1
|
Akbari M, Mobasheri H, Noorizadeh F, Daryabari SH, Dini L. Static magnetic field effects on the secondary structure and elasticity of collagen molecules; a possible biophysical approach to treat keratoconus. Biochem Biophys Res Commun 2024; 733:150726. [PMID: 39317114 DOI: 10.1016/j.bbrc.2024.150726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Type I collagen is among the major extracellular proteins that play a significant role in the maintenance of the cornea's structural integrity and is essential in cell adhesion, differentiation, growth, and integrity. Here, we investigated the effect of 300 mT Static Magnetic Field (300 mT SMF) on the structure and molecular properties of acid-solubilized collagens (ASC) isolated from the rat tail tendon. The SMF effects at molecular and atomic levels were investigated by various biophysical approaches like Circular Dichroism Spectropolarimetery (CD), Fourier Transform Infrared Spectroscopy (FTIR), Zetasizer light Scattering, and Rheological assay. Exposure of isolated type I collagen to 300 mT SMF retained its triple helix. The elasticity of collagen molecules and the keratoconus (KCN) cornea treated with SMF decreased significantly after 5 min and slightly after 10, 15, and 20 min of treatments. The exposure to 300 mT SMF shifted the Amid I bond random coil to antiparallel wave number from 1647 to 1631 cm-1. The pH of the 300 mT SMF treated collagen solution increased by about 25 %. The treatment of the KCN corneas with 300 mT SMF decreased their elasticity significantly. The promising results of the effects of 300 mT SMF on the collagen molecules and KCN cornea propose a novel biophysical approach capable of manipulating the collagen's elasticity, surface charges, electrostatic interactions, cross binding, network formation and fine structure. Therefore, SMF treatment may be considered as a novel non-invasive, direct, non-chemical and fast therapeutic and manipulative means to treat KCN cornea where the deviated physico-chemical status of collagen molecules cause deformation.
Collapse
Affiliation(s)
- Maryam Akbari
- Laboratory of Membrane Biophysics and Macromolecules, Institute of Biochemistry and Biophysics, University of Tehran, Iran.
| | - Hamid Mobasheri
- Laboratory of Membrane Biophysics and Macromolecules, Institute of Biochemistry and Biophysics, University of Tehran, Iran; Institute of Biomaterials of University of Tehran and Tehran University of Medical Sciences (IBUTUMS), Tehran, Iran.
| | | | - Seyed-Hashem Daryabari
- Basir Eye Health Research Center and Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Luciana Dini
- Department of Biology and Biotechnology C. Darwin, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
2
|
Singh RB, Koh S, Sharma N, Woreta FA, Hafezi F, Dua HS, Jhanji V. Keratoconus. Nat Rev Dis Primers 2024; 10:81. [PMID: 39448666 DOI: 10.1038/s41572-024-00565-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
Keratoconus is a progressive eye disorder primarily affecting individuals in adolescence and early adulthood. The ectatic changes in the cornea cause thinning and cone-like steepening leading to irregular astigmatism and reduced vision. Keratoconus is a complex disorder with a multifaceted aetiology and pathogenesis, including genetic, environmental, biomechanical and cellular factors. Environmental factors, such as eye rubbing, UV light exposure and contact lens wearing, are associated with disease progression. On the cellular level, a complex interplay of hormonal changes, alterations in enzymatic activity that modify extracellular membrane stiffness, and changes in biochemical and biomechanical signalling pathways disrupt collagen cross-linking within the stroma, contributing to structural integrity loss and distortion of normal corneal anatomy. Clinically, keratoconus is diagnosed through clinical examination and corneal imaging. Advanced imaging platforms have improved the detection of keratoconus, facilitating early diagnosis and monitoring of disease progression. Treatment strategies for keratoconus are tailored to disease severity and progression. In early stages, vision correction with glasses or soft contact lenses may suffice. As the condition advances, rigid gas-permeable contact lenses or scleral lenses are prescribed. Corneal cross-linking has emerged as a pivotal treatment aimed at halting the progression of corneal ectasia. In patients with keratoconus with scarring or contact lens intolerance, surgical interventions are performed.
Collapse
Affiliation(s)
- Rohan Bir Singh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Leiden University Medical Center, Leiden, Netherlands
| | - Shizuka Koh
- Department of Innovative Visual Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Namrata Sharma
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Fasika A Woreta
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Farhad Hafezi
- ELZA Institute, Zurich, Switzerland
- EMAGine AG, Zug, Switzerland
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA
| | - Harminder S Dua
- Department of Ophthalmology, University of Nottingham, Nottingham, UK
| | - Vishal Jhanji
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Yang L, Qi K, Zhang P, Cheng J, Soha H, Jin Y, Ci H, Zheng X, Wang B, Mei Y, Chen S, Wang J. Diagnosis of Forme Fruste Keratoconus Using Corvis ST Sequences with Digital Image Correlation and Machine Learning. Bioengineering (Basel) 2024; 11:429. [PMID: 38790296 PMCID: PMC11117575 DOI: 10.3390/bioengineering11050429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/07/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
PURPOSE This study aimed to employ the incremental digital image correlation (DIC) method to obtain displacement and strain field data of the cornea from Corvis ST (CVS) sequences and access the performance of embedding these biomechanical data with machine learning models to distinguish forme fruste keratoconus (FFKC) from normal corneas. METHODS 100 subjects were categorized into normal (N = 50) and FFKC (N = 50) groups. Image sequences depicting the horizontal cross-section of the human cornea under air puff were captured using the Corvis ST tonometer. The high-speed evolution of full-field corneal displacement, strain, velocity, and strain rate was reconstructed utilizing the incremental DIC approach. Maximum (max-) and average (ave-) values of full-field displacement V, shear strain γxy, velocity VR, and shear strain rate γxyR were determined over time, generating eight evolution curves denoting max-V, max-γxy, max-VR, max-γxyR, ave-V, ave-γxy, ave-VR, and ave-γxyR, respectively. These evolution data were inputted into two machine learning (ML) models, specifically Naïve Bayes (NB) and Random Forest (RF) models, which were subsequently employed to construct a voting classifier. The performance of the models in diagnosing FFKC from normal corneas was compared to existing CVS parameters. RESULTS The Normal group and the FFKC group each included 50 eyes. The FFKC group did not differ from healthy controls for age (p = 0.26) and gender (p = 0.36) at baseline, but they had significantly lower bIOP (p < 0.001) and thinner central cornea thickness (CCT) (p < 0.001). The results demonstrated that the proposed voting ensemble model yielded the highest performance with an AUC of 1.00, followed by the RF model with an AUC of 0.99. Radius and A2 Time emerged as the best-performing CVS parameters with AUC values of 0.948 and 0.938, respectively. Nonetheless, no existing Corvis ST parameters outperformed the ML models. A progressive enhancement in performance of the ML models was observed with incremental time points during the corneal deformation. CONCLUSION This study represents the first instance where displacement and strain data following incremental DIC analysis of Corvis ST images were integrated with machine learning models to effectively differentiate FFKC corneas from normal ones, achieving superior accuracy compared to existing CVS parameters. Considering biomechanical responses of the inner cornea and their temporal pattern changes may significantly improve the early detection of keratoconus.
Collapse
Affiliation(s)
- Lanting Yang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Kehan Qi
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Peipei Zhang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jiaxuan Cheng
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Hera Soha
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yun Jin
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023, China
- International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116023, China
| | - Haochen Ci
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023, China
- International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116023, China
| | - Xianling Zheng
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023, China
- International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116023, China
| | - Bo Wang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023, China
- International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116023, China
| | - Yue Mei
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023, China
- International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116023, China
| | - Shihao Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Junjie Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Department of Ophthalmology, Sichuan Mental Health Center, Mianyang 621054, China
| |
Collapse
|
4
|
魏 俊, 陈 鹏, 韩 鹏, 刘 晓, 侯 杰, 武 策, 宋 婕, 陈 维, 李 晓. [Anisotropy and viscoelasticity of different corneal regions in rabbit corneal ectasia model]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2024; 41:129-135. [PMID: 38403613 PMCID: PMC10894728 DOI: 10.7507/1001-5515.202312022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/27/2023] [Indexed: 02/27/2024]
Abstract
The mechanical properties of the cornea in corneal ectasia disease undergo a significant reduction, yet the alterations in mechanical properties within distinct corneal regions remain unclear. In this study, we established a rabbit corneal ectasia model by employing collagenase II to degrade the corneal matrix within a central diameter of 6 mm. Optical coherence tomography was employed for the in vivo assessment of corneal morphology (corneal thickness and corneal curvature) one month after operation. Anisotropy and viscoelastic characteristics of corneal tissue were evaluated through biaxial and uniaxial testing, respectively. The results demonstrated a marked decrease in central corneal thickness, with no significant changes observed in corneal curvature. Under different strains, the elastic modulus of the cornea exhibited no significant differences in the up-down and naso-temporal directions between the control and model groups. However, the cornea in the model group displayed a significantly lower elastic modulus compared to the control group. Specifically, the elastic modulus of the central region cornea in the model group was significantly lower than that of the entire cornea within the same group. Moreover, in comparison to the control group, the cornea in the model group exhibited a significant increase in both creep rate and overall deformation rate. The instantaneous modulus and equilibrium modulus were significantly reduced in the model cornea. No significant differences were observed between the entire cornea and the central cornea concerning these parameters. The results indicate that corneal anisotropy remains unchanged in collagenase-induced ectatic cornea. However, a significant reduction in viscoelastic properties is noticed. This study provides valuable insights for investigating changes in corneal mechanical properties within different regions of ectatic corneal disease.
Collapse
Affiliation(s)
- 俊超 魏
- 太原理工大学 生物医学工程学院(太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - 鹏 陈
- 太原理工大学 生物医学工程学院(太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - 鹏飞 韩
- 太原理工大学 生物医学工程学院(太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - 晓娜 刘
- 太原理工大学 生物医学工程学院(太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - 杰 侯
- 太原理工大学 生物医学工程学院(太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - 策 武
- 太原理工大学 生物医学工程学院(太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - 婕 宋
- 太原理工大学 生物医学工程学院(太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - 维毅 陈
- 太原理工大学 生物医学工程学院(太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - 晓娜 李
- 太原理工大学 生物医学工程学院(太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| |
Collapse
|
5
|
Volatier T, Cursiefen C, Notara M. Current Advances in Corneal Stromal Stem Cell Biology and Therapeutic Applications. Cells 2024; 13:163. [PMID: 38247854 PMCID: PMC10814767 DOI: 10.3390/cells13020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Corneal stromal stem cells (CSSCs) are of particular interest in regenerative ophthalmology, offering a new therapeutic target for corneal injuries and diseases. This review provides a comprehensive examination of CSSCs, exploring their anatomy, functions, and role in maintaining corneal integrity. Molecular markers, wound healing mechanisms, and potential therapeutic applications are discussed. Global corneal blindness, especially in more resource-limited regions, underscores the need for innovative solutions. Challenges posed by corneal defects, emphasizing the urgent need for advanced therapeutic interventions, are discussed. The review places a spotlight on exosome therapy as a potential therapy. CSSC-derived exosomes exhibit significant potential for modulating inflammation, promoting tissue repair, and addressing corneal transparency. Additionally, the rejuvenation potential of CSSCs through epigenetic reprogramming adds to the evolving regenerative landscape. The imperative for clinical trials and human studies to seamlessly integrate these strategies into practice is emphasized. This points towards a future where CSSC-based therapies, particularly leveraging exosomes, play a central role in diversifying ophthalmic regenerative medicine.
Collapse
Affiliation(s)
- Thomas Volatier
- Department of Ophthalmology, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Maria Notara
- Department of Ophthalmology, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
6
|
Raoux C, Chessel A, Mahou P, Latour G, Schanne-Klein MC. Unveiling the lamellar structure of the human cornea over its full thickness using polarization-resolved SHG microscopy. LIGHT, SCIENCE & APPLICATIONS 2023; 12:190. [PMID: 37528091 PMCID: PMC10394036 DOI: 10.1038/s41377-023-01224-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 08/03/2023]
Abstract
A key property of the human cornea is to maintain its curvature and consequently its refraction capability despite daily changes in intraocular pressure. This is closely related to the multiscale structure of the corneal stroma, which consists of 1-3 µm-thick stacked lamellae made of thin collagen fibrils. Nevertheless, the distribution, size, and orientation of these lamellae along the depth of the cornea are poorly characterized up to now. In this study, we use second harmonic generation (SHG) microscopy to visualize the collagen distribution over the full depth of 10 intact and unstained human corneas (500-600 µm thick). We take advantage of the small coherence length in epi-detection to axially resolve the lamellae while maintaining the corneal physiological curvature. Moreover, as raw epi-detected SHG images are spatially homogenous because of the sub-wavelength size of stromal collagen fibrils, we use a polarimetric approach to measure the collagen orientation in every voxel. After a careful validation of this approach, we show that the collagen lamellae (i) are mostly oriented along the inferior-superior axis in the anterior stroma and along the nasal-temporal axis in the posterior stroma, with a gradual shift in between and (ii) exhibit more disorder in the anterior stroma. These results represent the first quantitative characterization of the lamellar structure of the human cornea continuously along its entire thickness with micrometric resolution. It also shows the unique potential of P-SHG microscopy for imaging of collagen distribution in thick dense tissues.
Collapse
Affiliation(s)
- Clothilde Raoux
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Anatole Chessel
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Pierre Mahou
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Gaël Latour
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128, Palaiseau, France
- Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Marie-Claire Schanne-Klein
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128, Palaiseau, France.
| |
Collapse
|
7
|
Ross AKM, Schlunck G, Böhringer D, Maier P, Eberwein P, Reinhard T, Lang SJ. Characterization of the Immediate and Delayed Biomechanical Response to UV-A Crosslinking of Human Corneas. Cornea 2023; Publish Ahead of Print:00003226-990000000-00318. [PMID: 37335854 DOI: 10.1097/ico.0000000000003336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/26/2023] [Indexed: 06/21/2023]
Abstract
PURPOSE Keratoconus leads to visual deterioration due to irregular astigmatism and corneal thinning. Riboflavin-based corneal UV-A crosslinking (CXL) induces novel intramolecular and intermolecular links resulting in corneal tissue stiffening, thereby halting disease progression. The purpose of this study was to analyze the immediate and delayed biomechanical responses of human donor corneas to CXL. METHODS CXL was performed according to the Dresden protocol to corneas not suitable for transplantation. Biomechanical properties were subsequently monitored by measuring the Young modulus using nanoindentation. The immediate tissue response was determined after 0, 1, 15, and 30 minutes of irradiation. Delayed biomechanical effects were investigated with follow-up measurements immediately and 1, 3, and 7 days after CXL. RESULTS Young's modulus indicated a linear trend in direct response to increasing irradiation times (mean values: total 61.31 kPa [SD 25.53], 0 minutes 48.82 kPa [SD 19.73], 1 minute 53.44 kPa [SD 25.95], 15 minutes 63.56 kPa [SD 20.99], and 30 minutes 76.76 kPa [SD 24.92]). The linear mixed model for the elastic response of corneal tissue was 49.82 kPa + (0.91 kPa/min × time [minutes]); P < 0.001. The follow-up measurements showed no significant delayed changes in the Young modulus (mean values: total 55,28 kPa [SD 15.95], immediately after CXL 56,83 kPa [SD 18.74], day 1 50.28 kPa [SD 14.15], day 3 57.08 kPa [SD 14.98], and day 7 56.83 kPa [SD 15.07]). CONCLUSIONS This study suggests a linear increase of corneal Young modulus as a function of CXL timing. No significant short-term delayed biomechanical changes posttreatment were observed.
Collapse
Affiliation(s)
- Andrea K M Ross
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; and
| | - Günther Schlunck
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; and
| | - Daniel Böhringer
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; and
| | - Philip Maier
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; and
| | | | - Thomas Reinhard
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; and
| | - Stefan Johann Lang
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; and
| |
Collapse
|
8
|
Lohmüller R, Böhringer D, Maier PC, Ross AK, Schlunck G, Reinhard T, Lang SJ. [Keratoconus: biomechanics ex vivo]. Klin Monbl Augenheilkd 2023. [PMID: 37146635 DOI: 10.1055/a-2062-3633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND Keratoconus is associated with an impairment in corneal biomechanics. Using nanoindentation, spatially resolved measurement of biomechanical properties can be performed on corneal tissue. The aim of this study is to assess the biomechanical properties of corneas with keratoconus in comparison to healthy controls. METHODS 17 corneas with keratoconus and 10 healthy corneas unsuitable for transplantation were included in the study. After explantation, corneas were kept in culture medium containing 15% dextran for at least 24 h. Nanoindentation was then performed to a depth of 25 µm at a force increase of 300 µN/min. RESULTS A total of 2328 individual indentations were performed for this study. In the keratoconus group; the mean modulus of elasticity was 23.2 kPa (± 15.0 kPa) for a total of 1802 indentations. In the control group, the mean modulus of elasticity was 48.7 kPa (± 20.5 kPa) with a total of 526 indentations. The Wilcoxon test showed that the differences were statistically significant. CONCLUSION Using nanoindentation, a significantly lower elastic modulus was found in corneas with keratoconus compared to corneas without keratoconus. Further studies are needed to gain a better understanding of how keratoconus affects corneal biomechanics.
Collapse
Affiliation(s)
- Robert Lohmüller
- Klinik für Augenheilkunde, Albert-Ludwigs-Universität Freiburg, Medizinische Fakultät, Deutschland
| | - Daniel Böhringer
- Klinik für Augenheilkunde, Albert-Ludwigs-Universität Freiburg, Medizinische Fakultät, Deutschland
| | - Philip Christian Maier
- Klinik für Augenheilkunde, Albert-Ludwigs-Universität Freiburg, Medizinische Fakultät, Deutschland
| | - Andrea Karin Ross
- Klinik für Augenheilkunde, Albert-Ludwigs-Universität Freiburg, Medizinische Fakultät, Deutschland
| | - Günther Schlunck
- Klinik für Augenheilkunde, Albert-Ludwigs-Universität Freiburg, Medizinische Fakultät, Deutschland
| | - Thomas Reinhard
- Klinik für Augenheilkunde, Albert-Ludwigs-Universität Freiburg, Medizinische Fakultät, Deutschland
| | - Stefan J Lang
- Klinik für Augenheilkunde, Albert-Ludwigs-Universität Freiburg, Medizinische Fakultät, Deutschland
| |
Collapse
|
9
|
Wei J, He R, Wang X, Song Y, Yao J, Liu X, Yang X, Chen W, Li X. The Corneal Ectasia Model of Rabbit: A Validity and Stability Study. Bioengineering (Basel) 2023; 10:bioengineering10040479. [PMID: 37106666 PMCID: PMC10135747 DOI: 10.3390/bioengineering10040479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Keratoconus is a bilateral progressive degenerative corneal disease characterized by localized corneal thinning and dilatation. The pathogenesis of keratoconus is not fully elucidated. To gain a better understanding of the pathophysiology of this disease and to explore potential treatments, animal models are essential for basic research. Several attempts have been made to establish animal models of corneal ectasia by using collagenase. However, continuous changes of the cornea have not been well-tracked for the model. In this study, corneal morphology and biomechanical behavior in vivo were determined before and after collagenase Ⅱ treatment at 2, 4, and 8 weeks. The elastic modulus and histology of cornea tissues ex vivo were measured at 8 weeks postoperatively. The results showed that the posterior corneal curvature (Km B) increased and central corneal thickness (CCT) decreased after collagenase treatment. The mechanical properties of ectatic corneas weakened significantly and the collagen fiber interval in the stromal layer was increased and disorganized. This study provides insights into the changes of corneal morphology and biomechanical properties in a rabbit model of corneal ectasia. Changes observed at 8 weeks indicated that the cornea was still undergoing remodeling.
Collapse
Affiliation(s)
- Junchao Wei
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Rui He
- School of Ophthalmology, Shanxi Medical University, Taiyuan 030002, China
| | - Xiaogang Wang
- School of Ophthalmology, Shanxi Medical University, Taiyuan 030002, China
| | - Yaowen Song
- School of Ophthalmology, Shanxi Medical University, Taiyuan 030002, China
| | - Jinhan Yao
- School of Ophthalmology, Shanxi Medical University, Taiyuan 030002, China
| | - Xiaona Liu
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xin Yang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Weiyi Chen
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaona Li
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
10
|
Abstract
PURPOSE The relevance of corneal biomechanics and the importance of including it in the clinical assessment of corneal ectasias are being increasingly recognized. The connection between corneal ultrastructure, biomechanical properties, and optical function is exemplified by a condition like keratoconus. Biomechanical instability is seen as the underlying basis for the secondary morphological changes in the cornea. Asymmetric biomechanical weakening is believed to drive progressive corneal steepening and thinning. Biomechanical strengthening is the principle of collagen crosslinking that has been shown to effectively arrest progression of the keratoconus. Corneal biomechanics has therefore ignited the interest of researchers and clinicians alike and has given us new insights into the cause and course of the disease. This article is an overview of the extensive work published, predominantly in the last two decades, on the biomechanical aspect of keratoconus. METHODS Published articles on corneal biomechanics in the specific context of keratoconus were reviewed, based on an electronic search using PubMed, Elsevier, and Science Direct. The search terms used included "Corneal Biomechanics," "Mechanical properties of the cornea," "Corneal ultrastructure," "Corneal Collagen," and "Keratoconus". Articles pertaining to refractive surgery, keratoplasty, collagen crosslinking, or intrastromal rings were excluded. RESULTS The electronic search revealed more than 500 articles, from which 80 were chosen for this article. CONCLUSIONS The structural and organizational pattern of the corneal stroma determines its mechanical properties and are responsible for the maintenance of the normal shape and function of the cornea. Changes in the ultrastructure are responsible for the biomechanical instability that leads to corneal ectasia. As non-invasive methods for evaluating corneal biomechanics in vivo evolve, our ability to diagnose subclinical keratoconus will improve, allowing identification of patients at risk to develop ectasia and to allow early treatment to arrest progression of the disease.
Collapse
Affiliation(s)
- Prema Padmanabhan
- Department of Cornea and Refractive Surgery, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Ahmed Elsheikh
- School of Engineering, University of Liverpool, Liverpool, UK.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China.,NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
11
|
Tan Z, Chen X, Li K, Liu Y, Cao H, Li J, Jhanji V, Zou H, Liu F, Wang R, Wang Y. Artificial Intelligence-Based Diagnostic Model for Detecting Keratoconus Using Videos of Corneal Force Deformation. Transl Vis Sci Technol 2022; 11:32. [PMID: 36178782 PMCID: PMC9527334 DOI: 10.1167/tvst.11.9.32] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Purpose To develop a novel method based on biomechanical parameters calculated from raw corneal dynamic deformation videos to quickly and accurately diagnose keratoconus using machine learning. Methods The keratoconus group was included according to Rabinowitz's criteria, and the normal group included corneal refractive surgery candidates. Independent biomechanical parameters were calculated from dynamic corneal deformation videos. A novel neural network model was trained to diagnose keratoconus. Tenfold cross-validation was performed, and the sample set was divided into a training set for training, a validation set for parameter validation, and a testing set for performance evaluation. External validation was performed to evaluate the model's generalizability. Results A novel intelligent diagnostic model for keratoconus based on a five-layer feedforward network was constructed by calculating four biomechanical characteristics, including time of the first applanation, deformation amplitude at the highest concavity, central corneal thickness, and radius at the highest concavity. The model was able to diagnose keratoconus with 99.6% accuracy, 99.3% sensitivity, 100% specificity, and 100% precision in the sample set (n = 276), and it achieved an accuracy of 98.7%, sensitivity of 97.4%, specificity of 100%, and precision of 100% in the external validation set (n = 78). Conclusions In the absence of corneal topographic examination, rapid and accurate diagnosis of keratoconus is possible with the aid of machine learning. Our study provides a new potential approach and sheds light on the diagnosis of keratoconus from a purely corneal biomechanical perspective. Translational Relevance Our findings could help improve the diagnosis of keratoconus based on corneal biomechanical properties.
Collapse
Affiliation(s)
- Zuoping Tan
- Wenzhou University of Technology, Wenzhou, Zhejiang, China
| | - Xuan Chen
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Kangsheng Li
- Tianjin University of Technology, Tianjin, China
| | - Yan Liu
- Tianjin University of Technology, Tianjin, China
| | - Huazheng Cao
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Jing Li
- Shanxi Eye Hospital, Xi'an People's Hospital, Xi'an, Shanxi, China
| | - Vishal Jhanji
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Haohan Zou
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Fenglian Liu
- Tianjin University of Technology, Tianjin, China
| | - Riwei Wang
- Wenzhou University of Technology, Wenzhou, Zhejiang, China
| | - Yan Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China.,Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Laboratory of Ophthalmology and Visual Science, Nankai University Affiliated Eye Hospital, Tianjin, China.,https://orcid.org/0000-0002-1257-6635
| |
Collapse
|
12
|
Sun MG, Son T, Crutison J, Guaiquil V, Lin S, Nammari L, Klatt D, Yao X, Rosenblatt MI, Royston TJ. Optical coherence elastography for assessing the influence of intraocular pressure on elastic wave dispersion in the cornea. J Mech Behav Biomed Mater 2022; 128:105100. [PMID: 35121423 PMCID: PMC8904295 DOI: 10.1016/j.jmbbm.2022.105100] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
Abstract
The cornea is a highly specialized organ that relies on its mechanical stiffness to maintain its aspheric geometry and refractive power, and corneal diseases such as keratoconus have been linked to abnormal tissue stiffness and biomechanics. Dynamic optical coherence elastography (OCE) is a clinically promising non-contact and non-destructive imaging technique that can provide measurements of corneal tissue stiffness directly in vivo. The method relies on the concepts of elastography where shear waves are generated and imaged within a tissue to obtain mechanical properties such as tissue stiffness. The accuracy of OCE-based measurements is ultimately dependent on the mathematical theories used to model wave behavior in the tissue of interest. In the cornea, elastic waves propagate as guided wave modes which are highly dispersive and can be mathematically complex to model. While recent groups have developed detailed theories for estimating corneal tissue properties from guided wave behavior, the effects of intraocular pressure (IOP)-induced prestress have not yet been considered. It is known that prestress alone can strongly influence wave behavior, in addition to the associated non-linear changes in tissue properties. This present study shows that failure to account for the effects of prestress may result in overestimations of the corneal shear moduli, particularly at high IOPs. We first examined the potential effects of IOP and IOP-induced prestress using a combination of approximate mathematical theories describing wave behavior in thin plates with observations made from data published in the OCE literature. Through wave dispersion analysis, we deduce that IOP introduces a tensile hoop stress and may also influence an elastic foundational effect that were observable in the low-frequency components of the dispersion curves. These effects were incorporated into recently developed models of wave behavior in nearly incompressible, transversely isotropic (NITI) materials. Fitting of the modified NITI model with ex vivo porcine corneal data demonstrated that incorporation of the effects of IOP resulted in reduced estimates of corneal shear moduli. We believe this demonstrates that overestimation of corneal stiffness occurs if IOP is not taken into consideration. Our work may be helpful in separating inherent corneal stiffness properties that are independent of IOP; changes in these properties and in IOP are distinct, clinically relevant issues that affect the cornea health.
Collapse
|
13
|
Kwok S, Hazen N, Clayson K, Pan X, Liu J. Regional variation of corneal stromal deformation measured by high-frequency ultrasound elastography. Exp Biol Med (Maywood) 2021; 246:2184-2191. [PMID: 34315279 DOI: 10.1177/15353702211029283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The cornea's mechanical response to intraocular pressure elevations may alter in ectatic diseases such as keratoconus. Regional variations of mechanical deformation in normal and keratoconus eyes during intraocular pressure elevation have not been well-characterized. We applied a high-frequency ultrasound elastography technique to characterize the regional deformation of normal and keratoconus human corneas through the full thickness of corneal stroma. A cross-section centered at the corneal apex in 11 normal and 2 keratoconus human donor eyes was imaged with high-frequency ultrasound during whole globe inflation from 5 to 30 mmHg. An ultrasound speckle tracking algorithm was used to compute local tissue displacements. Radial, tangential, and shear strains were mapped across the imaged cross-section. Strains in the central (1 mm surrounding apex) and paracentral (1 to 4 mm from apex) regions were analyzed in both normal and keratoconus eyes. Additional regional analysis was performed in the eye with severe keratoconus presenting significant thinning and scarring. Our results showed that in normal corneas, the central region had significantly smaller tangential stretch than the paracentral region, and that within the central region, the magnitudes of radial and shear strains were significantly larger than that of tangential strain. The eye with mild keratoconus had similar shear strain but substantially larger radial strains than normal corneas, while the eye with severe keratoconus had similar overall strains as in normal eyes but marked regional heterogeneity and large strains in the cone region. These findings suggested regional variation of mechanical responses to intraocular pressure elevation in both normal and keratoconus corneas, and keratoconus appeared to be associated with mechanical weakening in the cone region, especially in resisting radial compression. Comprehensive characterization of radial, tangential, and shear strains through corneal stroma may provide new insights to understand the biomechanical alterations in keratoconus.
Collapse
Affiliation(s)
- Sunny Kwok
- Department of Biomedical Engineering, 2647The Ohio State University, The Ohio State University, Columbus, OH 43210-1110, USA
| | - Nicholas Hazen
- Department of Biomedical Engineering, 2647The Ohio State University, The Ohio State University, Columbus, OH 43210-1110, USA.,Biophysics Interdisciplinary Group, 2647The Ohio State University, The Ohio State University, Columbus, OH 43210-1110, USA
| | - Keyton Clayson
- Department of Biomedical Engineering, 2647The Ohio State University, The Ohio State University, Columbus, OH 43210-1110, USA.,Biophysics Interdisciplinary Group, 2647The Ohio State University, The Ohio State University, Columbus, OH 43210-1110, USA
| | - Xueliang Pan
- Department of Biomedical Informatics, 2647The Ohio State University, The Ohio State University, Columbus, OH 43210-1110, USA
| | - Jun Liu
- Department of Biomedical Engineering, 2647The Ohio State University, The Ohio State University, Columbus, OH 43210-1110, USA.,Biophysics Interdisciplinary Group, 2647The Ohio State University, The Ohio State University, Columbus, OH 43210-1110, USA.,Department of Ophthalmology and Visual Sciences, 2647The Ohio State University, The Ohio State University, Columbus, OH 43210-1110, USA
| |
Collapse
|
14
|
Raoux C, Schmeltz M, Bied M, Alnawaiseh M, Hansen U, Latour G, Schanne-Klein MC. Quantitative structural imaging of keratoconic corneas using polarization-resolved SHG microscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:4163-4178. [PMID: 34457406 PMCID: PMC8367248 DOI: 10.1364/boe.426145] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/22/2021] [Indexed: 05/20/2023]
Abstract
The human cornea is mainly composed of collagen fibrils aligned together within stacked lamellae. This lamellar structure can be affected in pathologies such as keratoconus, which is characterized by progressive corneal thinning and local steepening. In this study, we use polarization-resolved second harmonic generation (P-SHG) microscopy to characterize 8 control and 6 keratoconic human corneas. Automated processing of P-SHG images of transverse sections provides the collagen orientation in every pixel with sub-micrometer resolution. Series of P-SHG images recorded in the most anterior region of the stroma evidence sutural lamellae inclined at 22° ± 5° to the corneal surface, but show no significant difference between control and keratoconic corneas. In contrast, series of P-SHG images acquired along the full thickness of the stroma show a loss of order in the lamellar structure of keratoconic corneas, in agreement with their defective mechanical properties. This structural difference is analyzed quantitatively by computing the entropy and the orientation index of the collagen orientation distribution and significant differences are obtained along the full thickness of the stroma. This study shows that P-SHG is an effective tool for automatic quantitative analysis of structural defects of human corneas and should be applied to other collagen-rich tissues.
Collapse
Affiliation(s)
- Clothilde Raoux
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
- These authors contributed equally
| | - Margaux Schmeltz
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
- These authors contributed equally
| | - Marion Bied
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Maged Alnawaiseh
- Department of Ophthalmology, Hospital Fulda, University of Marburg, Campus Fulda, 36043 Fulda, Germany
| | - Uwe Hansen
- Institute for Musculoskeletal Medicine, University Hospital Münster, 48149 Münster, Germany
| | - Gaël Latour
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
- Université Paris-Saclay, 91190 Saint-Aubin, France
| | - Marie-Claire Schanne-Klein
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| |
Collapse
|
15
|
Shinde V, Sobreira N, Wohler ES, Maiti G, Hu N, Silvestri G, George S, Jackson J, Chakravarti A, Willoughby CE, Chakravarti S. Pathogenic alleles in microtubule, secretory granule and extracellular matrix-related genes in familial keratoconus. Hum Mol Genet 2021; 30:658-671. [PMID: 33729517 DOI: 10.1093/hmg/ddab075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/30/2022] Open
Abstract
Keratoconus is a common corneal defect with a complex genetic basis. By whole exome sequencing of affected members from 11 multiplex families of European ancestry, we identified 23 rare, heterozygous, potentially pathogenic variants in 8 genes. These include nonsynonymous single amino acid substitutions in HSPG2, EML6 and CENPF in two families each, and in NBEAL2, LRP1B, PIK3CG and MRGPRD in three families each; ITGAX had nonsynonymous single amino acid substitutions in two families and an indel with a base substitution producing a nonsense allele in the third family. Only HSPG2, EML6 and CENPF have been associated with ocular phenotypes previously. With the exception of MRGPRD and ITGAX, we detected the transcript and encoded protein of the remaining genes in the cornea and corneal cell cultures. Cultured stromal cells showed cytoplasmic punctate staining of NBEAL2, staining of the fibrillar cytoskeletal network by EML6, while CENPF localized to the basal body of primary cilia. We inhibited the expression of HSPG2, EML6, NBEAL2 and CENPF in stromal cell cultures and assayed for the expression of COL1A1 as a readout of corneal matrix production. An upregulation in COL1A1 after siRNA inhibition indicated their functional link to stromal cell biology. For ITGAX, encoding a leukocyte integrin, we assayed its level in the sera of 3 affected families compared with 10 unrelated controls to detect an increase in all affecteds. Our study identified genes that regulate the cytoskeleton, protein trafficking and secretion, barrier tissue function and response to injury and inflammation, as being relevant to keratoconus.
Collapse
Affiliation(s)
- Vishal Shinde
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Nara Sobreira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Elizabeth S Wohler
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - George Maiti
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Nan Hu
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Giuliana Silvestri
- Department of Ophthalmology, Belfast Health and Social Care Trust, Belfast BT12 6BA UK
| | - Sonia George
- Department of Ophthalmology, Belfast Health and Social Care Trust, Belfast BT12 6BA UK
| | - Jonathan Jackson
- Department of Ophthalmology, Belfast Health and Social Care Trust, Belfast BT12 6BA UK
| | - Aravinda Chakravarti
- Center for Human Genetics and Genomics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Colin E Willoughby
- Department of Ophthalmology, Belfast Health and Social Care Trust, Belfast BT12 6BA UK.,Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK
| | - Shukti Chakravarti
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY 10016, USA.,Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
16
|
Zhou D, Abass A, Lopes B, Eliasy A, Hayes S, Boote C, Meek KM, Movchan A, Movchan N, Elsheikh A. Fibril density reduction in keratoconic corneas. J R Soc Interface 2021; 18:20200900. [PMID: 33622146 DOI: 10.1098/rsif.2020.0900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
This study aims to estimate the reduction in collagen fibril density within the central 6 mm radius of keratoconic corneas through the processing of microstructure and videokeratography data. Collagen fibril distribution maps and topography maps were obtained for seven keratoconic and six healthy corneas, and topographic features were assessed to detect and calculate the area of the cone in each keratoconic eye. The reduction in collagen fibril density within the cone area was estimated with reference to the same region in the characteristic collagen fibril maps of healthy corneas. Together with minimum thickness and mean central corneal refractive power, the cone area was correlated with the reduction in the cone collagen fibrils. For the corneas considered, the mean area of keratoconic cones was 3.30 ± 1.90 mm2. Compared with healthy corneas, fibril density in the cones of keratoconic corneas was lower by as much as 35%, and the mean reduction was 17 ± 10%. A linear approximation was developed to relate the magnitude of reduction to the refractive power, minimum corneal thickness and cone area (R2 = 0.95, p < 0.001). Outside the cone area, there was no significant difference between fibril arrangement in healthy and keratoconic corneas. The presented method can predict the mean fibril density in the keratoconic eye's cone area. The technique can be applied in microstructure-based finite-element models of the eye to regulate its stiffness level and the stiffness distribution within the areas affected by keratoconus.
Collapse
Affiliation(s)
- Dong Zhou
- Department of Mathematical Sciences, School of Physical Sciences, University of Liverpool, Liverpool, UK
| | - Ahmed Abass
- Department of Mechanical, Materials and Aerospace Engineering, School of Engineering, University of Liverpool, Liverpool, UK.,Department of Production Engineering and Mechanical Design, Faculty of Engineering, Port Said University, Egypt
| | - Bernardo Lopes
- Department of Civil Engineering and Industrial Design, School of Engineering, University of Liverpool, Liverpool, UK.,Department of Ophthalmology, Federal University of Sao Paulo, Brazil
| | - Ashkan Eliasy
- Department of Civil Engineering and Industrial Design, School of Engineering, University of Liverpool, Liverpool, UK
| | - Sally Hayes
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - Craig Boote
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - Keith M Meek
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - Alexander Movchan
- Department of Mathematical Sciences, School of Physical Sciences, University of Liverpool, Liverpool, UK
| | - Natalia Movchan
- Department of Mathematical Sciences, School of Physical Sciences, University of Liverpool, Liverpool, UK
| | - Ahmed Elsheikh
- Department of Civil Engineering and Industrial Design, School of Engineering, University of Liverpool, Liverpool, UK.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 100083, People's Republic of China.,NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
17
|
Rahmati SM, Razaghi R, Karimi A. Biomechanics of the keratoconic cornea: Theory, segmentation, pressure distribution, and coupled FE-optimization algorithm. J Mech Behav Biomed Mater 2020; 113:104155. [PMID: 33125958 DOI: 10.1016/j.jmbbm.2020.104155] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 10/23/2022]
Abstract
Understanding of the corneal biomechanical properties is of high interest due to its potential application in the early diagnosis of keratoconus (KC). KC by itself is a non-inflammatory eye disorder causes corneal structural and/or compositional anomalies. The biomechanically weakened cornea is no longer able to preserve the normal shape of the cornea against the intraocular pressure (IOP) and gradually starts to bulge outward, invoking a conical shape and subsequent distorted vision. The most popular way to measure the in vivo corneal biomechanical properties is the CorVis-ST, which enables to analyze the dynamic response of the cornea under a temporary air puff pressure. However, the complications, such as the lack of knowledge on the accurate air-puff pressure distribution on the cornea's surface as a function of the distance from the apex of the cornea as well as the time, hinder us to have a reliable estimation of the cornea's mechanical parameters. This study aims to establish patient-specific geometries of the healthy and KC corneas and calculate the pressure distribution on the cornea's surface as a function of both the distance from the apex of the cornea and time, and thereafter, the viscoelastic mechanical properties of both the healthy and KC corneas using a coupled finite element (FE)-optimization algorithm. To do that, the dynamic deformation response of six healthy and six KC corneas were measured via CorVis-ST. The videos of the in vivo deformation of the corneas under the applied air puff pressure were segmented using our segmentation algorithm to determine the anterior and posterior curvatures of the corneas during the dynamic movement of the cornea. The FE model of the corneas were established using the segmented data and subjected to a negative (pre-stress), positive IOP, and air puff pressure while the floating boundary conditions were applied to the two ends of the corneas' FE models. The simulation results were imported into a loop of FE-optimization algorithm and analyzed until the deformation amplitude at the apex of the cornea reaches to its minimum difference compared to the clinical data by CorVis-ST. The results revealed that the pressure distributions found in the literature as a function of the distance from the apex of the cornea and time unable to provide satisfactory results. Therefore, the pressure distributions both as a function of the distance and time were optimized using our coupled FE-optimization algorithm and employed to estimate the viscoelastic properties of the healthy and KC corneas. The mean percentage error (MPE) of 8.45% and 10.79% were found for the healthy and KC corneas compared to the clinical data of CorVis-ST, respectively. The results also revealed a significantly higher short-time shear modulus for the KC (62.33 MPa) compared to the healthy (37.45 MPa) corneas while the long-time shear modulus of both the healthy and KC corneas were almost the same (4.01 vs. 3.91 MPa). The proposed algorithm is a noninvasive technique capable of accurately estimating the viscoelastic mechanical properties of the cornea, which can contribute to understand the mechanism of KC development and improve diagnosis and intervention in KC.
Collapse
Affiliation(s)
| | - Reza Razaghi
- Research Department, Heel of Scene Ltd., Tokyo, Japan; Basir Eye Health Research Center, Tehran, Iran.
| | - Alireza Karimi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
18
|
Ashofteh Yazdi A, Melchor J, Torres J, Faris I, Callejas A, Gonzalez-Andrades M, Rus G. Characterization of non-linear mechanical behavior of the cornea. Sci Rep 2020; 10:11549. [PMID: 32665558 PMCID: PMC7360609 DOI: 10.1038/s41598-020-68391-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 06/23/2020] [Indexed: 11/24/2022] Open
Abstract
The objective of this study was to evaluate which hyperelastic model could best describe the non-linear mechanical behavior of the cornea, in order to characterize the capability of the non-linear model parameters to discriminate structural changes in a damaged cornea. Porcine corneas were used, establishing two different groups: control (non-treated) and NaOH-treated (damaged) corneas (n = 8). NaOH causes a chemical burn to the corneal tissue, simulating a disease associated to structural damage of the stromal layer. Quasi-static uniaxial tensile tests were performed in nasal-temporal direction immediately after preparing corneal strips from the two groups. Three non-linear hyperelastic models (i.e. Hamilton-Zabolotskaya model, Ogden model and Mooney-Rivlin model) were fitted to the stress–strain curves obtained in the tensile tests and statistically compared. The corneas from the two groups showed a non-linear mechanical behavior that was best described by the Hamilton-Zabolotskaya model, obtaining the highest coefficient of determination (R2 > 0.95). Moreover, Hamilton-Zabolotskaya model showed the highest discriminative capability of the non-linear model parameter (Parameter A) for the tissue structural changes between the two sample groups (p = 0.0005). The present work determines the best hyperelastic model with the highest discriminative capability in description of the non-linear mechanical behavior of the cornea.
Collapse
Affiliation(s)
- A Ashofteh Yazdi
- Ultrasonics Lab, Department of Structural Mechanics, University of Granada, Politécnico de Fuentenueva, 18071, Granada, Spain.,Department of Biomedical Engineering, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | - J Melchor
- Department of Statistics and Operations Research, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Spain.,Excellence Research Unit, "Modelling Nature" (MNat), University of Granada, Granada, Spain
| | - J Torres
- Ultrasonics Lab, Department of Structural Mechanics, University of Granada, Politécnico de Fuentenueva, 18071, Granada, Spain.,Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Spain
| | - I Faris
- Ultrasonics Lab, Department of Structural Mechanics, University of Granada, Politécnico de Fuentenueva, 18071, Granada, Spain.,Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Spain
| | - A Callejas
- Ultrasonics Lab, Department of Structural Mechanics, University of Granada, Politécnico de Fuentenueva, 18071, Granada, Spain.,Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Spain
| | - M Gonzalez-Andrades
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Department of Ophthalmology, Reina Sofia University Hospital and University of Cordoba, Edificio IMIBIC, Av. Menéndez Pidal, s/n. 14004, Cordoba, Spain. .,Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| | - G Rus
- Ultrasonics Lab, Department of Structural Mechanics, University of Granada, Politécnico de Fuentenueva, 18071, Granada, Spain. .,Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Spain. .,Excellence Research Unit, "Modelling Nature" (MNat), University of Granada, Granada, Spain.
| |
Collapse
|
19
|
Shinde V, Hu N, Mahale A, Maiti G, Daoud Y, Eberhart CG, Maktabi A, Jun AS, Al-Swailem SA, Chakravarti S. RNA sequencing of corneas from two keratoconus patient groups identifies potential biomarkers and decreased NRF2-antioxidant responses. Sci Rep 2020; 10:9907. [PMID: 32555404 PMCID: PMC7303170 DOI: 10.1038/s41598-020-66735-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/17/2020] [Indexed: 12/21/2022] Open
Abstract
Keratoconus is a highly prevalent (1 in 2000), genetically complex and multifactorial, degenerative disease of the cornea whose pathogenesis and underlying transcriptomic changes are poorly understood. To identify disease-specific changes and gene expression networks, we performed next generation RNA sequencing from individual corneas of two distinct patient populations - one from the Middle East, as keratoconus is particularly severe in this group, and the second from an African American population in the United States. We conducted a case: control RNA sequencing study of 7 African American, 12 Middle Eastern subjects, and 7 controls. A Principal Component Analysis of all expressed genes was used to ascertain differences between samples. Differentially expressed genes were identified using Cuffdiff and DESeq2 analyses, and identification of over-represented signaling pathways by Ingenuity Pathway Analysis. Although separated by geography and ancestry, key commonalities in the two patient transcriptomes speak of disease - intrinsic gene expression networks. We identified an overwhelming decrease in the expression of anti-oxidant genes regulated by NRF2 and those of the acute phase and tissue injury response pathways, in both patient groups. Concordantly, NRF2 immunofluorescence staining was decreased in patient corneas, while KEAP1, which helps to degrade NRF2, was increased. Diminished NRF2 signaling raises the possibility of NRF2 activators as future treatment strategies in keratoconus. The African American patient group showed increases in extracellular matrix transcripts that may be due to underlying profibrogenic changes in this group. Transcripts increased across all patient samples include Thrombospondin 2 (THBS2), encoding a matricellular protein, and cellular proteins, GAS1, CASR and OTOP2, and are promising biomarker candidates. Our approach of analyzing transcriptomic data from different populations and patient groups will help to develop signatures and biomarkers for keratoconus subtypes. Further, RNA sequence data on individual patients obtained from multiple studies may lead to a core keratoconus signature of deregulated genes and a better understanding of its pathogenesis.
Collapse
Affiliation(s)
- Vishal Shinde
- Department of Ophthalmology, NYU Langone Medical Center, New York, NY, USA
| | - Nan Hu
- Department of Ophthalmology, NYU Langone Medical Center, New York, NY, USA
| | - Alka Mahale
- King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - George Maiti
- Department of Ophthalmology, NYU Langone Medical Center, New York, NY, USA
| | - Yassine Daoud
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles G Eberhart
- Ophthalmology and Oncology Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Azza Maktabi
- King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Albert S Jun
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Shukti Chakravarti
- Department of Ophthalmology, NYU Langone Medical Center, New York, NY, USA.
- Department of Pathology, NYU Langone Medical Center, New York, NY, USA.
| |
Collapse
|
20
|
Shinde V, Hu N, Renuse S, Mahale A, Pandey A, Eberhart C, Stone D, Al-Swailem SA, Maktabi A, Chakravarti S. Mapping Keratoconus Molecular Substrates by Multiplexed High-Resolution Proteomics of Unpooled Corneas. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 23:583-597. [PMID: 31651220 DOI: 10.1089/omi.2019.0143] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Keratoconus (KCN) is a leading cause for cornea grafting worldwide. Keratoconus is a multifactorial disease that causes progressive thinning of the cornea and whose etiology is poorly understood. Several studies have used proteomics on patient tear fluids to identify potential biomarkers. However, proteome of the cornea itself has not been investigated fully. We report here new findings from a case-control study using multiplexed mass spectrometry (MS) on individual (unpooled) corneas to gain deeper insights into proteins and biomarkers relevant to keratoconus. We employed a high-pressure approach to extract total protein from individual corneas from five cases and five controls, followed by trypsin digestion and tandem mass tag (TMT) labeling. The MS-derived data were searched using the Human NCBI RefSeq protein database v92, with peptides and proteins filtered at 1% false discovery rate. A total of 3132 proteins were detected, of which 627 were altered significantly (p ≤ 0.05) in keratoconus corneas. The increases were overwhelmingly in the mTOR/PI3/AKT signal-mediated regulations of cell survival and proliferation, nonsense-mediated decay of transcripts, and proteasomal pathways. The decreases were in several extracellular matrix proteins and in many members of the complement system. Importantly, this multiplexed proteomic study of keratoconus corneas identified, to our knowledge, the largest number of corneal proteins. The novel findings include changes in pathways that regulate transcript stability, proteasomal degradation, and the complement system in corneas with keratoconus. These observations offer new prospects toward future discovery of novel molecular targets for diagnostic and therapeutic innovations for patients with keratoconus.
Collapse
Affiliation(s)
- Vishal Shinde
- Department of Ophthalmology, NYU Langone Health, New York, New York
| | - Nan Hu
- Department of Ophthalmology, NYU Langone Health, New York, New York
| | - Santosh Renuse
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Alka Mahale
- Research Department, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Charles Eberhart
- Pathology, Ophthalmology and Oncology Department, Johns Hopkins Hospital, Baltimore, Maryland
| | - Donald Stone
- Department of Ophthalmology, Johns Hopkins University, Baltimore, Maryland
| | - Samar A Al-Swailem
- Anterior Segment Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Azza Maktabi
- Department of Pathology, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Shukti Chakravarti
- Department of Ophthalmology, NYU Langone Health, New York, New York.,Department of Pathology, NYU Langone Health, New York, New York
| |
Collapse
|
21
|
McKay TB, Priyadarsini S, Karamichos D. Mechanisms of Collagen Crosslinking in Diabetes and Keratoconus. Cells 2019; 8:cells8101239. [PMID: 31614631 PMCID: PMC6830090 DOI: 10.3390/cells8101239] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022] Open
Abstract
Collagen crosslinking provides the mechanical strength required for physiological maintenance of the extracellular matrix in most tissues in the human body, including the cornea. Aging and diabetes mellitus (DM) are processes that are both associated with increased collagen crosslinking that leads to increased corneal rigidity. By contrast, keratoconus (KC) is a corneal thinning disease associated with decreased mechanical stiffness leading to ectasia of the central cornea. Studies have suggested that crosslinking mediated by reactive advanced glycation end products during DM may protect the cornea from KC development. Parallel to this hypothesis, riboflavin-mediated photoreactive corneal crosslinking has been proposed as a therapeutic option to halt the progression of corneal thinning by inducing intra- and intermolecular crosslink formation within the collagen fibrils of the stroma, leading to stabilization of the disease. Here, we review the pathobiology of DM and KC in the context of corneal structure, the epidemiology behind the inverse correlation of DM and KC development, and the chemical mechanisms of lysyl oxidase-mediated crosslinking, advanced glycation end product-mediated crosslinking, and photoreactive riboflavin-mediated corneal crosslinking. The goal of this review is to define the biological and chemical pathways important in physiological and pathological processes related to collagen crosslinking in DM and KC.
Collapse
Affiliation(s)
- Tina B McKay
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - Shrestha Priyadarsini
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA.
| | - Dimitrios Karamichos
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
22
|
Volatier TLA, Figueiredo FC, Connon CJ. Keratoconus at a Molecular Level: A Review. Anat Rec (Hoboken) 2019; 303:1680-1688. [DOI: 10.1002/ar.24090] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/19/2018] [Accepted: 11/02/2018] [Indexed: 12/12/2022]
Affiliation(s)
| | | | - Che J. Connon
- Institute of Genetic MedicineNewcastle University Newcastle upon Tyne UK
| |
Collapse
|
23
|
High-Resolution Shear Wave Imaging of the Human Cornea Using a Dual-Element Transducer. SENSORS 2018; 18:s18124244. [PMID: 30513950 PMCID: PMC6308409 DOI: 10.3390/s18124244] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/22/2018] [Accepted: 11/30/2018] [Indexed: 12/23/2022]
Abstract
Estimating the corneal elasticity can provide valuable information for corneal pathologies and treatments. Ophthalmologic pathologies will invariably cause changes to the elasticity of the cornea. For example, keratoconus and the phototoxic effects of ultraviolet radiation usually increase the corneal elasticity. This makes a quantitative estimation of the elasticity of the human cornea important for ophthalmic diagnoses. The present study investigated the use of a proposed high-resolution shear wave imaging (HR-SWI) method based on a dual-element transducer (comprising an 8-MHz element for pushing and a 32-MHz element for imaging) for measuring the group shear wave velocity (GSWV) of the human cornea. An empirical Young’s modulus formula was used to accurately convert the GSWV to Young’s modulus. Four quantitative parameters, bias, resolution, contrast, and contrast-to-noise ratio (CNR), were measured in gelatin phantoms with two different concentrations (3% and 7%) to evaluate the performance of HR-SWI. The biases of gelatin phantoms (3% and 7%) were 5.88% and 0.78%, respectively. The contrast and CNR were 0.76, 1.31 and 3.22, 2.43 for the two-side and two-layer phantoms, respectively. The measured image resolutions of HR-SWI in the lateral and axial directions were 72 and 140 μm, respectively. The calculated phase SWV (PSWV) and their corresponding Young’s modulus from six human donors were 2.45 ± 0.48 m/s (1600 Hz) and 11.52 ± 7.81 kPa, respectively. All the experimental results validated the concept of HR-SWI and its ability for measuring the human corneal elasticity.
Collapse
|