1
|
Yu L, Pan Y, Meng Q, Wu X, Li M. Thymol@pro-phytomicelles as an antibioticalternative in livestock and poultry farming: preparation, characterization, and in vitro and in vivo antimicrobial activity evaluation. Eur J Pharm Biopharm 2025; 208:114664. [PMID: 39929270 DOI: 10.1016/j.ejpb.2025.114664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/18/2024] [Accepted: 02/07/2025] [Indexed: 02/23/2025]
Abstract
Antibiotic abuse in livestock and poultry farming poses significant threats to human health, including the emergence of drug-resistant bacteria. Thus, antibiotic alternatives are highly required in this field. Thymol (THY) demonstrates significant potential as an antibiotic alternative, but its commercial application is limited due to its high volatility and low water solubility. In this study, a novel nanoformulation of pro-phytomicelles, with glycyrrhizin and rebaudioside A as mixed-nanocarriers that load THY (called "THY@pro-phytomicelles"), was designed and tested as a potent antibiotic alternative. The optimized THY@pro-phytomicelles had an encapsulation efficiency of 99.75 ± 0.37 % and a particle size of 3.83 ± 0.44 nm after they were dispersed in water. Following THY's formulation into THY@pro-phytomicelles, its water solubility, volatility stability, and antioxidant activity significantly improved. In vitro, the THY@pro-phytomicelles showed better antimicrobial activity than THY. Their antibacterial mechanism appeared to involve destruction of the integrity of the bacterial cell wall and biomembrane, leading to alkaline phosphatase (AKP) leakage and inhibition of biofilm formation. In the animal evaluation in this study, they showed excellent in vivo antibacterial capacities against Salmonella enteritidis-induced enteritis, including improvement of the liver bacterial abscess, alleviation of the oxidative stress and inflammatory cytokine levels, reduction of the bacterial load of the liver, and alleviation of the inflammation and damage caused by bacteria in the cecum. Overall, the THY@pro-phytomicelles showed excellent in vitro and in vivo antibacterial activity, making them a potentially effective antibiotic alternative in livestock and poultry farming, with broad potential application in the breeding industry.
Collapse
Affiliation(s)
- Linrong Yu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | | | | | - Xianggen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.
| | - Mengshuang Li
- Qingdao Women and Children's Hospital, Qingdao, China.
| |
Collapse
|
2
|
Qi Q, Su D, Zhuang S, Yao S, Heindl LM, Fan X, Lin M, Li J, Pang Y. Progress in Nanotechnology for Treating Ocular Surface Chemical Injuries: Reflecting on Advances in Ophthalmology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407340. [PMID: 39755928 PMCID: PMC11809354 DOI: 10.1002/advs.202407340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/26/2024] [Indexed: 01/06/2025]
Abstract
Ocular surface chemical injuries often result in permanent visual impairment and necessitate complex, long-term treatments. Immediate and extensive irrigation serves as the first-line intervention, followed by various therapeutic protocols applied throughout different stages of the condition. To optimize outcomes, conventional regimens increasingly incorporate biological agents and surgical techniques. In recent years, nanotechnology has made significant strides, revolutionizing the management of ocular surface chemical injuries by enabling sustained drug release, enhancing treatment efficacy, and minimizing side effects. This review provides a comprehensive analysis of the etiology, epidemiology, classification, and conventional therapies for ocular chemical burns, with a special focus on nanotechnology-based drug delivery systems in managing ocular surface chemical injuries. Twelve categories of nanocarrier platforms are examined, including liposomes, nanoemulsions, nanomicelles, nanowafers, nanostructured lipid carriers, nanoparticles, hydrogels, dendrimers, nanocomplexes, nanofibers, nanozymes, and nanocomposite materials, highlighting their advantages in targeted delivery, biocompatibility, and improved healing efficacy. Additionally, current challenges and limitations in the field are discussed and the future potential of nanotechnology in treating ocular diseases is explored. This review presents the most extensive examination of this topic to date, aiming to link recent advancements with broader therapeutic strategies.
Collapse
Affiliation(s)
- Qiaoran Qi
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
| | - Dai Su
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
| | - Shuqin Zhuang
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
| | - Sunyuan Yao
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
| | - Ludwig M. Heindl
- Department of OphthalmologyFaculty of Medicine and University Hospital CologneUniversity of Cologne50937CologneGermany
- Center for Integrated Oncology (CIO)Aachen‐Bonn‐Cologne‐DuesseldorfCologneGermany
| | - Xianqun Fan
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
| | - Ming Lin
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
| | - Jin Li
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
| | - Yan Pang
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyCenter for Basic Medical Research and Innovation in Visual System DiseasesMinistry of EducationShanghai200011China
- Shanghai Frontiers Science Center of Drug Target Identification and DeliverySchool of Pharmaceutical SciencesShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
3
|
Eröz P, Özer Ö, Güçlü ES, Baysal Z, Doğan L. Evaluation of Prognostic Factors in Adult Chemical Corneal Injury. J Craniofac Surg 2024; 35:00001665-990000000-01864. [PMID: 39212409 DOI: 10.1097/scs.0000000000010570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE The aim of this study was to evaluate prognostic factors that may be useful in predicting final visual acuity in patients admitted to the clinic with chemical corneal injuries. METHODS Data on age, sex, time to admission, irrigation solutions (balanced salt solution or phosphate buffered saline) and type of substance causing chemical injury were recorded. On admission, all patients were evaluated according to Roper Hall and Dua classifications. At the twelfth month after treatment, all measurements were repeated. RESULTS A total of 131 patients with chemical corneal injuries [group 1 (acid, n = 73) and group 2 (alkaline, n = 58)] were included. The initial best corrected visual acuity (BCVA) level was "20/40 and above" in 32 patients (43.8%) in group 1 and 14 patients (24.1%) in group 2. According to Roper Hall classification, the mean grade was 1.92 ± 0.9 in group 1 and 2.27 ± 1.1 in group 2. According to Dua classification, the mean grade of the patients in group 1 was 2.16 ± 0.9 and 2.58 ± 1.2 in group 2. Posttreatment BCVA level improved to "1/200 to 19/200" in 8 (66.7%) of the patients with an initial BCVA level of "perception of light or hand movements." In univariate analysis, initial visual acuity and posttreatment visual acuity were statistically significant ( P < 0.001). It was also statistically significant in multivariate analysis adjusted for sex and age ( P < 0.001). CONCLUSION In conclusion, the treatment of chemical corneal injuries is a long and exhausting process. The use of initial visual acuity and Dua classification in prognosis prediction may provide high success.
Collapse
Affiliation(s)
- Pinar Eröz
- Ophthalmology Clinic, Tarsus State Hospital, Mersin, Turkey
| | - Ömer Özer
- Department of Ophthalmology, Niğde Ömer Halisdemir University, Niğde, Turkey
| | | | - Zeki Baysal
- Department of Ophthalmology, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Levent Doğan
- Department of Ophthalmology, Niğde Ömer Halisdemir University, Niğde, Turkey
| |
Collapse
|
4
|
Wang Z, Cao Y, Li W, Liu R, Wu L, Zhao Q, Liu Y, Tang K, Jiang Y, Chen Z, Li X, Zhu L, Duan T. Natural Products of Licorice for Uranium Decorporation with Low Toxicity and High Efficiency. Inorg Chem 2024; 63:13653-13663. [PMID: 38967129 DOI: 10.1021/acs.inorgchem.4c01915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The development and exploration of uranium decorporation agents with straightforward synthesis, high removal ability, and low toxicity are crucial guarantees for the safety of workers in the nuclear industry and the public. Herein, we report the use of traditional Chinese medicine licorice for uranium decorporation. Licorice has good adsorption performance and excellent selectivity for uranium in the simulated human environment. Glycyrrhizic acid (GL) has a high affinity for uranium (p(UO2) = 13.67) and will complex with uranium at the carbonyl site. Both licorice and GL exhibit lower cytotoxicity compared to the commercial clinical decorporation agent diethylenetriamine pentaacetate sodium salts (CaNa3-DTPA). Notably, at the cellular level, the uranium removal efficiency of GL is eight times higher than that of CaNa3-DTPA. Administration of GL by prophylactic intraperitoneal injection demonstrates that its uranium removal efficiency from kidneys and bones is 55.2 and 23.9%, while CaNa3-DTPA shows an insignificant effect. The density functional theory calculation of the bonding energy between GL and uranium demonstrates that GL exhibits a higher binding affinity (-2.01 vs -1.15 eV) to uranium compared to DTPA. These findings support the potential of licorice and its active ingredient, GL, as promising candidates for uranium decorporation agents.
Collapse
Affiliation(s)
- Zeru Wang
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang 621010, China
| | - Yalan Cao
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang 621010, China
| | - Wenhao Li
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ruixi Liu
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Linzhen Wu
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
| | - Qian Zhao
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yawen Liu
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang 621010, China
| | - Kui Tang
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang 621010, China
| | - Yao Jiang
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zhengguo Chen
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang 621010, China
| | - Xiaoan Li
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang 621010, China
| | - Lin Zhu
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Tao Duan
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang 621010, China
| |
Collapse
|
5
|
Ge Z, Long L, Zhang F, Dong R, Chen Z, Tang S, Yang L, Wang Y. Development of an injectable oxidized dextran/gelatin hydrogel capable of promoting the healing of alkali burn-associated corneal wounds. Int J Biol Macromol 2024; 273:132740. [PMID: 38825267 DOI: 10.1016/j.ijbiomac.2024.132740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
The cornea serves as an essential shield that protects the underlying eye from external conditions, yet it remains highly vulnerable to injuries that could lead to blindness and scarring if not promptly and effectively treated. Excessive inflammatory response constitute the primary cause of pathological corneal injury. This study aimed to develop effective approaches for enabling the functional repair of corneal injuries by combining nanoparticles loaded with anti-inflammatory agents and an injectable oxidized dextran/gelatin/borax hydrogel. The injectability and self-healing properties of developed hydrogels based on borate ester bonds and dynamic Schiff base bonds were excellent, improving the retention of administered drugs on the ocular surface. In vitro cellular assays and in vivo animal studies collectively substantiated the proficiency of probucol nanoparticle-loaded hydrogels to readily suppress proinflammatory marker expression and to induce the upregulation of anti-inflammatory mediators, thereby supporting rapid repair of rat corneal tissue following alkali burn-induced injury. As such, probucol nanoparticle-loaded hydrogels represent a prospective avenue to developing long-acting and efficacious therapies for ophthalmic diseases.
Collapse
Affiliation(s)
- Zhengwei Ge
- Aier Eye Hospital, Jinan University, Guangzhou, Guangdong Province 510071, China; Changsha Aier Eye Hospital, Changsha, Hunan Province 410000, China
| | - Linyu Long
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan 410009, China; Aier Eye Institute, Aier Eye Hospital Group, Changsha, Hunan Province 410035, China; National Engineering Research Center for Biomaterials, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu, 610064, China; Eye Center of Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Fanjun Zhang
- National Engineering Research Center for Biomaterials, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu, 610064, China
| | - Ruiqi Dong
- National Engineering Research Center for Biomaterials, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu, 610064, China
| | - Zhongping Chen
- Aier Eye Hospital, Jinan University, Guangzhou, Guangdong Province 510071, China; Changsha Aier Eye Hospital, Changsha, Hunan Province 410000, China; Aier Academy of Ophthalmology, Central South University, Changsha, Hunan 410009, China; School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei Province, China.
| | - Shibo Tang
- Changsha Aier Eye Hospital, Changsha, Hunan Province 410000, China; Aier Academy of Ophthalmology, Central South University, Changsha, Hunan 410009, China; Aier Eye Institute, Aier Eye Hospital Group, Changsha, Hunan Province 410035, China.
| | - Li Yang
- National Engineering Research Center for Biomaterials, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu, 610064, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
6
|
Yan D, Ouyang W, Lin J, Liu Z. Smart coating by thermo-sensitive Pluronic F-127 for enhanced corneal healing via delivery of biological macromolecule progranulin. Int J Biol Macromol 2023; 253:127586. [PMID: 37866564 DOI: 10.1016/j.ijbiomac.2023.127586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
As a leading cause of vision impairment and blindness, corneal alkali burns lead to long-term visual deterioration or even permanent visual impairment while effective treatment strategies remain a challenge. Herein, a thermo-sensitive hydrogel with the combination of multi-functional protein progranulin (PGRN), a biological macromolecule consisting of several hundred amino acids and possessing a high molecular weight, is efficiently prepared through a convenient stirring and mixing at the low temperature. The hydrogel can be easily administrated to the ocular surface contacting with the cornea, which can be immediately transformed into gel-like state due to the thermo-responsive behavior, realizing a site-specific coating to isolate further external stimulation. The smart coating not only exhibits excellent transparency and biocompatibility, but also presents a constant delivery of PGRN, creating a nutritious and supportive micro-environment for the ocular surface. The results show that the prepared functional hydrogel can efficiently suppress inflammation, accelerate re-epithelization, and intriguingly enhance axonal regeneration via modulation of multiple signaling pathways, indicating the novel designed HydrogelPGRN is a promising therapy option for serious corneal injury.
Collapse
Affiliation(s)
- Dan Yan
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian 361005, China
| | - Weijie Ouyang
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian 361005, China
| | - Jinyou Lin
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China.
| | - Zuguo Liu
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian 361005, China; Department of Ophthalmology, the First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
7
|
Sun C, Tian L, Wei Y, Chen P, Wu X, Jie Y. Novel bisdemethoxycurcumin@phytomicelle ophthalmic solution: In vitro formulation appraisal and in vivo prompting rapid corneal wound healing evaluations. Exp Eye Res 2023; 234:109608. [PMID: 37517540 DOI: 10.1016/j.exer.2023.109608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/03/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
A simple and novel phytochemical-based nano-ophthalmic solution was developed for the treatment of eye diseases. This nanoformulation was produced from the mixture of the phytochemicals glycyrrhizin and alpha-glycosyl hesperidin, which serve as the phytonanomaterials that solubilize bisdemethoxycurcumin (BDMC), a promising phytochemical with strong pharmacological activities but with poor water solubility. This novel nanoformulation is a clear solution named as BDMC@phytomicelle ophthalmic solution, which was formulated using a simple preparation process. The BDMC@phytomicelles were characterized by a BDMC encapsulation efficiency of 98.37% ± 2.26%, a small phytomicelle size of 4.06 ± 0.22 nm, and a small polydispersity index of 0.25 ± 0.04. With the optimization of the BDMC@phytomicelles, the apparent solubility of BDMC (i.e., the loading of BDMC in the phytomicelles) in the simulated lacrimal fluid was 3.19 ± 0.02 mg/ml. The BDMC@phytomicelle ophthalmic solution demonstrated a good storage stability. Moreover, it did not cause irritations in rabbit eyes, and it facilitated the excellent corneal permeation of BDMC in mice. The BDMC@phytomicelles demonstrated a marked effect on the in vivo induction of corneal wound healing both in healthy and denervated corneas, as seen in the induction of corneal epithelial wound healing, recovery of corneal sensitivity, and increase in corneal subbasal nerve fiber density. These strong pharmacological activities involve the inhibition of hmgb1 signaling and the induction of VIP signaling. Overall, the BDMC@phytomicelle ophthalmic solution is a novel and promising simple ocular nano-formulation of BDMC with significantly improved in vivo profiles.
Collapse
Affiliation(s)
- Cun Sun
- Ophthalmology Department, Beijing HuiMin Hospital, Beijing, China; Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Lei Tian
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yanjun Wei
- Viwit Pharmaceutical Co., Ltd., Zaozhuang, Shandong, China; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Peng Chen
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, China
| | - Xianggen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.
| | - Ying Jie
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
Yang C, Nguyen DD, Lai J. Poly(l-Histidine)-Mediated On-Demand Therapeutic Delivery of Roughened Ceria Nanocages for Treatment of Chemical Eye Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302174. [PMID: 37430140 PMCID: PMC10502830 DOI: 10.1002/advs.202302174] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/10/2023] [Indexed: 07/12/2023]
Abstract
Development of topical bioactive formulations capable of overcoming the low bioavailability of conventional eye drops is critically important for efficient management of ocular chemical burns. Herein, a nanomedicine strategy is presented to harness the surface roughness-controlled ceria nanocages (SRCNs) and poly(l-histidine) surface coatings for triggering multiple bioactive roles of intrinsically therapeutic nanocarriers and promoting transport across corneal epithelial barriers as well as achieving on-demand release of dual drugs [acetylcholine chloride (ACh) and SB431542] at the lesion site. Specifically, the high surface roughness helps improve cellular uptake and therapeutic activity of SRCNs while exerting a negligible impact on good ocular biocompatibility of the nanomaterials. Moreover, the high poly(l-histidine) coating amount can endow the SRCNs with an ≈24-fold enhancement in corneal penetration and an effective smart release of ACh and SB431542 in response to endogenous pH changes caused by tissue injury/inflammation. In a rat model of alkali burn, topical single-dose nanoformulation can efficaciously reduce corneal wound areas (19-fold improvement as compared to a marketed eye drops), attenuate ≈93% abnormal blood vessels, and restore corneal transparency to almost normal at 4 days post-administration, suggesting great promise for designing multifunctional metallic nanotherapeutics for ocular pharmacology and tissue regenerative medicine.
Collapse
Affiliation(s)
- Chia‐Jung Yang
- Department of Biomedical EngineeringChang Gung UniversityTaoyuan33302Taiwan
| | - Duc Dung Nguyen
- Department of Biomedical EngineeringChang Gung UniversityTaoyuan33302Taiwan
| | - Jui‐Yang Lai
- Department of Biomedical EngineeringChang Gung UniversityTaoyuan33302Taiwan
- Department of OphthalmologyChang Gung Memorial Hospital, LinkouTaoyuan33305Taiwan
- Department of Materials EngineeringMing Chi University of TechnologyNew Taipei City24301Taiwan
- Research Center for Chinese Herbal MedicineCollege of Human EcologyChang Gung University of Science and TechnologyTaoyuan33303Taiwan
| |
Collapse
|
9
|
Mostafa M, Al Fatease A, Alany RG, Abdelkader H. Recent Advances of Ocular Drug Delivery Systems: Prominence of Ocular Implants for Chronic Eye Diseases. Pharmaceutics 2023; 15:1746. [PMID: 37376194 PMCID: PMC10302848 DOI: 10.3390/pharmaceutics15061746] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic ocular diseases can seriously impact the eyes and could potentially result in blindness or serious vision loss. According to the most recent data from the WHO, there are more than 2 billion visually impaired people in the world. Therefore, it is pivotal to develop more sophisticated, long-acting drug delivery systems/devices to treat chronic eye conditions. This review covers several drug delivery nanocarriers that can control chronic eye disorders non-invasively. However, most of the developed nanocarriers are still in preclinical or clinical stages. Long-acting drug delivery systems, such as inserts and implants, constitute the majority of the clinically used methods for the treatment of chronic eye diseases due to their steady state release, persistent therapeutic activity, and ability to bypass most ocular barriers. However, implants are considered invasive drug delivery technologies, especially those that are nonbiodegradable. Furthermore, in vitro characterization approaches, although useful, are limited in mimicking or truly representing the in vivo environment. This review focuses on long-acting drug delivery systems (LADDS), particularly implantable drug delivery systems (IDDS), their formulation, methods of characterization, and clinical application for the treatment of eye diseases.
Collapse
Affiliation(s)
- Mahmoud Mostafa
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minya 61519, Egypt;
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62223, Saudi Arabia;
| | - Raid G. Alany
- School of Pharmacy, Kingston University London, Kingston Upon Tames KT1 2EE, UK;
- School of Pharmacy, The University of Auckland, Auckland 1010, New Zealand
| | - Hamdy Abdelkader
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62223, Saudi Arabia;
| |
Collapse
|
10
|
Shen J, Liang Y, Bi Z, Yin X, Chen C, Zhao X, Liu S, Li Y. Cyclosporin A improves the hyperosmotic response in an experimental dry eye model by inhibiting the HMGB1/TLR4/NF-κB signaling pathway. Exp Eye Res 2023; 229:109418. [PMID: 36806672 DOI: 10.1016/j.exer.2023.109418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/29/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Hyperosmolarity is closely related to dry eye disease (DED), which induces corneal epithelial cell structure and dysfunction leading to ocular surface inflammation. Cyclosporine A (CSA) is a cyclopeptide consisting of 11 deduced amino acids. It has an immunosuppressive effect and shows a vital function in inhibiting the inflammatory response. The mechanism of CSA in DED is still not entirely clear. This experiment aimed to investigate the possible mechanism of CSA in the hyperosmotic DED model. This study found that CSA can inhibit the transcript levels of DED high mobility group protein 1 (HMGB1), Toll-like receptor 4 (TLR4) and nuclear transcription factor κB (NF-κB) in signaling pathways. In addition, the study also found that 550 mOsm/L can induce the formation of DED models in vivo or in vitro. Furthermore, different concentrations of CSA have different effects on the expression of HMGB1 in human corneal epithelial cells under hyperosmotic stimulation, and high concentrations of CSA may increase the expression of HMGB1. In addition, CSA effectively reduced the corneal fluorescence staining score of the DE group and increased the tear volume of mice. Therefore, this experimental investigation might supply new evidence for the mechanism of CSA in DED, provide a potential new therapy for treating DED, and provide a theoretical basis for CSA treatment of DED.
Collapse
Affiliation(s)
- Jiachao Shen
- Department of Ophthalmology, Binzhou Medical College, Yantai, 264000, China; Department of Ophthalmology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, China
| | - Yan Liang
- Department of Ophthalmology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, China
| | - Zhaojing Bi
- Department of Ophthalmology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, China
| | - Xin Yin
- Department of Ophthalmology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, China
| | - Chen Chen
- Department of Ophthalmology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, China
| | - Xinmei Zhao
- Department of Ophthalmology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, China
| | - Shujun Liu
- Department of Ophthalmology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, China.
| | - Yuanbin Li
- Department of Ophthalmology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, China.
| |
Collapse
|
11
|
Sun Z, Zhang M, Wei Y, Li M, Wu X, Xin M. A simple but novel glycymicelle ophthalmic solution based on two approved drugs empagliflozin and glycyrrhizin: in vitro/ in vivo experimental evaluation for the treatment of corneal alkali burns. Biomater Sci 2023; 11:2531-2542. [PMID: 36779571 DOI: 10.1039/d2bm01957d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
A simple but novel ophthalmic solution based on two approved drugs was developed to reposition existing drugs to treat new diseases. This nanoformulation was developed using the phytochemical drug glycyrrhizin as an amphiphilic nanocarrier to micellarly solubilize empagliflozin (EMP), an oral drug that is widely used to control high blood glucose but has poor water solubility. This novel nanoformulation, which we designated the EMP@glycymicelle ophthalmic solution, was obtained using a simple preparation process. The resulting solution was a clear solution with an EMP encapsulation efficiency of 97.91 ± 0.50%, a small glycymicelle size of 6.659 ± 0.196 nm, and a narrow polydispersity index of 0.226 ± 0.059. The optimized formulation demonstrated that EMP was soluble in water up to 18 mg ml-1 because of its encapsulation within glycymicelles. The EMP@glycymicelle ophthalmic solution exhibited excellent characteristics, including good storage stability, fast in vitro release profiles, improved in vitro antioxidant activity, and no ocular irritation. Ocular permeation evaluation showed that the EMP@glycymicelle ophthalmic solution had strong ocular permeation of EMP, and it reached the posterior segment of mouse eyes after ocular topical administration. The treatment efficacy evaluation showed that the EMP@glycymicelle ophthalmic solution had a significant effect against corneal alkali burns in mice, prompting corneal wound healing, recovering corneal sensitivity, reducing corneal haze, and relieving corneal NV invasion. The mechanism of inhibiting HMGB1 signaling was involved in this strong treatment effect. These results indicated that the EMP@glycymicelle ophthalmic solution provided a new concept of drug repurposing and a promising ocular system for the nano-delivery of EMP with significantly improved in vivo profiles.
Collapse
Affiliation(s)
- Zongjian Sun
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China. .,Department of Ophthalmology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China.
| | - Mingxin Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Yanjun Wei
- Viwit Pharmaceutical Co., Ltd. Zaozhuang, Shandong, China
| | - Mengshuang Li
- Qingdao Women and Children's Hospital, Qingdao, China
| | - Xianggen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Meng Xin
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China. .,Department of Ophthalmology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China.
| |
Collapse
|
12
|
Novel luteolin@pro-phytomicelles: In vitro characterization and in vivo evaluation of protection against drug-induced hepatotoxicity. Chem Biol Interact 2022; 365:110095. [PMID: 35970426 DOI: 10.1016/j.cbi.2022.110095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 11/18/2022]
Abstract
A novel nanoformulation with the small molecule phytochemical dipotassium glycyrrhizinate as a nanomaterial was developed for the oral delivery of luteolin (Lut), a widely used phytochemical, but it suffered from poor water solubility and low oral bioavailability. This novel nanoformulation, named Lut@pro-phytomicelles, can be fabricated with a simple process. Lut@pro-phytomicelles can instantly dissolve into aqueous mediums and formulate through self-assembly a clear phytomicelle solution with a Lut encapsulation efficiency of 99.16 ± 0.90%, a small micelle size of 30.32 ± 0.12 nm, and a narrow polydispersity index of 0.138 ± 0.024. The optimized formulation demonstrated that Lut had solubility in up to 50 mg/ml of water as a result of its encapsulation within DG phytomicelles. Lut@pro-phytomicelles exhibited excellent characteristics, including good storage stability, a fast in vitro release profile, improvement in in vitro antioxidant activity, and high safety potential. In the oral bioavailability evaluation, a shorter Tmax, increased Cmax, and improved AUC0-t were obtained with Lut@pro-phytomicelles when compared to bare Lut. The distribution evaluation further showed that Lut@pro-phytomicelles could effectively increase the concentrations of Lut in all the tested organs and gastrointestinal segments. In the protection efficacy evaluation, 100 mg/kg Lut@pro-phytomicelles demonstrated strong effects against acetaminophen-induced hepatotoxicity. The mechanisms of inhibiting high-mobility group box 1 signaling and suppressing oxidative stress were involved in this strong treatment effect. These results showed that simple but novel Lut@pro-phytomicelles provided a new, promising nano-delivery system for Lut with a significantly improved in vivo profile.
Collapse
|
13
|
Liu L, Zhou L, Wang C, Yuan Z, Cao Q, Li M, Wu X. Novel pterostilbene-loaded pro-phytomicelles: preclinical pharmacokinetics, distribution, and treatment efficacy against acetaminophen-induced liver injury. Food Funct 2022; 13:9868-9877. [DOI: 10.1039/d2fo01395a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel pro-phytomicelle formulation with small molecule phytochemicals as nanomaterials was developed for the oral delivery of pterostilbene (PTE).
Collapse
Affiliation(s)
- Lu Liu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | | | | | - Zhixin Yuan
- Qingdao Haier Biotech Co. Ltd, Qingdao, China
| | - Qilong Cao
- Qingdao Haier Biotech Co. Ltd, Qingdao, China
| | - Mengshuang Li
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Qingdao Women and Children's Hospital, Qingdao 266034, China
| | - Xianggen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|