1
|
Izuagbe S, Roy J, Chatila A, Hoang LQ, Ea V, Vaish B, Co CM, Ly A, Wu H, Tang L. A 3D in vitro model for assessing the influence of intraocular lens: Posterior lens capsule interactions on lens epithelial cell responses. Exp Eye Res 2024; 244:109940. [PMID: 38782178 PMCID: PMC11246700 DOI: 10.1016/j.exer.2024.109940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
Posterior Capsule Opacification (PCO), the most frequent complication of cataract surgery, is caused by the infiltration and proliferation of lens epithelial cells (LECs) at the interface between the intraocular lens (IOL) and posterior lens capsule (PLC). According to the "no space, no cells, no PCO" theory, high affinity (or adhesion force) between the IOL and PLC would decrease the IOL: PLC interface space, hinder LEC migration, and thus reduce PCO formation. To test this hypothesis, an in vitro hemisphere-shaped simulated PLC (sPLC) was made to mimic the human IOL: PLC physical interactions and to assess their influence on LEC responses. Three commercially available IOLs with different affinities/adhesion forces toward the sPLC, including Acrylic foldable IOL, Silicone IOL, and PMMA IOL, were used in this investigation. Using the system, the physical interactions between IOLs and sPLC were quantified by measuring the adhesion force and interface space using an adhesion force apparatus and Optical Coherence Tomography, respectively. Our data shows that high adhesion force and tight binding between IOL and sPLC contribute to a small interface space (or "no space"). By introducing LECs into the in vitro system, we found that, with small interface space, among all IOLs, acrylic foldable IOLs permitted the least extent of LEC infiltration, proliferation, and differentiation (or "no cells"). Further statistical analyses using clinical data revealed that weak LEC responses are associated with low clinical PCO incidence rates (or "no PCO"). The findings support that the in vitro system could simulate IOL: PLC interplays and predict IOLs' PCO potential in support of the "no space, no cells, no PCO" hypothesis.
Collapse
Affiliation(s)
- Samira Izuagbe
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Joyita Roy
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Amjad Chatila
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Le Quynh Hoang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Vicki Ea
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Bhavya Vaish
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Cynthia M Co
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Aaron Ly
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Hongli Wu
- Department of Pharmaceutical Sciences, College of Pharmacy, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA.
| |
Collapse
|
2
|
Du Y, Cai M, Mu J, Li X, Song Y, Yuan X, Hua X, Guo S. Type I Collagen-Adhesive and ROS-Scavenging Nanoreactors Enhanced Retinal Ganglion Cell Survival in an Experimental Optic Nerve Crush Model. Macromol Rapid Commun 2023; 44:e2300389. [PMID: 37661804 DOI: 10.1002/marc.202300389] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Traumatic optic neuropathy (TON) is a severe condition characterized by retinal ganglion cell (RGC) death, often leading to irreversible vision loss, and the death of RGCs is closely associated with oxidative stress. Unfortunately, effective treatment options for TON are lacking. To address this, catalase (CAT) is encapsulated in a tannic acid (TA)/poly(ethylenimine)-crosslinked hollow nanoreactor (CAT@PTP), which exhibited enhanced anchoring in the retina due to TA-collagen adhesion. The antioxidative activity of both CAT and TA synergistically eliminated reactive oxygen species (ROS) to save RGCs in the retina, thereby treating TON. In vitro experiments demonstrated that the nanoreactors preserve the enzymatic activity of CAT and exhibit high adhesion to type I collagen. The combination of CAT and TA-based nanoreactors enhanced ROS elimination while maintaining high biocompatibility. In an optic nerve crush rat model, CAT@PTP is effectively anchored to the retina via TA-collagen adhesion after a single vitreous injection, and RGCs are significantly preserved without adverse events. CAT@PTP exhibited a protective effect on retinal function. Given the abundance of collagen that exists in ocular tissues, these findings may contribute to the further application of this multifunctional nanoreactor in ocular diseases to improve therapeutic efficacy and reduce adverse effects.
Collapse
Affiliation(s)
- Yuyuan Du
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Maoyu Cai
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, China
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, 300020, China
| | - Jingqing Mu
- Aier Eye Institute, Changsha, 410015, China
- Tianjin Aier Eye Hospital, Tianjin, 300190, China
| | - Xingwei Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yapeng Song
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiaoyong Yuan
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, China
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, 300020, China
| | - Xia Hua
- Aier Eye Institute, Changsha, 410015, China
- Tianjin Aier Eye Hospital, Tianjin, 300190, China
| | - Shutao Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
3
|
Liu Z, Huang S, Zheng Y, Zhou T, Hu L, Xiong L, Li DWC, Liu Y. The lens epithelium as a major determinant in the development, maintenance, and regeneration of the crystalline lens. Prog Retin Eye Res 2023; 92:101112. [PMID: 36055924 DOI: 10.1016/j.preteyeres.2022.101112] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023]
Abstract
The crystalline lens is a transparent and refractive biconvex structure formed by lens epithelial cells (LECs) and lens fibers. Lens opacity, also known as cataracts, is the leading cause of blindness in the world. LECs are the principal cells of lens throughout human life, exhibiting different physiological properties and functions. During the embryonic stage, LECs proliferate and differentiate into lens fibers, which form the crystalline lens. Genetics and environment are vital factors that influence normal lens development. During maturation, LECs help maintain lens homeostasis through material transport, synthesis and metabolism as well as mitosis and proliferation. If disturbed, this will result in loss of lens transparency. After cataract surgery, the repair potential of LECs is activated and the structure and transparency of the regenerative tissue depends on postoperative microenvironment. This review summarizes recent research advances on the role of LECs in lens development, homeostasis, and regeneration, with a particular focus on the role of cholesterol synthesis (eg., lanosterol synthase) in lens development and homeostasis maintenance, and how the regenerative potential of LECs can be harnessed to develop surgical strategies and improve the outcomes of cataract surgery (Fig. 1). These new insights suggest that LECs are a major determinant of the physiological and pathological state of the lens. Further studies on their molecular biology will offer possibility to explore new approaches for cataract prevention and treatment.
Collapse
Affiliation(s)
- Zhenzhen Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Shan Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Tian Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Leyi Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Lang Xiong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - David Wan-Cheng Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China; Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100085, China.
| |
Collapse
|
4
|
D’Antin JC, Tresserra F, Barraquer RI, Michael R. Soemmerring's Rings Developed around IOLs, in Human Donor Eyes, Can Present Internal Transparent Areas. Int J Mol Sci 2022; 23:13294. [PMID: 36362082 PMCID: PMC9656497 DOI: 10.3390/ijms232113294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 02/09/2024] Open
Abstract
Soemmerring's rings consist of a ring of lens epithelial derived cells that grow along the periphery of an aphakic lens capsule, or around an intraocular lens. These rings when visualized frontally, appear opaque, however, in some cases the cells that compose these rings are organized in the same fashion as those in normal transparent adult lenses. Thus, our purpose was to test whether any part of the adult Soemmerring's ring could be transparent and how this related to morphological factors. To study this, 16 Soemmerring's rings were extracted from donor eye globes. After imaging, they were thickly sectioned sagittally in order to analyze the degrees of transparency of different areas. All samples were also histologically analyzed using alpha smooth muscle actin, Vimentin, wheat germ agglutinin and DAPI. Our results showed that many samples had some transparent areas, mostly towards the center of their cross-section. Of the factors that we analyzed, only lens fiber organization at the bow region and an increased area of mature lens fiber cells had a significant relation to the degree of transparency at the center. Thus, we can conclude that as Soemmerring's rings mature, they can develop organized and transparent areas of lens cells.
Collapse
Affiliation(s)
- Justin Christopher D’Antin
- Institut Universitari Barraquer, Universitat Autònoma de Barcelona, 08021 Barcelona, Spain
- Centro de Oftalmología Barraquer, 08021 Barcelona, Spain
| | - Francesc Tresserra
- Department of Pathology, Institut Universitari Dexeus, 08028 Barcelona, Spain
| | - Rafael I. Barraquer
- Institut Universitari Barraquer, Universitat Autònoma de Barcelona, 08021 Barcelona, Spain
- Centro de Oftalmología Barraquer, 08021 Barcelona, Spain
- Department of Medicine, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
| | - Ralph Michael
- Institut Universitari Barraquer, Universitat Autònoma de Barcelona, 08021 Barcelona, Spain
- Centro de Oftalmología Barraquer, 08021 Barcelona, Spain
- Institute for Medical Informatics, Statistics, and Epidemiology (IMISE), Leipzig University, 04109 Leipzig, Germany
| |
Collapse
|
5
|
Gu X, Chen X, Jin G, Wang L, Zhang E, Wang W, Liu Z, Luo L. Early-Onset Posterior Capsule Opacification: Incidence, Severity, and Risk Factors. Ophthalmol Ther 2021; 11:113-123. [PMID: 34727350 PMCID: PMC8770765 DOI: 10.1007/s40123-021-00408-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/14/2021] [Indexed: 10/31/2022] Open
Abstract
INTRODUCTION To evaluate the incidence, severity, and risk factors of early-onset posterior capsule opacification (PCO) following uneventful phacoemulsification and intraocular lens (IOL) implantation. METHODS Patients with cataracts who underwent phacoemulsification and IOL implantation surgery for 3 months from September 2019 to April 2020 were enrolled. All the subjects completed a comprehensive ocular examination. Retroillumination images of the posterior capsule were obtained using a slit lamp with imaging system, and PCO was graded by two ophthalmologists. Univariate and multivariate logistic regression analyses were performed to assess the risk factors for PCO. RESULTS A total of 1039 subjects were enrolled, with mean age 66.68 ± 11.43 years and 42.06% were male. The incidence of early-onset PCO in the 3 months after cataract surgery was 29.93%, and PCO of grade 3 and grade 4 was present in 31 patients (2.98%). Patients with complicated cataract had a higher incidence of PCO than age-related cataract, especially for patients with previous pars plana vitrectomy (PPV) surgery (P < 0.001). Moreover, the incidence of PCO increased with the deficiency of capsulorhexis-IOL overlap (P < 0.001). Multivariate logistic regression also showed that previous PPV surgery (OR 2.664, P = 0.003) and incomplete capsulorhexis-IOL overlap were risk factors for PCO (180-360° overlap: OR 2.058, P < 0.001; < 180° overlap: OR 5.403, P < 0.001). CONCLUSIONS Larger capsulorhexis and PPV surgery history contribute to the occurrence of early-onset PCO, indicating that primary posterior continuous curvilinear capsulorhexis can be considered during cataract surgery for patients with PPV history.
Collapse
Affiliation(s)
- Xiaoxun Gu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaoyun Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Guangming Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Lanhua Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Enen Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhenzhen Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Lixia Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Wang L, Tian Y, Shang Z, Zhang B, Hua X, Yuan X. Metformin attenuates the epithelial-mesenchymal transition of lens epithelial cells through the AMPK/TGF-β/Smad2/3 signalling pathway. Exp Eye Res 2021; 212:108763. [PMID: 34517004 DOI: 10.1016/j.exer.2021.108763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/19/2021] [Accepted: 09/06/2021] [Indexed: 01/10/2023]
Abstract
Posterior capsule opacification (PCO) is a common ocular fibrosis disease related to the epithelial-mesenchymal transition (EMT) of human lens epithelial cells (HLECs). However, safe and effective drugs that prevent or treat PCO are lacking. Metformin (Mtf) has been used to treat fibrosis-related diseases affecting many organs and tissues, but its effect on ocular fibrosis-related diseases is unclear. We investigated whether Mtf can inhibit EMT and fibrosis in HLECs to prevent and treat PCO and elucidated the potential molecular mechanism. Here, we established an HLEC model of TGF-β-induced EMT and found that 400 μM Mtf inhibited vertical and lateral migration and EMT-related gene and protein expression in HLECs. Smad2/3 are downstream molecules of TGF-β that enter the nucleus to regulate EMT-related gene expression during the occurrence and development of PCO. We revealed that Mtf suppressed TGF-β-induced Smad2/3 phosphorylation and nuclear translocation. Mtf induces AMP-activated protein kinase (AMPK) phosphorylation. In this study, we found that Mtf induced the activation of AMPK phosphorylation in HLECs. To further explore the mechanism of Mtf, we pretreated HLECs with Compound C (an AMPK inhibitor) to repeat the above experiments and found that Compound C abolished the inhibitory effect of Mtf on HLEC EMT and the TGF-β/Smad2/3 signalling pathway. Thus, Mtf targets AMPK phosphorylation to inhibit the TGF-β/Smad2/3 signalling pathway and prevent HLEC EMT. Notably, we first illustrated the AMPK/TGF-β/Smad2/3 signalling pathway in HLECs, which may provide a new therapeutic strategy for PCO.
Collapse
Affiliation(s)
- Ling Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, China; Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, 300020, China
| | - Ye Tian
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, China; Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, 300020, China
| | - Zhiqun Shang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Boya Zhang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xia Hua
- Tianjin Aier Eye Hospital, Tianjin, 300191, China; Aier Eye Institute, Changsha, 410000, China.
| | - Xiaoyong Yuan
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, China; Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, 300020, China.
| |
Collapse
|
7
|
Walker JL, Menko AS. Immune cells in lens injury repair and fibrosis. Exp Eye Res 2021; 209:108664. [PMID: 34126081 DOI: 10.1016/j.exer.2021.108664] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/18/2022]
Abstract
Immune cells, both tissue resident immune cells and those immune cells recruited in response to wounding or degenerative conditions, are essential to both the maintenance and restoration of homeostasis in most tissues. These cells are typically provided to tissues by their closely associated vasculatures. However, the lens, like many of the tissues in the eye, are considered immune privileged sites because they have no associated vasculature. Such absence of immune cells was thought to protect the lens from inflammatory responses that would bring with them the danger of causing vision impairing opacities. However, it has now been shown, as occurs in other immune privileged sites in the eye, that novel pathways exist by which immune cells come to associate with the lens to protect it, maintain its homeostasis, and function in its regenerative repair. Here we review the discoveries that have revealed there are both innate and adaptive immune system responses to lens, and that, like most other tissues, the lens harbors a population of resident immune cells, which are the sentinels of danger or injury to a tissue. While resident and recruited immune cells are essential elements of lens homeostasis and repair, they also become the agents of disease, particularly as progenitors of pro-fibrogenic myofibroblasts. There still remains much to learn about the function of lens-associated immune cells in protection, repair and disease, the knowledge of which will provide new tools for maintaining the core functions of the lens in the visual system.
Collapse
Affiliation(s)
- Janice L Walker
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA; Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - A Sue Menko
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA; Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
8
|
Time Course of Lens Epithelial Cell Behavior in Rabbit Eyes following Lens Extraction and Implantation of Intraocular Lens. J Ophthalmol 2021; 2021:6659838. [PMID: 33510905 PMCID: PMC7826232 DOI: 10.1155/2021/6659838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/12/2020] [Accepted: 12/24/2020] [Indexed: 11/17/2022] Open
Abstract
Background After cataract surgery, some lens epithelial cells (LECs) transdifferentiate into myofibroblast-like cells, which causes fibric posterior capsule opacification (PCO). Residual LECs differentiate into lens fiber cells, forming Elschnig pearls with PCO. This study was carried out to identify the time course of both types of LEC behavior in rabbit eyes following lens extraction and implantation of an intraocular lens (IOL). Methods Phacoemulsification and implantation of posterior chamber IOLs were performed in rabbit eyes. Following enucleation, immunohistochemical methods were used to detect α-smooth muscle actin (α-SMA), a marker for myofibroblast-like cells, in the pseudophakic rabbit eyes. A mouse monoclonal antibody against α-SMA was used. Results Soon after the operation, the LECs migrated and covered the lens capsule. Thereafter, the LECs around the anterior capsular margin were always positive for α-SMA. However, the distributions of these cells were not consistent. In some specimens, α-SMA-positive LECs were present around the IOL optic early after surgery, but most of them had disappeared several weeks after the surgery. The residual cells induced fibrotic PCO. In the other specimens, most LECs around the IOL optic except the anterior capsular margin were negative for α-SMA. In the peripheral region covered by the peripheral anterior and posterior capsules, LECs on the posterior capsule always differentiated into lens fiber cells and formed a Soemmering ring. Thereafter, migration of lens fiber cells from the Soemmering ring and differentiation of LECs in situ on the central posterior capsule consisted of Elschnig pearls type of PCO. Conclusions Although postoperative LEC behavior is not consistent, residual α-SMA-positive LECs induced fibrotic PCO. The lens fiber cells that migrated from the peripheral capsular bag or that were differentiated in situ covered the central posterior capsule, forming Elschnig pearls with PCO.
Collapse
|
9
|
Wormstone IM, Wormstone YM, Smith AJO, Eldred JA. Posterior capsule opacification: What's in the bag? Prog Retin Eye Res 2020; 82:100905. [PMID: 32977000 DOI: 10.1016/j.preteyeres.2020.100905] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022]
Abstract
Cataract, a clouding of the lens, is the most common cause of blindness in the world. It has a marked impact on the wellbeing and productivity of individuals and has a major economic impact on healthcare providers. The only means of treating cataract is by surgical intervention. A modern cataract operation generates a capsular bag, which comprises a proportion of the anterior capsule and the entire posterior capsule. The bag remains in situ, partitions the aqueous and vitreous humours, and in the majority of cases, houses an intraocular lens (IOL). The production of a capsular bag following surgery permits a free passage of light along the visual axis through the transparent intraocular lens and thin acellular posterior capsule. Lens epithelial cells, however, remain attached to the anterior capsule, and in response to surgical trauma initiate a wound-healing response that ultimately leads to light scatter and a reduction in visual quality known as posterior capsule opacification (PCO). There are two commonly-described forms of PCO: fibrotic and regenerative. Fibrotic PCO follows classically defined fibrotic processes, namely hyperproliferation, matrix contraction, matrix deposition and epithelial cell trans-differentiation to a myofibroblast phenotype. Regenerative PCO is defined by lens fibre cell differentiation events that give rise to Soemmerring's ring and Elschnig's pearls and becomes evident at a later stage than the fibrotic form. Both fibrotic and regenerative forms of PCO contribute to a reduction in visual quality in patients. This review will highlight the wealth of tools available for PCO research, provide insight into our current knowledge of PCO and discuss putative management of PCO from IOL design to pharmacological interventions.
Collapse
Affiliation(s)
- I M Wormstone
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| | - Y M Wormstone
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - A J O Smith
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - J A Eldred
- School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|