1
|
Huang D, Liu Z, Deng Y. Retinopathy of Prematurity (ROP): An Overview of Biomarkers in Various Samples for Prediction, Diagnosis, and Prognosis. Clin Ophthalmol 2025; 19:1515-1530. [PMID: 40357456 PMCID: PMC12067468 DOI: 10.2147/opth.s519292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Retinopathy of Prematurity (ROP) is a proliferative retinal vascular disease marked by abnormal development of retinal vessels in low birth weight preterm infants. It is one of the leading causes of blindness in preterm infants. Current ROP screening methods impose high demands on both the equipment and the expertise of ophthalmologists, which limits their widespread application, particularly in secondary hospitals and remote areas. Thus, the identification of relevant biomarkers and the development of simpler detection methods are important and promising. Non-invasive or minimally invasive sampling methods, along with biomarkers possessing high sensitivity and specificity, could greatly enhance neonatal screening, facilitate early diagnosis, and improve prevention of blindness in preterm infants. This review provides relevant medical insights for clinical practice. This review explored, compares and analyzes various sampling sources. It compares and analyzes research on ROP-related biomarkers derived from these samples.
Collapse
Affiliation(s)
- Dan Huang
- Department of Ophthalmology Center, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - ZhuoQi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Yan Deng
- Department of Ophthalmology Center, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
2
|
Shahror RA, Shosha E, Ji MH, Morris CA, Wild M, Zaman B, Mitchell CD, Tetelbom P, Leung YK, Phillips PH, Sallam AA, Fouda AY. Proteomic Analysis of Aqueous Humor in Central Retinal Artery Occlusion: Unveiling Novel Insights Into Disease Pathophysiology. Transl Vis Sci Technol 2024; 13:30. [PMID: 39163016 PMCID: PMC11343007 DOI: 10.1167/tvst.13.8.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/15/2024] [Indexed: 08/21/2024] Open
Abstract
Purpose Central retinal artery occlusion (CRAO) is an ocular emergency that results from acute blockage of the blood supply to the retina and leads to a sudden vision loss. Other forms of ischemic retinopathies include diabetic retinopathy (DR), which involves chronic retinal ischemia and remains the leading cause of blindness in working-age adults. This study is the first to conduct a proteomic analysis of aqueous humor (AH) from patients with CRAO with a comparative analysis using vitreous humor (VH) samples from patients with DR. Methods AH samples were collected from 10 patients with CRAO undergoing paracentesis and 10 controls undergoing cataract surgery. VH samples were collected from 10 patients with DR and 10 non-diabetic controls undergoing pars plana vitrectomy (PPV). Samples were analyzed using mass spectrometry. Results Compared with controls, AH levels of 36 differentially expressed proteins (DEPs) were identified in patients with CRAO. Qiagen Ingenuity Pathway Analysis (IPA) revealed 11 proteins linked to ophthalmic diseases. Notably, enolase 2, a glycolysis enzyme isoform primarily expressed in neurons, was upregulated, suggesting neuronal injury and enzyme release. Additionally, clusterin, a protective glycoprotein, was downregulated. ELISA was conducted to confirm proteomics data. VH samples from patients with DR exhibited changes in a distinct set of proteins, including ones previously reported in the literature. Conclusions The study provides novel insights into CRAO pathophysiology with multiple hits identified. Proteomic results differed between DR and CRAO studies, likely due to the different pathophysiology and disease duration. Translational Relevance This is the first proteomic analysis of CRAO AH, with the potential to identify future therapeutic targets.
Collapse
Affiliation(s)
- Rami A. Shahror
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Esraa Shosha
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Clinical Pharmacy Department, School of Pharmacy, Cairo University, Cairo, Egypt
| | - Marco H. Ji
- Department of Ophthalmology, Harvey & Bernice Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Division of Epidemiology & Clinical Applications, National Eye Institute, Bethesda, Maryland, USA
| | - Carol A. Morris
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Melissa Wild
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Bushra Zaman
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Christian D. Mitchell
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Pedro Tetelbom
- Department of Ophthalmology, Harvey & Bernice Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yuet-Kin Leung
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Paul H. Phillips
- Department of Ophthalmology, Harvey & Bernice Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ahmed A. Sallam
- Department of Ophthalmology, Harvey & Bernice Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Abdelrahman Y. Fouda
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Clinical Pharmacy Department, School of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Lall SP, Alsafwani ZW, Batra SK, Seshacharyulu P. ASPORIN: A root of the matter in tumors and their host environment. Biochim Biophys Acta Rev Cancer 2024; 1879:189029. [PMID: 38008263 PMCID: PMC10872503 DOI: 10.1016/j.bbcan.2023.189029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Asporin (ASPN) has been identified as one of the members of the class I small leucine-rich proteoglycans (SLRPs) family in the extracellular matrix (ECM). It is involved in classic ensigns of cancers such as self-dependent growth, resistance to growth inhibitors, restricting apoptosis, cancer metastasis, and bone-related disorders. ASPN is different from other members of SLRPs, such as decorin (DCN) and biglycan (BGN), in a way that it contains a distinctive length of aspartate (D) residues in the amino (N) -terminal region. These D-repeats residues possess germline polymorphisms and are identified to be linked with cancer progression and osteoarthritis (OA). The polyaspartate stretch in the N-terminal region of the protein and its resemblance to DCN are the reasons it is called asporin. In this review, we comprehensively summarized and updated the dual role of ASPN in various malignancies, its structure in mice and humans, variants, mutations, cancer-associated signalings and functions, the relationship between ASPN and cancer-epithelial, stromal fibroblast crosstalk, immune cells and immunosuppression in cancer and other diseases. In cancer and other bone-related diseases, ASPN is identified to be regulating various signaling pathways such as TGFβ, Wnt/β-catenin, notch, hedgehog, EGFR, HER2, and CD44-mediated Rac1. These pathways promote cancer cell invasion, proliferation, and migration by mediating the epithelial-to-mesenchymal transition (EMT) process. Finally, we discussed mouse models mimicking ASPN in vivo function in cancers and the probability of therapeutic targeting of ASPN in cancer cells, fibrosis, and other bone-related diseases.
Collapse
Affiliation(s)
- Shobhit P Lall
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Zahraa W Alsafwani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | - Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| |
Collapse
|
4
|
Klotzsche-von Ameln A, Sprott D. Harnessing retinal phagocytes to combat pathological neovascularization in ischemic retinopathies? Pflugers Arch 2022; 474:575-590. [PMID: 35524802 PMCID: PMC9117346 DOI: 10.1007/s00424-022-02695-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022]
Abstract
Ischemic retinopathies (IR) are vision-threatening diseases that affect a substantial amount of people across all age groups worldwide. The current treatment options of photocoagulation and anti-VEGF therapy have side effects and are occasionally unable to prevent disease progression. It is therefore worthwhile to consider other molecular targets for the development of novel treatment strategies that could be safer and more efficient. During the manifestation of IR, the retina, normally an immune privileged tissue, encounters enhanced levels of cellular stress and inflammation that attract mononuclear phagocytes (MPs) from the blood stream and activate resident MPs (microglia). Activated MPs have a multitude of effects within the retinal tissue and have the potential to both counter and exacerbate the harmful tissue microenvironment. The present review discusses the current knowledge about the role of inflammation and activated retinal MPs in the major IRs: retinopathy of prematurity and diabetic retinopathy. We focus particularly on MPs and their secreted factors and cell–cell-based interactions between MPs and endothelial cells. We conclude that activated MPs play a major role in the manifestation and progression of IRs and could therefore become a promising new target for novel pharmacological intervention strategies in these diseases.
Collapse
Affiliation(s)
| | - David Sprott
- Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|