to a 30 kDa olfactomedin (OLF) domain. More than 90% of glaucoma-causing mutations are localized to the OLF domain. While myocilin is expressed in numerous tissues, mutant myocilin is only associated with disease in the anterior segment of the eye, in the trabecular meshwork. The prevailing pathogenic mechanism involves a gain of toxic function whereby mutant myocilin aggregates intracellularly instead of being secreted, which causes cell stress and an early timeline for TM cell death, elevated intraocular pressure, and subsequent glaucoma-associated retinal degeneration. In this review, we focus on the work our lab has conducted over the past ∼15 years to enhance our molecular understanding of myocilin-associated glaucoma, which includes details of the molecular structure and the nature of the aggregates formed by mutant myocilin. We conclude by discussing open questions, such as predicting phenotype from genotype alone, the elusive native function of myocilin, and translational directions enabled by our work.
Collapse
Affiliation(s)
- Emily G Saccuzzo
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, GA, 30332-0400, USA
| | - Hannah A Youngblood
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, GA, 30332-0400, USA
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, GA, 30332-0400, USA.
| |
Collapse
|
4
|
Martin MD, Huard DJ, Guerrero-Ferreira RC, Desai IM, Barlow BM, Lieberman RL. Molecular architecture and modifications of full-length myocilin. Exp Eye Res 2021; 211:108729. [DOI: 10.1016/j.exer.2021.108729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/26/2021] [Accepted: 08/12/2021] [Indexed: 01/06/2023]
|
5
|
Patterson-Orazem AC, Qerqez AN, Azouz LR, Ma MT, Hill SE, Ku Y, Schildmeyer LA, Maynard JA, Lieberman RL. Recombinant antibodies recognize conformation-dependent epitopes of the leucine zipper of misfolding-prone myocilin. J Biol Chem 2021; 297:101067. [PMID: 34384785 PMCID: PMC8408531 DOI: 10.1016/j.jbc.2021.101067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 11/11/2022] Open
Abstract
Recombinant antibodies with well-characterized epitopes and known conformational specificities are critical reagents to support robust interpretation and reproducibility of immunoassays across biomedical research. For myocilin, a protein prone to misfolding that is associated with glaucoma and an emerging player in other human diseases, currently available antibodies are unable to differentiate among the numerous disease-associated protein states. This fundamentally constrains efforts to understand the connection between myocilin structure, function, and disease. To address this concern, we used protein engineering methods to develop new recombinant antibodies that detect the N-terminal leucine zipper structural domain of myocilin and that are cross-reactive for human and mouse myocilin. After harvesting spleens from immunized mice and in vitro library panning, we identified two antibodies, 2A4 and 1G12. 2A4 specifically recognizes a folded epitope while 1G12 recognizes a range of conformations. We matured antibody 2A4 for improved biophysical properties, resulting in variant 2H2. In a human IgG1 format, 2A4, 1G12, and 2H2 immunoprecipitate full-length folded myocilin present in the spent media of human trabecular meshwork (TM) cells, and 2H2 can visualize myocilin in fixed human TM cells using fluorescence microscopy. These new antibodies should find broad application in glaucoma and other research across multiple species platforms.
Collapse
Affiliation(s)
| | - Ahlam N Qerqez
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Laura R Azouz
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Minh Thu Ma
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Shannon E Hill
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Yemo Ku
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Lisa A Schildmeyer
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jennifer A Maynard
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA; Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA.
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
6
|
Patterson-Orazem AC, Lieberman RL. Antibodies Used to Detect Glaucoma-Associated Myocilin: More or Less Than Meets the Eye? Invest Ophthalmol Vis Sci 2019; 60:2034-2037. [PMID: 31067323 PMCID: PMC6890424 DOI: 10.1167/iovs.19-26843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Antibodies are key reagents used in vision research, indeed across biomedical research, but they often do not reveal the whole story about a sample. It is important for researchers to be aware of aspects of antibodies that may affect or limit data interpretation. Federal agencies now require funded grants to demonstrate how they will authenticate reagents used. There is also a push for recombinant antibodies, enabled by phage display technology awarded the 2018 Nobel Prize in Chemistry, which allow for thorough validation and a fixed DNA sequence. Here, we discuss how issues surrounding antibodies are pertinent to detecting myocilin, a protein found in trabecular meshwork and associated with a portion of hereditary glaucoma. Confirmation of myocilin expression in tissues and cell culture has been adopted as validation standard in trabecular meshwork research; thus, a discussion of antibody characteristics and fidelity is critical. Further, based on our basic structural understanding of myocilin architecture and its biophysical aggregation properties, we provide a wish list for the characteristics of next-generation antibody reagents for vision researchers. In the long term, well-characterized antibodies targeting myocilin will enable new insights into its function and involvement in glaucoma pathogenesis.
Collapse
Affiliation(s)
- Athéna C Patterson-Orazem
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Raquel L Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, United States
| |
Collapse
|
7
|
Aroca-Aguilar JD, Fernández-Navarro A, Ontañón J, Coca-Prados M, Escribano J. Identification of myocilin as a blood plasma protein and analysis of its role in leukocyte adhesion to endothelial cell monolayers. PLoS One 2018; 13:e0209364. [PMID: 30557320 PMCID: PMC6296516 DOI: 10.1371/journal.pone.0209364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/04/2018] [Indexed: 12/27/2022] Open
Abstract
Myocilin is an extracellular glycoprotein with a poorly understood biological function and typically known because of its association with glaucoma. In this study, we analyzed the expression and biological activity of human myocilin in some non-ocular tissues. Western immunoblot showed the presence of myocilin in blood plasma as well as in liver and lymphoid tissues (thymus and lymph node). Quantitative PCR confirmed the expression of MYOC in these lymphoid organs and revealed that its mRNA is also present in T-lymphocytes and leukocytes. In addition, detection of 30 kDa C-terminal myocilin fragments in thymus and liver suggested that myocilin undergoes an in vivo proteolytic processing that might regulate its biological activity. The presence of myocilin in blood was further corroborated by peptide mass fingerprinting of the HPLC-isolated protein, and gross estimation of its concentration by Western immunoblot indicated that it is a medium-abundance serum protein with an approximate concentration of 0.85 mg/ml (15.5 μM). Finally, in vitro analyses indicated that myocilin acts as an anti-adhesive protein for human circulating leukocytes incubated with endothelial cell monolayers. Altogether, these data provide insightful information on new biological properties of myocilin and suggest its putative role as a blood matricellular protein.
Collapse
Affiliation(s)
- José-Daniel Aroca-Aguilar
- Laboratorio de Genética Molecular Humana, Facultad de Medicina/Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad de Castilla-La Mancha, Albacete, Spain
- Cooperative Research Network on Prevention, Early Detection and Treatment of Prevalent Degenerative and Chronic Ocular Pathology (OftaRed), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Fernández-Navarro
- Laboratorio de Genética Molecular Humana, Facultad de Medicina/Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad de Castilla-La Mancha, Albacete, Spain
| | - Jesús Ontañón
- Servicio de Inmunología, Complejo Hospitalario Universitario de Albacete, Castilla la Mancha, Spain
| | - Miguel Coca-Prados
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT, United States of America
- Fundación de Investigación Oftalmológica Instituto Oftalmológico Fernández-Vega, Oviedo, Spain
| | - Julio Escribano
- Laboratorio de Genética Molecular Humana, Facultad de Medicina/Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad de Castilla-La Mancha, Albacete, Spain
- Cooperative Research Network on Prevention, Early Detection and Treatment of Prevalent Degenerative and Chronic Ocular Pathology (OftaRed), Instituto de Salud Carlos III, Madrid, Spain
- * E-mail:
| |
Collapse
|