1
|
Landon B, Subasinghe K, Sumien N, Phillips N. miRNA and piRNA differential expression profiles in Alzheimer's disease: A potential source of pathology and tool for diagnosis. Exp Gerontol 2025; 204:112745. [PMID: 40179995 DOI: 10.1016/j.exger.2025.112745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Alzheimer's Disease (AD) is the most prevalent form of dementia and one of the leading causes of death in the United States, and despite our best efforts and recent advancements, a treatment that stops or substantially slows its progression has remained elusive. Small extracellular vesicles (sEVs), hold the potential to alleviate some of the common issues in the field by serving to better differentiate AD and non-AD individuals. These vesicles could provide insights into therapeutic targets, and potentially an avenue towards early detection. We compared the sEV cargo profiles of AD and non-AD brains (n = 6) and identified significant differences in both the micro RNA (miRNA) and Piwi-interacting RNA (piRNA) cargo through sEV isolation from temporal cortex tissue, followed by small RNA sequencing, and differential expression analysis. Differentially expressed miRNAs targeting systems relevant to AD included miR-206, miR-4516, miR-219a-5p, and miR-486-5p. Significant piRNAs included piR-6,565,525, piR-2,947,194, piR-7,181,973, and piR-7,326,987. These targets warrant further study for their potential role in the progression of AD pathology by dysregulating cellular activity; additionally, future large-scale studies of neuronal sEV miRNA profiles may facilitate the development of diagnostic tools which can aid in clinical trial design and recruitment. Longitudinal analysis of sEV data, perhaps accessible through plasma surveyance, will help determine at what point these miRNA and/or piRNA profiles begin to diverge between AD and non-AD individuals.
Collapse
Affiliation(s)
- Benjamin Landon
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, United States of America
| | - Kumudu Subasinghe
- Department of Microbiology Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, United States of America
| | - Nathalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, United States of America
| | - Nicole Phillips
- Department of Microbiology Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, United States of America; Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, TX 76107, United States of America.
| |
Collapse
|
2
|
Pan X, Shi X, Zhang H, Chen Y, Zhou J, Shen F, Wang J, Jiang R. Exosomal miR-4516 derived from ovarian cancer stem cells enhanced cisplatin tolerance in ovarian cancer by inhibiting GAS7. Gene 2024; 927:148738. [PMID: 38955306 DOI: 10.1016/j.gene.2024.148738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/05/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Ovarian cancer (OC) is a devastating disease for women, with chemotherapy resistance taking the lead. Cisplatin has been the first-line therapy for OC for a long time. However, the resistance of OC to cisplatin is an important impediment to its efficacy. Mounting studies showed that ovarian cancer stem cells (OCSCs) affected chemotherapy resistance by secreting exosomes. MicroRNAs (miRNAs) play important roles in exosomes secreted by OCSCs. Here, through the analysis of GEO database (GSE107155) combined with RT-qPCR of OC-related cells/clinical tissues, it was found that hsa-miR-4516 (miR-4516) was significantly up-regulated in OCSCs. Then, OCSCs-derived exosomes were isolated and identified, and it was observed the influence of exosomes on the chemoresistance in SKOV3/cisplatin (SKOV3/DDP) cells. These results manifested that OCSCs-mediated exosomes facilitated the chemoresistance of SKOV3/DDP cells by delivering miR-4516 into them. Growth arrest-specific 7 (GAS7), a downstream target of miR-4516, was determined by bioinformatics prediction combined with molecular biological detection. Next, we up-regulated GAS7 expression and discovered that the promotion of chemoresistance in SKOV3/DDP cells by OCSCs-derived exosomes was significantly impaired. Finally, the mice tumor model of SKOV3/DDP cells was built to estimate the effect of GAS7 over-expression on OC growth. The results showed that GAS7 inhibited the chemoresistance of OC in vivo. In conclusion, our experiments suggested that OCSCs-derived exosomes enhanced OC cisplatin resistance by suppressing GAS7 through the delivery of miR-4516. This study provides a possible target for the treatment of OC DDP resistance.
Collapse
Affiliation(s)
- Xin Pan
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215000, China
| | - Xiu Shi
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215000, China
| | - Hong Zhang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215000, China
| | - YouGuo Chen
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215000, China
| | - JinHua Zhou
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215000, China
| | - FangRong Shen
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215000, China
| | - Juan Wang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215000, China
| | - Rong Jiang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou 215000, China.
| |
Collapse
|
3
|
Mishima K, Obika S, Shimojo M. Splice-switching antisense oligonucleotide controlling tumor suppressor REST is a novel therapeutic medicine for neuroendocrine cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102250. [PMID: 39377066 PMCID: PMC11456559 DOI: 10.1016/j.omtn.2024.102250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/10/2024] [Indexed: 10/09/2024]
Abstract
RNA splicing regulation has revolutionized the treatment of challenging diseases. Neuroendocrine cancers, including small cell lung cancer (SCLC) and neuroendocrine prostate cancer (PCa), are highly aggressive, with metastatic neuroendocrine phenotypes, leading to poor patient outcomes. We investigated amido-bridged nucleic acid (AmNA)-based splice-switching oligonucleotides (SSOs) targeting RE1-silencing transcription factor (REST) splicing as a novel therapy. We designed AmNA-based SSOs to alter REST splicing. Tumor xenografts were generated by subcutaneously implanting SCLC or PCa cells into mice. SSOs or saline were intraperitoneally administered and tumor growth was monitored. Blood samples were collected from mice after SSO administration, and serum alanine aminotransferase and aspartate aminotransferase levels were measured to assess hepatotoxicity using a biochemical analyser. In vitro, REST_SSO reduced cancer cell viability. In a tumor xenograft model, it exhibited significant antitumor effects. It repressed REST-controlled RE1-harboring genes and upregulated miR-4516, an SCLC biomarker. Our findings suggest that REST_SSO suppresses tumorigenesis in neuroendocrine cancers by restoring REST function. This novel therapeutic approach holds promise for intractable neuroendocrine cancers such as SCLC and neuroendocrine PCa.
Collapse
Affiliation(s)
- Keishiro Mishima
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka 565-0871, Japan
- National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Osaka 567-0085, Japan
| | - Masahito Shimojo
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Rudnitsky E, Braiman A, Wolfson M, Muradian KK, Gorbunova V, Turgeman G, Fraifeld VE. Stem cell-derived extracellular vesicles as senotherapeutics. Ageing Res Rev 2024; 99:102391. [PMID: 38914266 DOI: 10.1016/j.arr.2024.102391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
Cellular senescence (CS) is recognized as one of the hallmarks of aging, and an important player in a variety of age-related pathologies. Accumulation of senescent cells can promote a pro-inflammatory and pro-cancerogenic microenvironment. Among potential senotherapeutics are extracellular vesicles (EVs) (40-1000 nm), including exosomes (40-150 nm), that play an important role in cell-cell communications. Here, we review the most recent studies on the impact of EVs derived from stem cells (MSCs, ESCs, iPSCs) as well as non-stem cells of various types on CS and discuss potential mechanisms responsible for the senotherapeutic effects of EVs. The analysis revealed that (i) EVs derived from stem cells, pluripotent (ESCs, iPSCs) or multipotent (MSCs of various origin), can mitigate the cellular senescence phenotype both in vitro and in vivo; (ii) this effect is presumably senomorphic; (iii) EVs display cross-species activity, without apparent immunogenic responses. In summary, stem cell-derived EVs appear to be promising senotherapeutics, with a feasible application in humans.
Collapse
Affiliation(s)
- Ekaterina Rudnitsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Marina Wolfson
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Khachik K Muradian
- Department of Biology of Aging and Experimental Life Span Extension, State Institute of Gerontology of National Academy of Medical Sciences of Ukraine, Kiev 4114, Ukraine
| | - Vera Gorbunova
- Department of Biology, Rochester Aging Research Center, University of Rochester, Rochester, NY 14627, USA
| | - Gadi Turgeman
- Department of Molecular Biology, Faculty of Natural Sciences and Medical School, Ariel University, Ariel 40700, Israel.
| | - Vadim E Fraifeld
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| |
Collapse
|
5
|
Sakaue T, Koga H, Iwamoto H, Nakamura T, Masuda A, Tanaka T, Suzuki H, Suga H, Hirai S, Hisaka T, Naito Y, Ohta K, Nakamura KI, Selvendiran K, Okabe Y, Torimura T, Kawaguchi T. Pancreatic Juice-Derived microRNA-4516 and microRNA-4674 as Novel Biomarkers for Pancreatic Ductal Adenocarcinoma. GASTRO HEP ADVANCES 2024; 3:761-772. [PMID: 39280916 PMCID: PMC11401553 DOI: 10.1016/j.gastha.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/24/2024] [Indexed: 09/18/2024]
Abstract
Background and Aims Precise diagnostic biomarkers are urgently required for pancreatic ductal adenocarcinoma (PDAC). Therefore, the aim of this study was to identify PDAC-specific exosomal microRNAs (Ex-miRs) from pancreatic juice (PJ) and evaluate their diagnostic potential. Methods Exosomes in PJ and serum were extracted using ultracentrifugation and confirmed morphologically and biochemically. PDAC-specific Ex-miRs were identified using our original miR arrays, in which "Ex-miRs derived from the PJ of patients with chronic pancreatitis (CP)" were subtracted from Ex-miRs commonly expressed in both "human PDAC cell lines" and "the PJ of patients with PDAC." We verified the expression of these miRs using quantitative real-time reverse transcription polymerase chain reaction. Changes in serum Ex-miR levels were assessed in 2 patients with PDAC who underwent curative resection. In situ hybridization was performed to directly visualize PDAC-specific miR expression in cancer cells. Results We identified novel Ex-miR-4516 and Ex-miR-4674 from the PJ of patients with PDAC, and they showed 80.0% and 81.8% sensitivity, 80.8% and 73.3% specificity, and 90.9% and 80.8% accuracy, respectively. The sensitivity, specificity, and accuracy of a triple assay of Ex-miR-4516/4674/PJ cytology increased to 93.3%, 81.8%, and 88.5%, respectively. In serum samples (n = 88), the sensitivity, specificity, and accuracy of Ex-miR-4516 were 97.5%, 34.3%, and 68%, respectively. Presurgical levels of serum-derived Ex-miR-4516 in 2 patients with relatively early disease stages declined after curative resection. In situ hybridization demonstrated that Ex-miR-4516 expression exclusively occurred in cancer cells. Conclusion Liquid assays using the in situ-proven Ex-miR-4516 may have a high potential for detecting relatively early-stage PDAC and monitoring its clinical course.
Collapse
Affiliation(s)
- Takahiko Sakaue
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
- Liver Cancer Research Division, Kurume University Research Center for Innovative Cancer Therapy, Kurume, Japan
- Division of Gynecologic Oncology, Department of Obstetrics/Gynecology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Hironori Koga
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
- Liver Cancer Research Division, Kurume University Research Center for Innovative Cancer Therapy, Kurume, Japan
| | - Hideki Iwamoto
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
- Liver Cancer Research Division, Kurume University Research Center for Innovative Cancer Therapy, Kurume, Japan
| | - Toru Nakamura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
- Liver Cancer Research Division, Kurume University Research Center for Innovative Cancer Therapy, Kurume, Japan
| | - Atsutaka Masuda
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
- Liver Cancer Research Division, Kurume University Research Center for Innovative Cancer Therapy, Kurume, Japan
| | - Toshimitsu Tanaka
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
- Liver Cancer Research Division, Kurume University Research Center for Innovative Cancer Therapy, Kurume, Japan
- Center for Multidisciplinary Treatment of Cancer, Kurume University Hospital, Kurume, Japan
| | - Hiroyuki Suzuki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
- Liver Cancer Research Division, Kurume University Research Center for Innovative Cancer Therapy, Kurume, Japan
| | - Hideya Suga
- Department of Gastroenterology and Hepatology, Yanagawa Hospital, Yanagawa, Japan
| | - Shingo Hirai
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Toru Hisaka
- Department of Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Yoshiki Naito
- Department of Clinical Laboratory Medicine, Kurume University Hospital, Kurume, Japan
| | - Keisuke Ohta
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Japan
| | - Kei-Ichiro Nakamura
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Japan
| | - Karuppaiyah Selvendiran
- Division of Gynecologic Oncology, Department of Obstetrics/Gynecology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Yoshinobu Okabe
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Takuji Torimura
- Department of Gastroenterology, Omuta City Hospital, Omuta, Japan
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
6
|
Ahangar Davoodi N, Najafi S, Naderi Ghale-Noie Z, Piranviseh A, Mollazadeh S, Ahmadi Asouri S, Asemi Z, Morshedi M, Tamehri Zadeh SS, Hamblin MR, Sheida A, Mirzaei H. Role of non-coding RNAs and exosomal non-coding RNAs in retinoblastoma progression. Front Cell Dev Biol 2022; 10:1065837. [PMID: 36619866 PMCID: PMC9816416 DOI: 10.3389/fcell.2022.1065837] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Retinoblastoma (RB) is a rare aggressive intraocular malignancy of childhood that has the potential to affect vision, and can even be fatal in some children. While the tumor can be controlled efficiently at early stages, metastatic tumors lead to high mortality. Non-coding RNAs (ncRNAs) are implicated in a number of physiological cellular process, including differentiation, proliferation, migration, and invasion, The deregulation of ncRNAs is correlated with several diseases, particularly cancer. ncRNAs are categorized into two main groups based on their length, i.e. short and long ncRNAs. Moreover, ncRNA deregulation has been demonstrated to play a role in the pathogenesis and development of RB. Several ncRNAs, such as miR-491-3p, miR-613,and SUSD2 have been found to act as tumor suppressor genes in RB, but other ncRNAs, such as circ-E2F3, NEAT1, and TUG1 act as tumor promoter genes. Understanding the regulatory mechanisms of ncRNAs can provide new opportunities for RB therapy. In the present review, we discuss the functional roles of the most important ncRNAs in RB, their interaction with the genes responsible for RB initiation and progression, and possible future clinical applications as diagnostic and prognostic tools or as therapeutic targets.
Collapse
Affiliation(s)
- Nasrin Ahangar Davoodi
- Eye Research Center, Rassoul Akram Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zari Naderi Ghale-Noie
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ashkan Piranviseh
- Brain and Spinal Cord Injury Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammadamin Morshedi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran,*Correspondence: Amirhossein Sheida, ; Hamed Mirzaei, ,
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran,*Correspondence: Amirhossein Sheida, ; Hamed Mirzaei, ,
| |
Collapse
|
7
|
The roles of mouse double minute 2 (MDM2) oncoprotein in ocular diseases: A review. Exp Eye Res 2022; 217:108910. [PMID: 34998788 DOI: 10.1016/j.exer.2021.108910] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/03/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022]
Abstract
Mouse double minute 2 (MDM2), an E3 ubiquitin ligase and the primary negative regulator of the tumor suppressor p53, cooperates with its structural homolog MDM4/MDMX to control intracellular p53 level. In turn, overexpression of p53 upregulates and forms an autoregulatory feedback loop with MDM2. The MDM2-p53 axis plays a pivotal role in modulating cell cycle control and apoptosis. MDM2 itself is regulated by the PI3K-AKT and RB-E2F-ARF pathways. While amplification of the MDM2 gene or overexpression of MDM2 (due to MDM2 SNP T309G, for instance) is associated with various malignancies, numerous studies have shown that MDM2/p53 alterations may also play a part in the pathogenetic process of certain ocular disorders (Fig. 1). These include cancers (retinoblastoma, uveal melanoma), fibrocellular proliferative diseases (proliferative vitreoretinopathy, pterygium), neovascular diseases, degenerative diseases (cataract, primary open-angle glaucoma, age-related macular degeneration) and infectious/inflammatory diseases (trachoma, uveitis). In addition, MDM2 is implicated in retinogenesis and regeneration after optic nerve injury. Anti-MDM2 therapy has shown potential as a novel approach to treating these diseases. Despite major safety concerns, there are high expectations for the clinical value of reformative MDM2 inhibitors. This review summarizes important findings about the role of MDM2 in ocular pathologies and provides an overview of recent advances in treating these diseases with anti-MDM2 therapies.
Collapse
|
8
|
Monroe JD, Moolani SA, Irihamye EN, Lett KE, Hebert MD, Gibert Y, Smith ME. Cisplatin and phenanthriplatin modulate long-noncoding RNA expression in A549 and IMR90 cells revealing regulation of microRNAs, Wnt/β-catenin and TGF-β signaling. Sci Rep 2021; 11:10408. [PMID: 34001990 PMCID: PMC8129125 DOI: 10.1038/s41598-021-89911-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/27/2021] [Indexed: 01/06/2023] Open
Abstract
The monofunctional platinum(II) complex, phenanthriplatin, acts by blocking transcription, but its regulatory effects on long-noncoding RNAs (lncRNAs) have not been elucidated relative to traditional platinum-based chemotherapeutics, e.g., cisplatin. Here, we treated A549 non-small cell lung cancer and IMR90 lung fibroblast cells for 24 h with either cisplatin, phenanthriplatin or a solvent control, and then performed microarray analysis to identify regulated lncRNAs. RNA22 v2 microRNA software was subsequently used to identify microRNAs (miRNAs) that might be suppressed by the most regulated lncRNAs. We found that miR-25-5p, -30a-3p, -138-5p, -149-3p, -185-5p, -378j, -608, -650, -708-5p, -1253, -1254, -4458, and -4516, were predicted to target the cisplatin upregulated lncRNAs, IMMP2L-1, CBR3-1 and ATAD2B-5, and the phenanthriplatin downregulated lncRNAs, AGO2-1, COX7A1-2 and SLC26A3-1. Then, we used qRT-PCR to measure the expression of miR-25-5p, -378j, -4516 (A549) and miR-149-3p, -608, and -4458 (IMR90) to identify distinct signaling effects associated with cisplatin and phenanthriplatin. The signaling pathways associated with these miRNAs suggests that phenanthriplatin may modulate Wnt/β-catenin and TGF-β signaling through the MAPK/ERK and PTEN/AKT pathways differently than cisplatin. Further, as some of these miRNAs may be subject to dissimilar lncRNA targeting in A549 and IMR90 cells, the monofunctional complex may not cause toxicity in normal lung compared to cancer cells by acting through distinct lncRNA and miRNA networks.
Collapse
Affiliation(s)
- Jerry D Monroe
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, 39216, USA
- Biology Department, Western Kentucky University, Bowling Green, KY, 42101-1080, USA
| | - Satya A Moolani
- Biology Department, Western Kentucky University, Bowling Green, KY, 42101-1080, USA
- Program in Cognitive Science, Case Western Reserve University, Cleveland, OH, 44106-7063, USA
| | - Elvin N Irihamye
- Biology Department, Western Kentucky University, Bowling Green, KY, 42101-1080, USA
- Program in Neuroscience, Indiana University Bloomington, Bloomington, IN, 47405-2204, USA
| | - Katheryn E Lett
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Michael D Hebert
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Yann Gibert
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| | - Michael E Smith
- Biology Department, Western Kentucky University, Bowling Green, KY, 42101-1080, USA.
| |
Collapse
|