1
|
Chang KJ, Wu HY, Chiang PH, Hsu YT, Weng PY, Yu TH, Li CY, Chen YH, Dai HJ, Tsai HY, Chang YJ, Wu YR, Yang YP, Li CT, Hsu CC, Chen SJ, Chen YC, Cheng CY, Hsieh AR, Chiou SH. Decoding and reconstructing disease relations between dry eye and depression: a multimodal investigation comprising meta-analysis, genetic pathways and Mendelian randomization. J Adv Res 2025; 69:197-213. [PMID: 38548265 PMCID: PMC11954816 DOI: 10.1016/j.jare.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/07/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024] Open
Abstract
INTRODUCTION The clinical presentations of dry eye disease (DED) and depression (DEP) often comanifest. However, the robustness and the mechanisms underlying this association were undetermined. OBJECTIVES To this end, we set up a three-segment study that employed multimodality results (meta-analysis, genome-wide association study [GWAS] and Mendelian randomization [MR]) to elucidate the association, common pathways and causality between DED and DEP. METHODS A meta-analysis comprising 26 case-control studies was first conducted to confirm the DED-DEP association. Next, we performed a linkage disequilibrium (LD)-adjusted GWAS and targeted phenotype association study (PheWAS) in East Asian TW Biobank (TWB) and European UK Biobank (UKB) populations. Single-nucleotide polymorphisms (SNPs) were further screened for molecular interactions and common pathways at the functional gene level. To further elucidate the activated pathways in DED and DEP, a systemic transcriptome review was conducted on RNA sequencing samples from the Gene Expression Omnibus. Finally, 48 MR experiments were implemented to examine the bidirectional causation between DED and DEP. RESULTS Our meta-analysis showed that DED patients are associated with an increased DEP prevalence (OR = 1.83), while DEP patients have a concurrent higher risk of DED (OR = 2.34). Notably, cross-disease GWAS analysis revealed that similar genetic architecture (rG = 0.19) and pleiotropic functional genes contributed to phenotypes in both diseases. Through protein-protein interaction and ontology convergence, we summarized the pleiotropic functional genes under the ontology of immune activation, which was further validated by a transcriptome systemic review. Importantly, the inverse variance-weighted (IVW)-MR experiments in both TWB and UKB populations (p value <0.001) supported the bidirectional exposure-outcome causation for DED-to-DEP and DEP-to-DED. Despite stringent LD-corrected instrumental variable re-selection, the bidirectional causation between DED and DEP remained. CONCLUSION With the multi-modal evidence combined, we consolidated the association and causation between DED and DEP.
Collapse
Affiliation(s)
- Kao-Jung Chang
- Department of Medical Research, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan; Department of Ophthalmology, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; Department of Medical Education, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan
| | - Hsin-Yu Wu
- Department of Medical Research, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan
| | - Pin-Hsuan Chiang
- Department of Medical Research, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; Big Data Center, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; Department of Statistics, Tamkang University, 251301 No.151, Yingzhuan Rd., Tamsui District, New Taipei, Taiwan
| | - Yu-Tien Hsu
- Department of Social & Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, 02115 No.677 Huntington Avenue, MA, USA
| | - Pei-Yu Weng
- Department of Medical Research, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan
| | - Ting-Han Yu
- Department of Medical Research, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan
| | - Cheng-Yi Li
- Department of Medical Research, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan
| | - Yu-Hsiang Chen
- Department of Medical Research, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan
| | - He-Jhen Dai
- Department of Medical Research, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan
| | - Han-Ying Tsai
- Department of Medical Research, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; Big Data Center, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; Department of Statistics, Tamkang University, 251301 No.151, Yingzhuan Rd., Tamsui District, New Taipei, Taiwan
| | - Yu-Jung Chang
- Department of Statistics, Tamkang University, 251301 No.151, Yingzhuan Rd., Tamsui District, New Taipei, Taiwan
| | - You-Ren Wu
- Department of Medical Research, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; Institute of Pharmacology, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan; Institute of Pharmacology, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan
| | - Cheng-Ta Li
- Department of Psychiatry, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; Division of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan; Institute of Brain Science and Brain Research Center, School of Medicine, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan; Institute of Cognitive Neuroscience, National Central University, 320317 No. 300, Zhongda Rd., Zhongli District, Jhongli, Taiwan
| | - Chih-Chien Hsu
- Department of Medical Research, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; Department of Ophthalmology, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan
| | - Shih-Jen Chen
- Big Data Center, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan
| | - Yu-Chun Chen
- School of Medicine, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan; Big Data Center, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; Institute of Hospital and Health Care Administration, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan; Department of Family Medicine, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, 168751 No.11 Third Hospital Ave, Singapore; Department of Ophthalmology, Yong Loo Lin school of Medicine, National University of Singapore, 119228 No.21 Lower Kent Ridge Road, Singapore
| | - Ai-Ru Hsieh
- Department of Statistics, Tamkang University, 251301 No.151, Yingzhuan Rd., Tamsui District, New Taipei, Taiwan.
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; Department of Ophthalmology, Taipei Veterans General Hospital, 112201 No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan; Institute of Pharmacology, National Yang Ming Chiao Tung University, 112304 No. 155, Sec. 2, Linong St. Beitou District, Taipei, Taiwan.
| |
Collapse
|
2
|
Yang GN, Sun YBY, Roberts PK, Moka H, Sung MK, Gardner-Russell J, El Wazan L, Toussaint B, Kumar S, Machin H, Dusting GJ, Parfitt GJ, Davidson K, Chong EW, Brown KD, Polo JM, Daniell M. Exploring single-cell RNA sequencing as a decision-making tool in the clinical management of Fuchs' endothelial corneal dystrophy. Prog Retin Eye Res 2024; 102:101286. [PMID: 38969166 DOI: 10.1016/j.preteyeres.2024.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/14/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) has enabled the identification of novel gene signatures and cell heterogeneity in numerous tissues and diseases. Here we review the use of this technology for Fuchs' Endothelial Corneal Dystrophy (FECD). FECD is the most common indication for corneal endothelial transplantation worldwide. FECD is challenging to manage because it is genetically heterogenous, can be autosomal dominant or sporadic, and progress at different rates. Single-cell RNA sequencing has enabled the discovery of several FECD subtypes, each with associated gene signatures, and cell heterogeneity. Current FECD treatments are mainly surgical, with various Rho kinase (ROCK) inhibitors used to promote endothelial cell metabolism and proliferation following surgery. A range of emerging therapies for FECD including cell therapies, gene therapies, tissue engineered scaffolds, and pharmaceuticals are in preclinical and clinical trials. Unlike conventional disease management methods based on clinical presentations and family history, targeting FECD using scRNA-seq based precision-medicine has the potential to pinpoint the disease subtypes, mechanisms, stages, severities, and help clinicians in making the best decision for surgeries and the applications of therapeutics. In this review, we first discuss the feasibility and potential of using scRNA-seq in clinical diagnostics for FECD, highlight advances from the latest clinical treatments and emerging therapies for FECD, integrate scRNA-seq results and clinical notes from our FECD patients and discuss the potential of applying alternative therapies to manage these cases clinically.
Collapse
Affiliation(s)
- Gink N Yang
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Yu B Y Sun
- Department of Anatomy and Development Biology, Monash University, Clayton, Australia
| | - Philip Ke Roberts
- Department of Ophthalmology, Medical University Vienna, 18-20 Währinger Gürtel, Vienna, Austria
| | - Hothri Moka
- Mogrify Limited, 25 Cambridge Science Park Milton Road, Milton, Cambridge, UK
| | - Min K Sung
- Mogrify Limited, 25 Cambridge Science Park Milton Road, Milton, Cambridge, UK
| | - Jesse Gardner-Russell
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Layal El Wazan
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Bridget Toussaint
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Satheesh Kumar
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Heather Machin
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Lions Eye Donation Service, Level 7, Smorgon Family Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia
| | - Gregory J Dusting
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Geraint J Parfitt
- Mogrify Limited, 25 Cambridge Science Park Milton Road, Milton, Cambridge, UK
| | - Kathryn Davidson
- Department of Anatomy and Development Biology, Monash University, Clayton, Australia
| | - Elaine W Chong
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Department of Ophthalmology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Karl D Brown
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Jose M Polo
- Department of Anatomy and Development Biology, Monash University, Clayton, Australia
| | - Mark Daniell
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Lions Eye Donation Service, Level 7, Smorgon Family Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia.
| |
Collapse
|
3
|
Luo C, Chen Z, Meng L, Tan C, He W, Tu C, Du J, Lu GX, Lin G, Tan YQ, Hu TY. A hemizygous loss-of-function variant in BCORL1 is associated with male infertility and oligoasthenoteratozoospermia. Clin Genet 2024; 106:27-36. [PMID: 38342987 DOI: 10.1111/cge.14500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/13/2024]
Abstract
Oligoasthenoteratozoospermia (OAT) is a common type of male infertility; however, its genetic causes remain largely unknown. Some of the genetic determinants of OAT are gene defects affecting spermatogenesis. BCORL1 (BCL6 corepressor like 1) is a transcriptional corepressor that exhibits the OAT phenotype in a knockout mouse model. A hemizygous missense variant of BCORL1 (c.2615T > G:p.Val872Gly) was reported in an infertile male patient with non-obstructive azoospermia (NOA). Nevertheless, the correlation between BCORL1 variants and OAT in humans remains unknown. In this study, we used whole-exome sequencing to identify a novel hemizygous nonsense variant of BCORL1 (c.1564G > T:p.Glu522*) in a male patient with OAT from a Han Chinese family. Functional analysis showed that the variant produced a truncated protein with altered cellular localization and a dysfunctional interaction with SKP1 (S-phase kinase-associated protein 1). Further population screening identified four BCORL1 missense variants in subjects with both OAT (1 of 325, 0.31%) and NOA (4 of 355, 1.13%), but no pathogenic BCORL1 variants among 362 fertile subjects. In conclusion, our findings indicate that BCORL1 is a potential candidate gene in the pathogenesis of OAT and NOA, expanded its disease spectrum and suggested that BCORL1 may play a role in spermatogenesis by interacting with SKP1.
Collapse
Affiliation(s)
- Chen Luo
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproduction Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Zixu Chen
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproduction Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Lanlan Meng
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproduction Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
| | - Chen Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproduction Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Wenbin He
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Chaofeng Tu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproduction Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
| | - Juan Du
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproduction Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
| | - Guang-Xiu Lu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproduction Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproduction Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Tong-Yao Hu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproduction Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Yang K, Liu X, Xu L, Gu Y, Fan Q, Yin S, Wang Y, Yuan Y, Chang A, Zang Y, Yin C, Pang C, Wang C, Ren S. The Chinese keratoconus (CKC) cohort study. Eur J Epidemiol 2024; 39:679-689. [PMID: 38703249 DOI: 10.1007/s10654-024-01128-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/17/2024] [Indexed: 05/06/2024]
Abstract
The Chinese keratoconus (CKC) cohort study is a population-based longitudinal prospective cohort study in the Chinese population involving a clinical database and biobanks. This ongoing study focuses on the prevention of KC progression and is the first to involve the effect of gene‒environment interactions on KC progression. The CKC cohort is hospital-based and dynamic and was established in Zhengzhou, China; KC patients (n = 1114) from a large geographical area were enrolled from January 2019 to June 2023, with a mean age of 22.23 years (6‒57 years). Demographic details, socioeconomic characteristics, lifestyle, disease history, surgical history, family history, and visual and social function data are being collected using questionnaires. General physical examination, eye examination, biological specimen collection, and first-degree relative data were collected and analyzed in the present study. The primary focus of the present study was placed on gene, environment and the effect of gene‒environment interactions on KC progression. The follow-up of the CKC cohort study is expected to include data collection at 3 months, 6 months, and 1 year after the initial examination and then at the annual follow-up examinations. The first follow-up of the CKC cohort study was recorded. A total of 918 patients completed the follow-up by June 1, 2023, with a response rate of 82.40%. Aside from the younger age of patients who were followed up, no significant differences were found between patients who were followed up and patients who were not.
Collapse
Affiliation(s)
- Kaili Yang
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital, 7 Weiwu Road, Zhengzhou, Henan, China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Liyan Xu
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital, 7 Weiwu Road, Zhengzhou, Henan, China
| | - Yuwei Gu
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital, 7 Weiwu Road, Zhengzhou, Henan, China
| | - Qi Fan
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital, 7 Weiwu Road, Zhengzhou, Henan, China
| | - Shanshan Yin
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, Zhengzhou, Henan, China
| | - Yifan Wang
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, Zhengzhou, Henan, China
| | - Yi Yuan
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, Zhengzhou, Henan, China
| | - Anqi Chang
- Henan University People's Hospital, Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, Zhengzhou, Henan, China
| | - Yonghao Zang
- Xinxiang Medical University, Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, Zhengzhou, Henan, China
| | - Chenchen Yin
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, Zhengzhou, Henan, China
| | - Chenjiu Pang
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital, 7 Weiwu Road, Zhengzhou, Henan, China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Shengwei Ren
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital, 7 Weiwu Road, Zhengzhou, Henan, China.
| |
Collapse
|
5
|
Xu L, Zheng X, Yin S, Yang K, Fan Q, Gu Y, Yuan Y, Yin C, Zang Y, Pang C, Sun L, Ren S. Association of Novel Loci With Keratoconus Susceptibility in a Chinese Genome-Wide Association Study. Invest Ophthalmol Vis Sci 2024; 65:29. [PMID: 38767907 PMCID: PMC11114610 DOI: 10.1167/iovs.65.5.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024] Open
Abstract
Purpose Keratoconus (KC) is a progressive corneal disease that can lead to corneal blindness if not properly managed. The purpose of this study was to identify genetic associations with KC in China and to investigate whether these genetic variants are associated with corneal thickness and corneal curvature in KC cases. Methods A genome-wide association study was conducted on 853 patients with KC and 6248 controls. The KC cases were genotyped with the Illumina Infinium Human Asian Screening Array BeadChip, and the controls were genotyped with the Illumina Infinium Human Global Screening Array BeadChip. Genetic associations with KC, as well as correlations between the positive variants and corneal parameters including central corneal thickness (CCT) and mean keratometry (Km), were compared using PLINK version 1.90. Results Our present study identified four single-nucleotide polymorphisms (SNPs) within four risk loci (PTGER3: rs2300163, EYA1: rs1077435, ASS1: rs141365191, and CHTF8: rs3743680) associated with KC in Chinese patients that reached genome-wide significance. Among the identified SNPs with P < 1.00 × 10-4, seven SNPs (FOSL2-PLB1: rs12622211, RXRA-COL5A1: rs3118515, rs3132306, rs1536482, rs3118520, KAT6B: rs192187772, RAP2A-IPO5: rs41361245) were observed to be associated with CCT, and one SNP (USP13: rs6767552) was found to be associated with Km. Conclusions In the first genome-wide association study of KC with a relatively large study population in China, we identified four SNPs in four risk loci associated with the disease. The findings enriched the understanding of genetic susceptibility to KC and provided new insights into the genetic etiology of the disease.
Collapse
Affiliation(s)
- Liyan Xu
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China
| | - Xiaodong Zheng
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Shanshan Yin
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, Zhengzhou, China
| | - Kaili Yang
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China
| | - Qi Fan
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou, China
| | - Yuwei Gu
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou, China
| | - Yi Yuan
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, Zhengzhou, China
| | - Chenchen Yin
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, Zhengzhou, China
| | - Yonghao Zang
- Xinxiang Medical University, Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, Zhengzhou, China
| | - Chenjiu Pang
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou, China
| | - Liangdan Sun
- Department of Dermatology, North China University of Science and Technology Affiliated Hospital Tangshan, China
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Shengwei Ren
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Henan University People's Hospital, Zhengzhou, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China
| |
Collapse
|
6
|
González-Atienza C, Sánchez-Cazorla E, Villoldo-Fernández N, del Hierro A, Boto A, Guerrero-Carretero M, Nieves-Moreno M, Arruti N, Rodríguez-Solana P, Mena R, Rodríguez-Jiménez C, Rosa-Pérez I, Acal JC, Blasco J, Naranjo-Castresana M, Ruz-Caracuel B, Montaño VEF, Ortega Patrón C, Rubio-Martín ME, García-Fernández L, Rikeros-Orozco E, Gómez-Cano MDLÁ, Delgado-Mora L, Noval S, Vallespín E. Whole-Exome Sequencing of 24 Spanish Families: Candidate Genes for Non-Syndromic Pediatric Keratoconus. Genes (Basel) 2023; 14:1838. [PMID: 37895187 PMCID: PMC10606385 DOI: 10.3390/genes14101838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Keratoconus is a corneal dystrophy that is one of the main causes of corneal transplantation and for which there is currently no effective treatment for all patients. The presentation of this disease in pediatric age is associated with rapid progression, a worse prognosis and, in 15-20% of cases, the need for corneal transplantation. It is a multifactorial disease with genetic variability, which makes its genetic study difficult. Discovering new therapeutic targets is necessary to improve the quality of life of patients. In this manuscript, we present the results of whole-exome sequencing (WES) of 24 pediatric families diagnosed at the University Hospital La Paz (HULP) in Madrid. The results show an oligogenic inheritance of the disease. Genes involved in the structure, function, cell adhesion, development and repair pathways of the cornea are proposed as candidate genes for the disease. Further studies are needed to confirm the involvement of the candidate genes described in this article in the development of pediatric keratoconus.
Collapse
Affiliation(s)
- Carmen González-Atienza
- Molecular Ophthalmology Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (C.G.-A.); (E.S.-C.); (P.R.-S.); (R.M.); (C.R.-J.); (V.E.F.M.); (C.O.P.); (M.E.R.-M.); (L.G.-F.)
| | - Eloísa Sánchez-Cazorla
- Molecular Ophthalmology Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (C.G.-A.); (E.S.-C.); (P.R.-S.); (R.M.); (C.R.-J.); (V.E.F.M.); (C.O.P.); (M.E.R.-M.); (L.G.-F.)
| | - Natalia Villoldo-Fernández
- Department of Pediatric Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (N.V.-F.); (A.d.H.); (A.B.); (M.G.-C.); (N.A.); (I.R.-P.); (J.C.A.); (J.B.); (M.N.-C.); (S.N.)
| | - Almudena del Hierro
- Department of Pediatric Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (N.V.-F.); (A.d.H.); (A.B.); (M.G.-C.); (N.A.); (I.R.-P.); (J.C.A.); (J.B.); (M.N.-C.); (S.N.)
- European Reference Network on Eye Diseases (ERN-EYE), Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Ana Boto
- Department of Pediatric Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (N.V.-F.); (A.d.H.); (A.B.); (M.G.-C.); (N.A.); (I.R.-P.); (J.C.A.); (J.B.); (M.N.-C.); (S.N.)
- European Reference Network on Eye Diseases (ERN-EYE), Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Marta Guerrero-Carretero
- Department of Pediatric Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (N.V.-F.); (A.d.H.); (A.B.); (M.G.-C.); (N.A.); (I.R.-P.); (J.C.A.); (J.B.); (M.N.-C.); (S.N.)
| | - María Nieves-Moreno
- Department of Pediatric Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (N.V.-F.); (A.d.H.); (A.B.); (M.G.-C.); (N.A.); (I.R.-P.); (J.C.A.); (J.B.); (M.N.-C.); (S.N.)
- European Reference Network on Eye Diseases (ERN-EYE), Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Natalia Arruti
- Department of Pediatric Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (N.V.-F.); (A.d.H.); (A.B.); (M.G.-C.); (N.A.); (I.R.-P.); (J.C.A.); (J.B.); (M.N.-C.); (S.N.)
- European Reference Network on Eye Diseases (ERN-EYE), Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Patricia Rodríguez-Solana
- Molecular Ophthalmology Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (C.G.-A.); (E.S.-C.); (P.R.-S.); (R.M.); (C.R.-J.); (V.E.F.M.); (C.O.P.); (M.E.R.-M.); (L.G.-F.)
| | - Rocío Mena
- Molecular Ophthalmology Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (C.G.-A.); (E.S.-C.); (P.R.-S.); (R.M.); (C.R.-J.); (V.E.F.M.); (C.O.P.); (M.E.R.-M.); (L.G.-F.)
- Biomedical Research Center in the Rare Diseases Network (CIBERER), Carlos II Health Institute (ISCIII), 28029 Madrid, Spain; (B.R.-C.); (E.R.-O.); (L.D.-M.)
| | - Carmen Rodríguez-Jiménez
- Molecular Ophthalmology Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (C.G.-A.); (E.S.-C.); (P.R.-S.); (R.M.); (C.R.-J.); (V.E.F.M.); (C.O.P.); (M.E.R.-M.); (L.G.-F.)
| | - Irene Rosa-Pérez
- Department of Pediatric Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (N.V.-F.); (A.d.H.); (A.B.); (M.G.-C.); (N.A.); (I.R.-P.); (J.C.A.); (J.B.); (M.N.-C.); (S.N.)
| | - Juan Carlos Acal
- Department of Pediatric Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (N.V.-F.); (A.d.H.); (A.B.); (M.G.-C.); (N.A.); (I.R.-P.); (J.C.A.); (J.B.); (M.N.-C.); (S.N.)
| | - Joana Blasco
- Department of Pediatric Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (N.V.-F.); (A.d.H.); (A.B.); (M.G.-C.); (N.A.); (I.R.-P.); (J.C.A.); (J.B.); (M.N.-C.); (S.N.)
| | - Marta Naranjo-Castresana
- Department of Pediatric Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (N.V.-F.); (A.d.H.); (A.B.); (M.G.-C.); (N.A.); (I.R.-P.); (J.C.A.); (J.B.); (M.N.-C.); (S.N.)
| | - Beatriz Ruz-Caracuel
- Biomedical Research Center in the Rare Diseases Network (CIBERER), Carlos II Health Institute (ISCIII), 28029 Madrid, Spain; (B.R.-C.); (E.R.-O.); (L.D.-M.)
- Clinical Bioinformatics Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Victoria E. F. Montaño
- Molecular Ophthalmology Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (C.G.-A.); (E.S.-C.); (P.R.-S.); (R.M.); (C.R.-J.); (V.E.F.M.); (C.O.P.); (M.E.R.-M.); (L.G.-F.)
- Biomedical Research Center in the Rare Diseases Network (CIBERER), Carlos II Health Institute (ISCIII), 28029 Madrid, Spain; (B.R.-C.); (E.R.-O.); (L.D.-M.)
| | - Cristina Ortega Patrón
- Molecular Ophthalmology Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (C.G.-A.); (E.S.-C.); (P.R.-S.); (R.M.); (C.R.-J.); (V.E.F.M.); (C.O.P.); (M.E.R.-M.); (L.G.-F.)
| | - M. Esther Rubio-Martín
- Molecular Ophthalmology Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (C.G.-A.); (E.S.-C.); (P.R.-S.); (R.M.); (C.R.-J.); (V.E.F.M.); (C.O.P.); (M.E.R.-M.); (L.G.-F.)
| | - Laura García-Fernández
- Molecular Ophthalmology Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (C.G.-A.); (E.S.-C.); (P.R.-S.); (R.M.); (C.R.-J.); (V.E.F.M.); (C.O.P.); (M.E.R.-M.); (L.G.-F.)
| | - Emi Rikeros-Orozco
- Biomedical Research Center in the Rare Diseases Network (CIBERER), Carlos II Health Institute (ISCIII), 28029 Madrid, Spain; (B.R.-C.); (E.R.-O.); (L.D.-M.)
- Clinical Genetics Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain;
| | - María de Los Ángeles Gómez-Cano
- Clinical Genetics Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain;
| | - Luna Delgado-Mora
- Biomedical Research Center in the Rare Diseases Network (CIBERER), Carlos II Health Institute (ISCIII), 28029 Madrid, Spain; (B.R.-C.); (E.R.-O.); (L.D.-M.)
- Clinical Genetics Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain;
| | - Susana Noval
- Department of Pediatric Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (N.V.-F.); (A.d.H.); (A.B.); (M.G.-C.); (N.A.); (I.R.-P.); (J.C.A.); (J.B.); (M.N.-C.); (S.N.)
- European Reference Network on Eye Diseases (ERN-EYE), Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Elena Vallespín
- Molecular Ophthalmology Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (C.G.-A.); (E.S.-C.); (P.R.-S.); (R.M.); (C.R.-J.); (V.E.F.M.); (C.O.P.); (M.E.R.-M.); (L.G.-F.)
- European Reference Network on Eye Diseases (ERN-EYE), Hospital Universitario La Paz, 28046 Madrid, Spain
- Biomedical Research Center in the Rare Diseases Network (CIBERER), Carlos II Health Institute (ISCIII), 28029 Madrid, Spain; (B.R.-C.); (E.R.-O.); (L.D.-M.)
| |
Collapse
|
7
|
Pan XB, He YS, Lu Z, Pan HR, Wei ZY, Jin YY, Wang J, Chen JH. Epitranscriptomic investigation of myopia-associated RNA editing in the retina. Front Neurosci 2023; 17:1220114. [PMID: 37449273 PMCID: PMC10336353 DOI: 10.3389/fnins.2023.1220114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023] Open
Abstract
Myopia is one of the most common causes of vision loss globally and is significantly affected by epigenetics. Adenosine-to-inosine (A-to-I RNA) editing is an epigenetic process involved in neurological disorders, yet its role in myopia remains undetermined. We performed a transcriptome-wide analysis of A-to-I RNA editing in the retina of form-deprivation myopia mice. Our study identified 91 A-to-I RNA editing sites in 84 genes associated with myopia. Notably, at least 27 (32.1%) of these genes with myopia-associated RNA editing showed existing evidence to be associated with myopia or related ocular phenotypes in humans or animal models, such as very low-density lipoprotein receptor (Vldlr) in retinal neovascularization and hypoxia-induced factor 1 alpha (Hif1a). Moreover, functional enrichment showed that RNA editing enriched in FDM was primarily involved in response to fungicides, a potentially druggable process for myopia prevention, and epigenetic regulation. In contrast, RNA editing enriched in controls was mostly involved in post-embryonic eye morphogenesis. Our results demonstrate altered A-to-I RNA editing associated with myopia in an experimental mouse model and warrant further study on its role in myopia development.
Collapse
Affiliation(s)
- Xu-Bin Pan
- Department of Ophthalmology, Affiliated Hospital of Jiangnan University, Wuxi, China
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Yu-Shan He
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Zijing Lu
- Department of Ophthalmology, Affiliated Hospital of Jiangnan University, Wuxi, China
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Hao-Ran Pan
- Department of Ophthalmology, Affiliated Hospital of Jiangnan University, Wuxi, China
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Zhi-Yuan Wei
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Yun-Yun Jin
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Jihong Wang
- Department of Ophthalmology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| |
Collapse
|
8
|
Ren S, Yang K, Fan Q, Wang Q, Zhu M, Yin S, Gu Y, Xu L. Bioinformatics analysis of key candidate genes and pathways in Chinese patients with keratoconus. Exp Eye Res 2023; 231:109488. [PMID: 37116607 DOI: 10.1016/j.exer.2023.109488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 04/30/2023]
Abstract
Keratoconus (KC) is a multifactorial disease in which genetic factors played important roles in its pathogenesis. The purpose of the current study was to identify the key candidate genes and pathways in Chinese patients with KC through bioinformatics analysis. Totally, we identified 71 candidate genes by analyzing the results of whole exome sequencing on 51 Chinese patients with KC, combining with previous reports on differential expression at transcription and protein levels in KC. Gene enrichment analysis with GeneCodis demonstrated that two significantly enriched terms including 21 genes in biological process (BP) were detected, and six significantly enriched terms containing 14 genes in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were discovered. The STRING was utilized to construct the protein-protein interaction (PPI) network of identified genes. The result showed that a PPI network consisted of 14 nodes with 14 edges was constructed, and two gene modules were obtained. Eight hub genes (LAMB3, LAMA3, LAMA1, ITGA6, ITGA3, COL6A3, COL6A2, and COL6A1) were identified as key candidate genes for KC by cytoHubba in Cytoscape. Functional enrichment analysis with ClueGO and CluePedia indicated that the ECM-receptor interaction was the key pathway accounted for KC. The findings might provide novel insights on the genetic basis of KC.
Collapse
Affiliation(s)
- Shengwei Ren
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China; Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institution, Zhengzhou, 450003, China
| | - Kaili Yang
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Qi Fan
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Qing Wang
- Henan University People's Hospital, Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, Zhengzhou, 450003, China
| | - Meng Zhu
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institution, Zhengzhou, 450003, China
| | - Shanshan Yin
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institution, Zhengzhou, 450003, China
| | - Yuwei Gu
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Liyan Xu
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| |
Collapse
|