1
|
Rusciano D. Health Benefits of Epigallocatechin Gallate and Forskolin with a Special Emphasis on Glaucoma and Other Retinal Diseases. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1957. [PMID: 39768839 PMCID: PMC11678229 DOI: 10.3390/medicina60121957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025]
Abstract
This review highlights the therapeutic potential of epigallocatechin gallate (EGCG) and forskolin in managing retinal diseases, with a focus on glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy. EGCG, a potent polyphenol from green tea, exhibits significant antioxidant, anti-inflammatory, and neuroprotective effects, making it a promising candidate for reducing oxidative stress and inflammation in ocular tissues. Forskolin, a diterpene from Coleus forskohlii, increases cyclic AMP (cAMP) levels, which helps lower intraocular pressure (IOP) and provides neuroprotection. Both compounds target critical pathways involved in retinal disease progression, including oxidative stress, mitochondrial dysfunction, and inflammation, offering complementary therapeutic benefits. This review consolidates preclinical and clinical studies, highlighting the potential of EGCG and forskolin as adjunctive or alternative treatments for retinal diseases. Future research should explore the synergistic effects of these compounds, particularly in combination therapies aimed at addressing multiple pathogenic mechanisms in retinal health.
Collapse
|
2
|
Al-Regaiey K. Crosstalk between adipogenesis and aging: role of polyphenols in combating adipogenic-associated aging. Immun Ageing 2024; 21:76. [PMID: 39511615 PMCID: PMC11542427 DOI: 10.1186/s12979-024-00481-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024]
Abstract
In the last forty years, the number of people over 60 years of age has increased significantly owing to better nutrition and lower rates of infectious diseases in developing countries. Aging significantly impacts adipose tissue, which plays crucial role in hormone regulation and energy storage. This can lead to imbalances in glucose, and overall energy homeostasis within the body. Aging is irreversible phenomena and potentially causing lipid infiltration in other organs, leading to systemic inflammation, metabolic disorders. This review investigates various pathways contributing to aging-related defects in adipogenesis, such as changes in adipose tissue function and distribution. Polyphenols, a diverse group of natural compounds, can mitigate aging effects via free radicals, oxidative stress, inflammation, senescence, and age-related diseases. Polyphenols like resveratrol, quercetin and EGCG exhibit distinct mechanisms and regulate crucial pathways, such as the TGF-β, AMPK, Wnt, PPAR-γ, and C/EBP transcription factors, and influence epigenetic modifications, such as DNA methylation and histone modification. This review highlights the critical importance of understanding the intricate relationship between aging and adipogenesis for optimizing well-being with increasing age. These findings highlight the therapeutic potential of polyphenols like quercetin and resveratrol in enhancing adipose tissue function and promoting healthy aging.
Collapse
Affiliation(s)
- Khalid Al-Regaiey
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
3
|
Zhao X, Han D, Zhao C, Yang F, Wang Z, Gao Y, Jin M, Tao R. New insights into the role of Klotho in inflammation and fibrosis: molecular and cellular mechanisms. Front Immunol 2024; 15:1454142. [PMID: 39308872 PMCID: PMC11412887 DOI: 10.3389/fimmu.2024.1454142] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
As the body's defense mechanism against damage and infection, the inflammatory response is a pathological process that involves a range of inflammatory cells and cytokines. A healthy inflammatory response helps the body repair by eliminating dangerous irritants. However, tissue fibrosis can result from an overly intense or protracted inflammatory response. The anti-aging gene Klotho suppresses oxidation, delays aging, and fosters development of various organs. Numerous investigations conducted in the last few years have discovered that Klotho expression is changed in a variety of clinical diseases and is strongly linked to the course and outcome of a disease. Klotho functions as a co-receptor for FGF and as a humoral factor that mediates intracellular signaling pathways such as transforming growth factor β (TGF-β), toll-like receptors (TLRs), nuclear factor-kappaB (NF-κB), renin -angiotensin system (RAS), and mitogen-activated protein kinase (MAPK). It also interferes with the phenotype and function of inflammatory cells, such as monocytes, macrophages, T cells, and B cells. Additionally, it regulates the production of inflammatory factors. This article aims to examine Klotho's scientific advances in terms of tissue fibrosis and the inflammatory response in order to provide novel therapy concepts for fibrotic and inflammatory disorders.
Collapse
Affiliation(s)
- Xinyue Zhao
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Donghe Han
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
- Department of Anatomy, Medical College, Dalian University, Dalian, Liaoning, China
| | - Chun Zhao
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Fengfan Yang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Zhimei Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Yujiao Gao
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Meihua Jin
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
- Department of Immunology, Medical College, Dalian University, Dalian, Liaoning, China
| | - Ran Tao
- Department of Anatomy, Medical College, Dalian University, Dalian, Liaoning, China
| |
Collapse
|
4
|
Wang T, Xu H, Wu S, Guo Y, Zhao G, Wang D. Mechanisms Underlying the Effects of the Green Tea Polyphenol EGCG in Sarcopenia Prevention and Management. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37316469 DOI: 10.1021/acs.jafc.3c02023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sarcopenia is prevalent among the older population and severely affects human health. Tea catechins may benefit for skeletal muscle performance and protect against secondary sarcopenia. However, the mechanisms underlying their antisarcopenic effect are still not fully understood. Despite initial successes in animal and early clinical trials regarding the safety and efficacy of (-)-epigallocatechin-3-gallate (EGCG), a major catechin of green tea, many challenges, problems, and unanswered questions remain. In this comprehensive review, we discuss the potential role and underlying mechanisms of EGCG in sarcopenia prevention and management. We thoroughly review the general biological activities and general effects of EGCG on skeletal muscle performance, EGCG's antisarcopenic mechanisms, and recent clinical evidence of the aforesaid effects and mechanisms. We also address safety issues and provide directions for future studies. The possible concerted actions of EGCG indicate the need for further studies on sarcopenia prevention and management in humans.
Collapse
Affiliation(s)
- Taotao Wang
- Department of Clinical Nutrition, Affiliated Hospital of Jiangsu University, 212000 Zhenjiang, China
| | - Hong Xu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Shanshan Wu
- College of Agriculture & Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Guangshan Zhao
- College of Food Science & Technology, Henan Agricultural University, 450002 Zhengzhou, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| |
Collapse
|
5
|
da Silva RA, Roda VMDP, Akamine PS, da Silva DS, Siqueira PV, Matsuda M, Hamassaki DE. Blockade of the TGF-β pathway by galunisertib inhibits the glial-mesenchymal transition in Müller glial cells. Exp Eye Res 2023; 226:109336. [PMID: 36455675 DOI: 10.1016/j.exer.2022.109336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/09/2022] [Accepted: 11/19/2022] [Indexed: 11/30/2022]
Abstract
Aging increases the risks for developing fibrocontractile membranes on the retina, which causes significant macular distortion, as in the idiopathic epiretinal membrane (iERM). Retinal Müller glial cells are components of these membranes and may play a key role in the iERM pathogenesis. The transforming growth factor-β (TGF-β) induces Müller cell transdifferentiation into myofibroblast, reducing glial cell markers (glutamine synthetase, GS, and glial fibrillary acidic protein, GFAP) and increasing α-smooth muscle actin (α-SMA). Our aim was to investigate the effect of the TGF-β inhibitor galunisertib (LY2157299) on the glial-mesenchymal transition and contraction of Müller cells. MIO-M1 human Müller cells were treated with TGF-β1 (10 ng/mL), galunisertib (5, 10 and 20 μM) and TGF-β1+galunisertib for 24h and 48h. Galunisertib cytotoxicity was analyzed by MTT and trypan blue, and TGF-β1 blockade by phospho-SMAD3 immunofluorescence. Caspase-3 (cell death indicator), GS, GFAP and α-SMA expression was examined by immunofluorescence, Western blotting, and qPCR analysis. Cell contractility was determined by collagen gel contraction assay with Müller cells incorporated. Galunisertib did not show cytotoxicity at the concentrations evaluated and maintained the Müller cells phenotype, ensuring the GS expression. Galunisertib inhibited the TGF-β1 pathway by decreasing phospho-SMAD3 immunoreactivity, attenuated the α-SMA expression, and prevented the contraction of Müller cells in collagen gel. Although more studies are needed, in vitro assays suggest that galunisertib may be a potential candidate to attenuate the formation of fibrocontractile membranes and prevent retinal detachment and consequent loss of vision.
Collapse
Affiliation(s)
- Rafael André da Silva
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Vinicius Moraes de Paiva Roda
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Priscilla Sayami Akamine
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Daniela Simões da Silva
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Paula Veloso Siqueira
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Monique Matsuda
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; Laboratory of Investigation in Ophthalmology (LIM-33), Division of Ophthalmology, University of São Paulo Faculty of Medicine, São Paulo, SP, Brazil
| | - Dânia Emi Hamassaki
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Li T, Chen Y, Li Y, Chen G, Zhao Y, Su G. Antifibrotic effect of AD-1 on lipopolysaccharide-mediated fibroblast injury in L929 cells and bleomycin-induced pulmonary fibrosis in mice. Food Funct 2022; 13:7650-7665. [PMID: 35735105 DOI: 10.1039/d1fo04212b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
20(R)-25-methoxyl-dammarane-3β,12β,20-triol (25-OCH3-PPD, AD-1) is a dammarane ginsenoside that is isolated from Panax notoginseng. The present study aimed to explore its anti-pulmonary fibrosis (PF) effect in vitro and in vivo. L929 cells were treated with 10 μg mL-1 lipopolysaccharide (LPS) to establish a PF model in vitro and mice were administered with 3.5 mg kg-1 bleomycin (BLM) by endotracheal intubation to establish a PF model in vivo for investigating the anti-PF effect and its potential mechanism. The results demonstrated that AD-1 reduced the injury, extracellular matrix (ECM) buildup and α-smooth muscle actin (α-SMA) protein expression levels of L929 induced by LPS. Oral administration of AD-1 downregulated the expression of interleukins (such as IL-1β, IL-6 and IL-18), increased the expression of superoxide dismutase (SOD) and glutathione (GSH), reduced the lung coefficient and the content of hydroxyproline (HYP), and mediated the Bax/Bcl-2 protein ratio and P-p53, β-catenin and SIRT3 expression in the lung tissue of mice. Furthermore, AD-1 inhibited the expression levels of TGF-β1, TIMP-1 and α-SMA and reduced inflammatory cell infiltration and collagen deposition in the lung tissue of PF mice. These results indicated that AD-1 could alleviate PF both in vitro and in vivo, and the underlying mechanism may be related to the decrease in ECM deposition and inflammation, the enhancement of antioxidant capacity, and the mediation of lung cell apoptosis and the TGF-β1/TIMP-1/α-SMA signaling pathway, which provide a theoretical basis for the rehabilitation treatment of PF.
Collapse
Affiliation(s)
- Tao Li
- Shenyang Pharmaceutical University, Shenyang 110016, China. .,Key Laboratory of Nature Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, P.R. China.
| | - Yu Chen
- Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yuan Li
- Shenyang Pharmaceutical University, Shenyang 110016, China. .,Basic medical teaching and Research Department, Liaoning Vocational College of Medicine, Shenyang 110101, China
| | - Gang Chen
- Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yuqing Zhao
- Key Laboratory of Nature Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, P.R. China.
| | - Guangyue Su
- Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|