1
|
Quan Q, Qian Y, Li X, Li M. Pioglitazone Reduces β Amyloid Levels via Inhibition of PPARγ Phosphorylation in a Neuronal Model of Alzheimer's Disease. Front Aging Neurosci 2019; 11:178. [PMID: 31379559 PMCID: PMC6650543 DOI: 10.3389/fnagi.2019.00178] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/02/2019] [Indexed: 12/28/2022] Open
Abstract
It has been demonstrated that peroxisome proliferator-activated receptor γ (PPARγ) can regulate the transcription of its target gene, insulin-degrading enzyme (IDE), and thus enhance the expression of the IDE protein. The protein can degrade β amyloid (Aβ), a core pathological product of Alzheimer’s disease (AD). PPARγ can also regulate the transcription of other target gene, β-amyloid cleavage enzyme 1 (BACE1), and thus inhibit the expression of the BACE1 protein. BACE1 can hydrolyze amyloid precursor protein (APP), the precursor of Aβ. In adipose tissue, PPARγ agonists can inhibit the phosphorylation of PPARγ by inhibiting cyclin-dependent kinase 5 (CDK5), which in turn affects the expression of target genes regulated by PPARγ. PPARγ agonists may also exert inhibitory effects on the phosphorylation of PPARγ in the brain, thereby affecting the expression of the aforementioned PPARγ target genes and reducing Aβ levels. The present study confirmed this hypothesis by showing that PPARγ agonist pioglitazone attenuated the neuronal apoptosis of primary rat hippocampal neurons induced by Aβ1–42, downregulated CDK5 expression, weakened the binding of CDK5 to PPARγ, reduced PPARγ phosphorylation, increased the expression of PPARγ and IDE, decreased the expression of BACE1, reduced APP production, and downregulated intraneuronal Aβ1–42 levels. These effects were inhibited by the PPARγ antagonist GW9662. After CDK5 silencing with CDK5 shRNA, the above effect of pioglitazone was not observed, except when upregulating the expression of PPARγ in Aβ1–42 treated neurons. In conclusion, this study demonstrated that pioglitazone could inhibit the phosphorylation of PPARγ in vitro by inhibiting CDK5 expression, which in turn affected the expression of PPARγ target genes Ide and Bace1, thereby promoting Aβ degradation and reducing Aβ production. This reduced Aβ levels in the brain, thereby exerting neuroprotective effects in an AD model.
Collapse
Affiliation(s)
- Qiankun Quan
- Department of Geriatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yihua Qian
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xi Li
- Department of Geriatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ming Li
- Department of Geriatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
2
|
Pardo J, Abba MC, Lacunza E, Francelle L, Morel GR, Outeiro TF, Goya RG. Identification of a conserved gene signature associated with an exacerbated inflammatory environment in the hippocampus of aging rats. Hippocampus 2017; 27:435-449. [DOI: 10.1002/hipo.22703] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Joaquín Pardo
- INIBIOLP, Histology B–Pathology B, School of Medicine, UNLPLa Plata Argentina
| | | | | | - Laetitia Francelle
- Department of Neurodegeneration and Restorative ResearchUniversity Medical Center GöttingenGöttingen Germany
| | - Gustavo R. Morel
- INIBIOLP, Histology B–Pathology B, School of Medicine, UNLPLa Plata Argentina
| | - Tiago F. Outeiro
- Department of Neurodegeneration and Restorative ResearchUniversity Medical Center GöttingenGöttingen Germany
| | - Rodolfo G. Goya
- INIBIOLP, Histology B–Pathology B, School of Medicine, UNLPLa Plata Argentina
| |
Collapse
|
3
|
Botez G, Piraino G, Hake PW, Ledford JR, O'Connor M, Cook JA, Zingarelli B. Age-dependent therapeutic effects of liver X receptor-α activation in murine polymicrobial sepsis. Innate Immun 2015; 21:609-18. [PMID: 25956304 PMCID: PMC4509881 DOI: 10.1177/1753425915569367] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 01/05/2015] [Indexed: 12/29/2022] Open
Abstract
The severity of sepsis is significantly affected by advanced age; however, age-dependent molecular mechanisms of this susceptibility are unknown. Nuclear liver X receptor-α (LXRα) is a regulator of lipid metabolism with associated anti-inflammatory properties. Here, we investigated the role of LXRα in age-dependent lung injury and outcome of sepsis. Male C57BL/6, LXRα-deficient (LXRα−/−) and wild type (WT) (LXRα+/+) mice of different ages were subjected to sepsis by cecal ligation and puncture (CLP). In pharmacological studies, treatment with the LXRα ligand T0901317 reduced lung neutrophil infiltration in C57BL/6 mice aged from 1 to 8 mo when compared with vehicle-treated animals subjected to CLP. The LXRα ligand improved survival in young mice (2–3 mo old) but did not affect survival or neutrophil infiltration in mature adult mice (11–13 mo old). Immunoblotting revealed an age-dependent decrease of lung LXRα levels. Young LXRα−/− mice (2–3 mo old) exhibited earlier mortality than age-matched WT mice after CLP. Lung damage and neutrophil infiltration, lung activation of the pro-inflammatory NF-κB and plasma IL-6 levels were higher in LXRα−/− mice 18 h after CLP compared with LXRα+/+ mice. This study suggests that the anti-inflammatory properties of LXRα in sepsis are age-dependent and severely compromised in mature adult animals.
Collapse
Affiliation(s)
- Gabriela Botez
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Giovanna Piraino
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Paul W Hake
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - John R Ledford
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Michael O'Connor
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - James A Cook
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Basilia Zingarelli
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
4
|
Yuan HF, Niu XL, Gao DF, Hao GH, Song AQ, Wei J. Expression of p-PPARγ in the aging thoracic aorta of spontaneously hypertensive rat and inhibitory effect of rosiglitazone. Asian Pac J Trop Biomed 2014. [DOI: 10.12980/apjtb.4.201414b416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
5
|
Age-Related Binding of Proximal Region of ApoE Promoter to Nuclear Proteins of Mouse Cerebral Cortex. Neurochem Res 2011; 36:1931-8. [DOI: 10.1007/s11064-011-0515-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2011] [Indexed: 10/18/2022]
|
6
|
Aenlle KK, Foster TC. Aging alters the expression of genes for neuroprotection and synaptic function following acute estradiol treatment. Hippocampus 2011; 20:1047-60. [PMID: 19790252 DOI: 10.1002/hipo.20703] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study used microarray analysis to examine age-related changes in gene expression 6 and 12 h following a single estradiol injection in ovariectomized mice. Estradiol-responsive gene expression at the 6 h time point was reduced in aged (18 months) animals compared with young (4 months) and middle-aged (MA, 12 months) mice. Examination of gene clustering within biological and functional pathways indicated that young and MA mice exhibited increased expression of genes for cellular components of the synapse and decreased expression of genes related to oxidative phosphorylation and mitochondrial dysfunction. At the 12 h time point, estradiol-responsive gene expression increased in aged animals and decreased in young and MA mice compared with the 6 h time point. Gene clustering analysis indicated that aged mice exhibited increased expression of genes for signaling pathways that are rapidly influenced by estradiol. The age differences in gene expression for rapid signaling pathways may relate to disparity in basal pathway activity and estradiol mediated activation of rapid signaling cascades.
Collapse
Affiliation(s)
- Kristina K Aenlle
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | | |
Collapse
|
7
|
|
8
|
Malorni W, Campesi I, Straface E, Vella S, Franconi F. Redox features of the cell: a gender perspective. Antioxid Redox Signal 2007; 9:1779-801. [PMID: 17822369 DOI: 10.1089/ars.2007.1596] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reactive oxygen and nitrogen species have been implicated in diverse subcellular activities, including cell proliferation,differentiation and, in some instances, cell injury and death. The implications of reactive species inhuman pathology have also been studied in detail. However, although the role of free radicals in the pathogenesis of human diseases has been extensively analyzed in different systems (i.e., in vitro, ex vivo, and in vivo),it is still far from elucidated. In particular, the possible role of gender 4 differences in human pathophysiology associated with reactive species is a promising new field of investigation. Although the complex scenario this presents is still incomplete, important gender-associated "redox features" of cells have already been described in the literature. Here we summarize the different aspects of redox-associated molecules and enzymes in regard to gender differences in terms of the intracellular production and biochemical activity of reactive species. These are often associated with the pathogenetic mechanisms underlying several human morbidities(e.g., degenerative diseases) and can represent a specific target for new pharmacologic strategies. Gender differences may thus pose an important challenge for future studies aimed at the clinical management of diseases characterized by a redox imbalance.
Collapse
Affiliation(s)
- Walter Malorni
- Department of Drug Research and Evaluation, Istituto Superiore di Sanita', Rome, Italy.
| | | | | | | | | |
Collapse
|