1
|
Wu KY, Belaiche M, Wen Y, Choulakian MY, Tran SD. Advancements in Polymer Biomaterials as Scaffolds for Corneal Endothelium Tissue Engineering. Polymers (Basel) 2024; 16:2882. [PMID: 39458711 PMCID: PMC11511139 DOI: 10.3390/polym16202882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Corneal endothelial dysfunction is a leading cause of vision loss globally, frequently requiring corneal transplantation. However, the limited availability of donor tissues, particularly in developing countries, has spurred on the exploration of tissue engineering strategies, with a focus on polymer biomaterials as scaffolds for corneal endotlhelium regeneration. This review provides a comprehensive overview of the advancements in polymer biomaterials, focusing on their role in supporting the growth, differentiation, and functional maintenance of human corneal endothelial cells (CECs). Key properties of scaffold materials, including optical clarity, biocompatibility, biodegradability, mechanical stability, permeability, and surface wettability, are discussed in detail. The review also explores the latest innovations in micro- and nano-topological morphologies, fabrication techniques such as electrospinning and 3D/4D bioprinting, and the integration of drug delivery systems into scaffolds. Despite significant progress, challenges remain in translating these technologies to clinical applications. Future directions for research are highlighted, including the need for improved biomaterial combinations, a deeper understanding of CEC biology, and the development of scalable manufacturing processes. This review aims to serve as a resource for researchers and clinician-scientists seeking to advance the field of corneal endothelium tissue engineering.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Myriam Belaiche
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Ying Wen
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Mazen Y. Choulakian
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
2
|
Ponmozhi J, Dhinakaran S, Kocsis D, Iván K, Erdő F. Models for barrier understanding in health and disease in lab-on-a-chips. Tissue Barriers 2024; 12:2221632. [PMID: 37294075 PMCID: PMC11042069 DOI: 10.1080/21688370.2023.2221632] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
The maintenance of body homeostasis relies heavily on physiological barriers. Dysfunction of these barriers can lead to various pathological processes, including increased exposure to toxic materials and microorganisms. Various methods exist to investigate barrier function in vivo and in vitro. To investigate barrier function in a highly reproducible manner, ethically, and high throughput, researchers have turned to non-animal techniques and micro-scale technologies. In this comprehensive review, the authors summarize the current applications of organ-on-a-chip microfluidic devices in the study of physiological barriers. The review covers the blood-brain barrier, ocular barriers, dermal barrier, respiratory barriers, intestinal, hepatobiliary, and renal/bladder barriers under both healthy and pathological conditions. The article then briefly presents placental/vaginal, and tumour/multi-organ barriers in organ-on-a-chip devices. Finally, the review discusses Computational Fluid Dynamics in microfluidic systems that integrate biological barriers. This article provides a concise yet informative overview of the current state-of-the-art in barrier studies using microfluidic devices.
Collapse
Affiliation(s)
- J. Ponmozhi
- Microfluidics Laboratory, Department of Mechanical Engineering, IPS Academy-Institute of Engineering Science, Indore, India
| | - S. Dhinakaran
- The Centre for Fluid Dynamics, Department of Mechanical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Dorottya Kocsis
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Kristóf Iván
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Franciska Erdő
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
3
|
Kado Abdalkader R, Chaleckis R, Fujita T, Kamei KI. Modeling dry eye with an air-liquid interface in corneal epithelium-on-a-chip. Sci Rep 2024; 14:4185. [PMID: 38379013 PMCID: PMC10879145 DOI: 10.1038/s41598-024-54736-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/15/2024] [Indexed: 02/22/2024] Open
Abstract
Dry eye syndrome (DES) is a complex ocular condition characterized by an unstable tear film and inadequate tear production, leading to tissue damage. Despite its common occurrence, there is currently no comprehensive in vitro model that accurately reproduce the cellular characteristics of DES. Here we modified a corneal epithelium-on-a-chip (CEpOC) model to recapitulate DES by subjecting HCE-T human corneal epithelial cells to an air-liquid (AL) interface stimulus. We then assessed the effects of AL stimulation both in the presence and absence of diclofenac (DCF), non-steroidal anti-inflammatory drug. Transcriptomic analysis revealed distinct gene expression changes in response to AL and AL_DCF, affecting pathways related to development, epithelial structure, inflammation, and extracellular matrix remodeling. Both treatments upregulated PIEZO2, linked to corneal damage signaling, while downregulating OCLN, involved in cell-cell junctions. They increased the expression of inflammatory genes (e.g., IL-6) and reduced mucin production genes (e.g., MUC16), reflecting dry eye characteristics. Metabolomic analysis showed increased secretion of metabolites associated with cell damage and inflammation (e.g., methyl-2-oxovaleric acid, 3-methyl-2-oxobutanoic acid, lauroyl-carnitine) in response to AL and even more with AL_DCF, indicating a shift in cellular metabolism. This study showcases the potential use of AL stimulus within the CEpOC to induce cellular characteristics relevant to DES.
Collapse
Affiliation(s)
- Rodi Kado Abdalkader
- Ritsumeikan Global Innovation Research Organization (R-GIRO), Ritsumeikan University, Shiga, Japan.
| | - Romanas Chaleckis
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Japan
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Takuya Fujita
- Ritsumeikan Global Innovation Research Organization (R-GIRO), Ritsumeikan University, Shiga, Japan
- Department of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Ken-Ichiro Kamei
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan
- Programs of Biology and Bioengineering, Divisions of Science and Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA
| |
Collapse
|
4
|
Abdalkader RK, Fujita T. Corneal epithelium models for safety assessment in drug development: Present and future directions. Exp Eye Res 2023; 237:109697. [PMID: 37890755 DOI: 10.1016/j.exer.2023.109697] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
The human corneal epithelial barrier plays a crucial role in drug testing studies, including drug absorption, distribution, metabolism, and excretion (ADME), as well as toxicity testing during the preclinical stages of drug development. However, despite the valuable insights gained from animal and current in vitro models, there remains a significant discrepancy between preclinical drug predictions and actual clinical outcomes. Additionally, there is a growing emphasis on adhering to the 3R principles (refine, reduce, replace) to minimize the use of animals in testing. To tackle these challenges, there is a rising demand for alternative in vitro models that closely mimic the human corneal epithelium. Recently, remarkable advancements have been made in two key areas: microphysiological systems (MPS) or organs-on-chips (OoCs), and stem cell-derived organoids. These cutting-edge platforms integrate four major disciplines: stem cells, microfluidics, bioprinting, and biosensing technologies. This integration holds great promise in developing powerful and biomimetic models of the human cornea.
Collapse
Affiliation(s)
- Rodi Kado Abdalkader
- Ritsumeikan Global Innovation Research Organization (R-GIRO), Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Takuya Fujita
- Ritsumeikan Global Innovation Research Organization (R-GIRO), Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan; Department of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
5
|
Saorin G, Caligiuri I, Rizzolio F. Microfluidic organoids-on-a-chip: The future of human models. Semin Cell Dev Biol 2023; 144:41-54. [PMID: 36241560 DOI: 10.1016/j.semcdb.2022.10.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Microfluidics opened the possibility to model the physiological environment by controlling fluids flows, and therefore nutrients supply. It allows to integrate external stimuli such as electricals or mechanicals and in situ monitoring important parameters such as pH, oxygen and metabolite concentrations. Organoids are self-organized 3D organ-like clusters, which allow to closely model original organ functionalities. Applying microfluidics to organoids allows to generate powerful human models for studying organ development, diseases, and drug testing. In this review, after a brief introduction on microfluidics, organoids and organoids-on-a-chip are described by organs (brain, heart, gastrointestinal tract, liver, pancreas) highlighting the microfluidic approaches since this point of view was overlooked in previously published reviews. Indeed, the review aims to discuss from a different point of view, primary microfluidics, the available literature on organoids-on-a-chip, standing out from the published literature by focusing on each specific organ.
Collapse
Affiliation(s)
- Gloria Saorin
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30123 Venezia, Italy
| | - Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30123 Venezia, Italy; Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy.
| |
Collapse
|
6
|
Li Q, Wong HL, Ip YL, Chu WY, Li MS, Saha C, Shih KC, Chan YK. Current microfluidic platforms for reverse engineering of cornea. Mater Today Bio 2023; 20:100634. [PMID: 37139464 PMCID: PMC10149412 DOI: 10.1016/j.mtbio.2023.100634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 05/05/2023] Open
Abstract
According to the World Health Organization, corneal blindness constitutes 5.1% of global blindness population. Surgical outcomes have been improved significantly in the treatment of corneal blindness. However, corneal transplantation is limited by global shortage of donor tissue, prompting researchers to explore alternative therapies such as novel ocular pharmaceutics to delay corneal disease progression. Animal models are commonly adopted for investigating pharmacokinetics of ocular drugs. However, this approach is limited by physiological differences in the eye between animals and human, ethical issues and poor bench-to-bedside translatability. Cornea-on-a-chip (CoC) microfluidic platforms have gained great attention as one of the advanced in vitro strategies for constructing physiologically representative corneal models. With significant improvements in tissue engineering technology, CoC integrates corneal cells with microfluidics to recapitulate human corneal microenvironment for the study of corneal pathophysiological changes and evaluation of ocular drugs. Such model, in complement to animal studies, can potentially accelerate translational research, in particular the pre-clinical screening of ophthalmic medication, driving clinical treatment advancement for corneal diseases. This review provides an overview of engineered CoC platforms with respect to their merits, applications, and technical challenges. Emerging directions in CoC technology are also proposed for further investigations, to accentuate preclinical obstacles in corneal research.
Collapse
Affiliation(s)
- Qinyu Li
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China
| | - Ho Lam Wong
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China
| | - Yan Lam Ip
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China
| | - Wang Yee Chu
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China
| | - Man Shek Li
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China
| | - Chinmoy Saha
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China
| | - Kendrick Co Shih
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China
| | - Yau Kei Chan
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China
| |
Collapse
|
7
|
Abdalkader R, Chaleckis R, Fujita T. Early Differentiation Signatures in Human Induced Pluripotent Stem Cells Determined by Non-Targeted Metabolomics Analysis. Metabolites 2023; 13:706. [PMID: 37367864 DOI: 10.3390/metabo13060706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) possess immense potential as a valuable source for the generation of a wide variety of human cells, yet monitoring the early cell differentiation towards a specific lineage remains challenging. In this study, we employed a non-targeted metabolomic analysis technique to analyze the extracellular metabolites present in samples as small as one microliter. The hiPSCs were subjected to differentiation by initiating culture under the basal medium E6 in combination with chemical inhibitors that have been previously reported to direct differentiation towards the ectodermal lineage such as Wnt/β-catenin and TGF-β kinase/activin receptor, alone or in combination with bFGF, and the inhibition of glycogen kinase 3 (GSK-3), which is commonly used for the diversion of hiPSCs towards mesodermal lineage. At 0 h and 48 h, 117 metabolites were identified, including biologically relevant metabolites such as lactic acid, pyruvic acid, and amino acids. By determining the expression of the pluripotency marker OCT3/4, we were able to correlate the differentiation status of cells with the shifted metabolites. The group of cells undergoing ectodermal differentiation showed a greater reduction in OCT3/4 expression. Moreover, metabolites such as pyruvic acid and kynurenine showed dramatic change under ectodermal differentiation conditions where pyruvic acid consumption increased 1-2-fold, while kynurenine secretion decreased 2-fold. Further metabolite analysis uncovered a group of metabolites specifically associated with ectodermal lineage, highlighting the potential of our findings to determine the characteristics of hiPSCs during cell differentiation, particularly under ectodermal lineage conditions.
Collapse
Affiliation(s)
- Rodi Abdalkader
- Ritsumeikan Global Innovation Research Organization (R-GIRO), Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Romanas Chaleckis
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi 371-8511, Gunma, Japan
| | - Takuya Fujita
- Ritsumeikan Global Innovation Research Organization (R-GIRO), Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| |
Collapse
|
8
|
Cui Z, Liao K, Li S, Gu J, Wang Y, Ding C, Guo Y, Chan HF, Ma JH, Tang S, Chen J. LM22B-10 promotes corneal nerve regeneration through in vitro 3D co-culture model and in vivo corneal injury model. Acta Biomater 2022; 146:159-176. [PMID: 35562005 DOI: 10.1016/j.actbio.2022.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 11/01/2022]
Abstract
Corneal nerve wounding often causes abnormalities in the cornea and even blindness in severe cases. In this study, we construct a dorsal root ganglion-corneal stromal cell (DRG-CSC, DS) co-culture 3D model to explore the mechanism of corneal nerve regeneration. Firstly, this model consists of DRG collagen grafts sandwiched by orthogonally stacked and orderly arranged CSC-laden plastic compressed collagen. Nerve bundles extend into the entire corneal stroma within 14 days, and they also have orthogonal patterns. This nerve prevents CSCs from apoptosis in the serum withdrawal medium. The conditioned medium (CM) for CSCs in collagen scaffolds contains NT-3, IL-6, and other factors. Among them, NT-3 notably promotes the activation of ERK-CREB in the DRG, leading to the growth of nerve bundles, and IL-6 induces the upregulation of anti-apoptotic genes. Then, LM22B-10, an activator of the NT-3 receptor TrkB/TrkC, can also activate ERK-CREB to enhance nerve growth. After administering LM22B-10 eye drops to regular and diabetic mice with corneal wounding, LM22B-10 significantly improves the healing speed of the corneal epithelium, corneal sensitivity, and corneal nerve density. Overall, the DS co-culture model provides a promising platform and tools for the exploration of corneal physiological and pathological mechanisms, as well as the verification of drug effects in vitro. Meanwhile, we confirm that LM22B-10, as a non-peptide small molecule, has future potential in nerve wound repair. STATEMENT OF SIGNIFICANCE: The cornea accounts for most of the refractive power of the eye. Corneal nerves play an important role in maintaining corneal homeostasis. Once the corneal nerves are damaged, the corneal epithelium and stroma develop lesions. However, the mechanism of the interaction between corneal nerves and corneal cells is still not fully understood. Here, we construct a corneal stroma-nerve co-culture in vitro model and reveal that NT-3 expressed by stromal cells promotes nerve growth by activating the ERK-CREB pathway in nerves. LM22B-10, an activator of NT-3 receptors, can also induce nerve growth in vitro. Moreover, it is used as eye drops to enhance corneal epithelial wound healing, corneal nerve sensitivity and density of nerve plexus in corneal nerve wounding model in vivo.
Collapse
|
9
|
Abdalkader R, Kamei KI. An efficient simplified method for the generation of corneal epithelial cells from human pluripotent stem cells. Hum Cell 2022; 35:1016-1029. [PMID: 35553384 DOI: 10.1007/s13577-022-00713-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/27/2022] [Indexed: 01/23/2023]
Abstract
Corneal epithelial cells derived from human pluripotent stem cells (hPSCs) are an important cell source for preclinical models to test ophthalmic drugs. However, current differentiation protocols lack instructions regarding optimal culturing conditions, which hinders the quality of cells and limits scale-up. Here, we introduce a simplified small molecule-based corneal induction method (SSM-CI) to generate corneal epithelial cells from hPSCs. SSM-CI provides the advantage of minimizing cell-culturing time using two defined culturing media containing TGF-β, and Wnt/β-catenin pathway inhibitors, and bFGF growth factor over 25 days. Compared to the conventional human corneal epithelial cell line (HCE-T) and human primary corneal epithelial cells (hPCEpCs), corneal epithelial cells generated by SSM-CI are well differentiated and express relevant maturation markers, including PAX6 and CK12. RNA-seq analysis indicated the faithful differentiation of hPSCs into corneal epithelia, with significant upregulation of corneal progenitor and adult corneal epithelial phenotypes. Furthermore, despite the initial inhibition of TGF-β and Wnt/β-catenin, upregulation of these pathway-related transcripts was observed in the later stages, indicating their necessity in the generation of mature corneal epithelial cells. Moreover, we observed a shift in gene signatures associated with the metabolic characteristics of mature corneal epithelial cells, involving a decrease in glycolysis and an increase in fatty acid oxidation. This was also attributed to the overexpression of metabolic enzymes and transporter-related transcripts responsible for fatty acid metabolism. Thus, SSM-CI provides a comprehensive method for the generation of functional corneal epithelial cells for use in preclinical models.
Collapse
Affiliation(s)
- Rodi Abdalkader
- Ritsumeikan Global Innovation Research Organization (R-GIRO), Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Ken-Ichiro Kamei
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan. .,Wuya College of Innovation, Shenyang Pharmaceutical University, Liaoning, 110016, People's Republic of China. .,Department of Pharmaceutics, Shenyang Pharmaceutical University, Liaoning, 110016, People's Republic of China.
| |
Collapse
|
10
|
The Development of Biomimetic Aligned Skeletal Muscles in a Fully 3D Printed Microfluidic Device. Biomimetics (Basel) 2021; 7:biomimetics7010002. [PMID: 35076457 PMCID: PMC8788470 DOI: 10.3390/biomimetics7010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
Human skeletal muscles are characterized by a unique aligned microstructure of myotubes which is important for their function as well as for their homeostasis. Thus, the recapitulation of the aligned microstructure of skeletal muscles is crucial for the construction of an advanced biomimetic model aimed at drug development applications. Here, we have developed a 3D printed micropatterned microfluid device (3D-PMMD) through the employment of a fused deposition modeling (FDM)-based 3D printer and clear filaments made of biocompatible polyethylene terephthalate glycol (PETG). We could fabricate micropatterns through the adjustment of the printing deposition heights of PETG filaments, leading to the generation of aligned half-cylinder-shaped micropatterns in a dimension range from 100 µm to 400 µm in width and from 60 µm to 150 µm in height, respectively. Moreover, we could grow and expand C2C12 mouse myoblast cells on 3D-PMMD where cells could differentiate into aligned bundles of myotubes with respect to the dimension of each micropattern. Furthermore, our platform was applicable with the electrical pulses stimulus (EPS) modality where we noticed an improvement in myotubes maturation under the EPS conditions, indicating the potential use of the 3D-PMMD for biological experiments as well as for myogenic drug development applications in the future.
Collapse
|