1
|
Zhang X, Chen J, Zhou X, Zhou D, Liao L, Zhao Y, Wu P, Nie F, Liao Z, Cai Z, Duan X. Exploring diagnostic m6A regulators in primary open-angle glaucoma: insight from gene signature and possible mechanisms by which key genes function. BMC Med Genomics 2025; 18:57. [PMID: 40128732 PMCID: PMC11931807 DOI: 10.1186/s12920-025-02123-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/11/2025] [Indexed: 03/26/2025] Open
Abstract
PURPOSE The purpose of this study was to interrogate the potential role of N6-methyladenosine (m6A) regulators in the process of trabecular meshwork (TM) tissue damage in patients with primary open-angle glaucoma (POAG). METHODS Firstly, the expression profile of m6A regulators in TM tissues of POAG patients was comprehensively analyzed by bioinformatics analysis; Plasmid transfection and siRNA gene interference were used to enhance or weaken the expression levels of YTHDC2 in human trabecular meshwork cells (HTMCs); Cell migration ability was detected by transwell chamber assay; Immunofluorescence staining assay was used to evaluate the expression of extracellular matrix (ECM) related proteins. RESULTS Through the analysis of GSE27276 database, 5 m6A regulators with different expression in POAG were screened out. The results of random forest model showed that these 5 m6A regulators exhibited diagnostic potential and were characteristic genes of POAG. All POAG samples could be effectively divided into two groups based on the expression levels of these 5 hub m6A regulators. Immune cell infiltration analysis indicated that the levels of activated CD8+ T cells and regulatory T cells were different in the two subtypes. HTMC oxidative stress cell model and TGF-β2 stimulation cell model were further constructed to verify the expression of the aforementioned hub m6A regulators, and it was found that YTHDC2 mRNA showed the same expression trend in both models. The silencing of YTHDC2 enhanced the migration ability of HTMCs and increased the synthesis ability of ECM. However, when YTHDC2ΔYTH, which lacks the YTH domain, is overexpressed in HTMCs, there is no significant change in the ECM synthesis ability. CONCLUSIONS The differentially expressed m6A regulators in TM tissues may serve as potential diagnostic biomarkers for POAG. And, in HTMCs, the expression level of YTHDC2 mRNA was changed under oxidative stress or TGF-β2 intervention, and then exerted its regulation on cell migration and ECM synthesis capability through m6A modification, which may be an important part of the disease process of POAG.
Collapse
Affiliation(s)
- Xinyue Zhang
- Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Glaucoma Institute, Changsha Aier Eye Hospital, Changsha, Hunan, China
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
| | - Jiawei Chen
- Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Glaucoma Institute, Changsha Aier Eye Hospital, Changsha, Hunan, China
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
| | - Xiaoyu Zhou
- Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Glaucoma Institute, Changsha Aier Eye Hospital, Changsha, Hunan, China
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
| | - Dengming Zhou
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Liao
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
| | - Yang Zhao
- Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Glaucoma Institute, Changsha Aier Eye Hospital, Changsha, Hunan, China
| | - Ping Wu
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
| | - Fen Nie
- Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Glaucoma Institute, Changsha Aier Eye Hospital, Changsha, Hunan, China
| | - Zhimin Liao
- Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Glaucoma Institute, Changsha Aier Eye Hospital, Changsha, Hunan, China
| | - Ziyan Cai
- Department of Ophthalmology, The Second Affiliated Hospital of Suzhou University, Suzhou, Jiangsu, China
| | - Xuanchu Duan
- Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Glaucoma Institute, Changsha Aier Eye Hospital, Changsha, Hunan, China.
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Guan J, Chen X, Li Z, Deng S, Wumaier A, Ma Y, Xie L, Huang S, Zhu Y, Zhuo Y. Role of N6-methyladenosine-related lncRnas in pseudoexfoliation glaucoma. Epigenetics 2024; 19:2348840. [PMID: 38716769 PMCID: PMC11086004 DOI: 10.1080/15592294.2024.2348840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
To explore the role of lncRNA m6A methylation modification in aqueous humour (AH) of patients with pseudoexfoliation glaucoma (PXG). Patients with open-angle PXG under surgery from June 2021 to December 2021 were selected. Age- and gender-matched patients with age-related cataract (ARC) were chosen as control. Patients underwent detailed ophthalmic examinations. 0.05-0.1 ml AH were extracted during surgery for MeRIP-Seq and RNA-Seq. Joint analysis was used to screen lncRNAs with differential m6A methylation modification and expression. Online software tools were used to draw lncRNA-miRNA-mRNA network (ceRNA). Expression of lncRNAs and mRNAs was confirmed using quantitative real-time PCR. A total of 4151 lncRNAs and 4386 associated m6A methylation modified peaks were identified in the PXG group. Similarly, 2490 lncRNAs and 2595 associated m6A methylation modified peaks were detected in the control. Compared to the ARC group, the PXG group had 234 hypermethylated and 402 hypomethylated m6A peaks, with statistically significant differences (| Fold Change (FC) |≥2, p < 0.05). Bioinformatic analysis revealed that these differentially methylated lncRNA enriched in extracellular matrix formation, tight adhesion, TGF- β signalling pathway, AMPK signalling pathway, and MAPK signalling pathway. Joint analysis identified 10 lncRNAs with differential m6A methylation and expression simultaneously. Among them, the expression of ENST000000485383 and ROCK1 were confirmed downregulated in the PXG group by RT-qPCR. m6A methylation modification may affect the expression of lncRNA and participate in the pathogenesis of PXG through the ceRNA network. ENST000000485383-hsa miR592-ROCK1 May be a potential target pathway for further investigation in PXG m6A methylation.
Collapse
Affiliation(s)
- Jieying Guan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, World Health Organization Collaborating Center for Eye Care and Vision, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaohong Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, World Health Organization Collaborating Center for Eye Care and Vision, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Zhidong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, World Health Organization Collaborating Center for Eye Care and Vision, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Shuifeng Deng
- The Department of Ophthalmology, Huizhou Hospital Affiliated to Guangzhou Medical University (Huizhou Third People’s Hospital), Huizhou, China
| | - Aizezi Wumaier
- The Affiliated Kashi Hospital, Sun Yat-sen University, Kashi, Xinjiang, China
- The First Department of Ophthalmology, The First People’s Hospital of Kashi Prefecture, Kashi, Xinjiang, China
| | - Yuncheng Ma
- The Affiliated Kashi Hospital, Sun Yat-sen University, Kashi, Xinjiang, China
- The First Department of Ophthalmology, The First People’s Hospital of Kashi Prefecture, Kashi, Xinjiang, China
| | - Lingling Xie
- The Affiliated Kashi Hospital, Sun Yat-sen University, Kashi, Xinjiang, China
- The First Department of Ophthalmology, The First People’s Hospital of Kashi Prefecture, Kashi, Xinjiang, China
| | - Shengsong Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, World Health Organization Collaborating Center for Eye Care and Vision, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Yingting Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, World Health Organization Collaborating Center for Eye Care and Vision, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, World Health Organization Collaborating Center for Eye Care and Vision, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| |
Collapse
|
3
|
Tonti E, Dell’Omo R, Filippelli M, Spadea L, Salati C, Gagliano C, Musa M, Zeppieri M. Exploring Epigenetic Modifications as Potential Biomarkers and Therapeutic Targets in Glaucoma. Int J Mol Sci 2024; 25:2822. [PMID: 38474069 PMCID: PMC10932063 DOI: 10.3390/ijms25052822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Glaucoma, a complex and multifactorial neurodegenerative disorder, is a leading cause of irreversible blindness worldwide. Despite significant advancements in our understanding of its pathogenesis and management, early diagnosis and effective treatment of glaucoma remain major clinical challenges. Epigenetic modifications, encompassing deoxyribonucleic acid (DNA) methylation, histone modifications, and non-coding RNAs, have emerged as critical regulators of gene expression and cellular processes. The aim of this comprehensive review focuses on the emerging field of epigenetics and its role in understanding the complex genetic and molecular mechanisms underlying glaucoma. The review will provide an overview of the pathophysiology of glaucoma, emphasizing the intricacies of intraocular pressure regulation, retinal ganglion cell dysfunction, and optic nerve damage. It explores how epigenetic modifications, such as DNA methylation and histone modifications, can influence gene expression, and how these mechanisms are implicated in glaucomatous neurodegeneration and contribute to glaucoma pathogenesis. The manuscript discusses evidence from both animal models and human studies, providing insights into the epigenetic alterations associated with glaucoma onset and progression. Additionally, it discusses the potential of using epigenetic modifications as diagnostic biomarkers and therapeutic targets for more personalized and targeted glaucoma treatment.
Collapse
Affiliation(s)
- Emanuele Tonti
- Eye Clinic, Policlinico Umberto I University Hospital, 00142 Rome, Italy; (E.T.)
| | - Roberto Dell’Omo
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, Via Francesco De Sanctis 1, 86100 Campobasso, Italy
| | - Mariaelena Filippelli
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, Via Francesco De Sanctis 1, 86100 Campobasso, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I University Hospital, 00142 Rome, Italy; (E.T.)
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Caterina Gagliano
- Faculty of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
- Eye Clinic, Catania University, San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Nigeria
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
4
|
Feng L, Wang C, Zhang C, Zhang W, Song W. Role of epigenetic regulation in glaucoma. Biomed Pharmacother 2023; 168:115633. [PMID: 37806089 DOI: 10.1016/j.biopha.2023.115633] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
Glaucoma is the world's leading irreversible blinding eye disease. Lowering intraocular pressure is currently the only effective clinical treatment. However, there is a lack of long-acting IOP-lowering drugs, and some patients still experience retinal ganglion cell loss even with good intraocular pressure control. Currently, there is no effective method for neuroprotection and regeneration in clinical practice for glaucoma. In recent years, epigenetics has been widely researched and reported for its role in glaucoma's neuroprotection and regeneration. This article reviews the changes in histone modifications, DNA methylation, non-coding RNA, and m6A methylation in glaucoma, aiming to provide new perspectives for glaucoma management, protection of retinal ganglion cells, and axon regeneration by understanding epigenetic alterations.
Collapse
Affiliation(s)
- Lemeng Feng
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Chao Wang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Cheng Zhang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Wulong Zhang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Weitao Song
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China.
| |
Collapse
|