1
|
Li Y, You L, Nepovimova E, Adam V, Heger Z, Jomova K, Valko M, Wu Q, Kuca K. c-Jun N-terminal kinase signaling in aging. Front Aging Neurosci 2024; 16:1453710. [PMID: 39267721 PMCID: PMC11390425 DOI: 10.3389/fnagi.2024.1453710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/01/2024] [Indexed: 09/15/2024] Open
Abstract
Aging encompasses a wide array of detrimental effects that compromise physiological functions, elevate the risk of chronic diseases, and impair cognitive abilities. However, the precise underlying mechanisms, particularly the involvement of specific molecular regulatory proteins in the aging process, remain insufficiently understood. Emerging evidence indicates that c-Jun N-terminal kinase (JNK) serves as a potential regulator within the intricate molecular clock governing aging-related processes. JNK demonstrates the ability to diminish telomerase reverse transcriptase activity, elevate β-galactosidase activity, and induce telomere shortening, thereby contributing to immune system aging. Moreover, the circadian rhythm protein is implicated in JNK-mediated aging. Through this comprehensive review, we meticulously elucidate the intricate regulatory mechanisms orchestrated by JNK signaling in aging processes, offering unprecedented molecular insights with significant implications and highlighting potential therapeutic targets. We also explore the translational impact of targeting JNK signaling for interventions aimed at extending healthspan and promoting longevity.
Collapse
Affiliation(s)
- Yihao Li
- College of Life Science, Yangtze University, Jingzhou, China
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| |
Collapse
|
2
|
Park SC, Lee YS, Cho KA, Kim SY, Lee YI, Lee SR, Lim IK. What matters in aging is signaling for responsiveness. Pharmacol Ther 2023; 252:108560. [PMID: 37952903 DOI: 10.1016/j.pharmthera.2023.108560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/03/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Biological responsiveness refers to the capacity of living organisms to adapt to changes in both their internal and external environments through physiological and behavioral mechanisms. One of the prominent aspects of aging is the decline in this responsiveness, which can lead to a deterioration in the processes required for maintenance, survival, and growth. The vital link between physiological responsiveness and the essential life processes lies within the signaling systems. To devise effective strategies for controlling the aging process, a comprehensive reevaluation of this connecting loop is imperative. This review aims to explore the impact of aging on signaling systems responsible for responsiveness and introduce a novel perspective on intervening in the aging process by restoring the compromised responsiveness. These innovative mechanistic approaches for modulating altered responsiveness hold the potential to illuminate the development of action plans aimed at controlling the aging process and treating age-related disorders.
Collapse
Affiliation(s)
- Sang Chul Park
- The Future Life & Society Research Center, Advanced Institute of Aging Science, Chonnam National University, Gwangju 61469, Republic of Korea.
| | - Young-Sam Lee
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea; Well Aging Research Center, Division of Biotechnology, DGIST, Daegu 42988, Republic of Korea.
| | - Kyung A Cho
- Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do 58128, Republic of Korea
| | - Sung Young Kim
- Department of Biochemistry, Konkuk University School of Medicine, Seoul 05029, Republic of Korea
| | - Yun-Il Lee
- Well Aging Research Center, Division of Biotechnology, DGIST, Daegu 42988, Republic of Korea; Interdisciplinary Engineering Major, Department of Interdisciplinary Studies, DGIST, Daegu 42988, Republic of Korea
| | - Seung-Rock Lee
- Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do 58128, Republic of Korea; Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - In Kyoung Lim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
3
|
Parkhitko AA, Filine E, Tatar M. Combinatorial interventions in aging. NATURE AGING 2023; 3:1187-1200. [PMID: 37783817 PMCID: PMC11194689 DOI: 10.1038/s43587-023-00489-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 08/15/2023] [Indexed: 10/04/2023]
Abstract
Insight on the underlying mechanisms of aging will advance our ability to extend healthspan, treat age-related pathology and improve quality of life. Multiple genetic and pharmacological manipulations extend longevity in different species, yet monotherapy may be relatively inefficient, and we have limited data on the effect of combined interventions. Here we summarize interactions between age-related pathways and discuss strategies to simultaneously retard these in different organisms. In some cases, combined manipulations additively increase their impact on common hallmarks of aging and lifespan, suggesting they quantitatively participate within the same pathway. In other cases, interactions affect different hallmarks, suggesting their joint manipulation may independently maximize their effects on lifespan and healthy aging. While most interaction studies have been conducted with invertebrates and show varying levels of translatability, the conservation of pro-longevity pathways offers an opportunity to identify 'druggable' targets relevant to multiple human age-associated pathologies.
Collapse
Affiliation(s)
- Andrey A Parkhitko
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA.
| | - Elizabeth Filine
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Marc Tatar
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI, USA.
| |
Collapse
|
4
|
Feng H, Bavister G, Gribble KE, Mark Welch DB. Highly efficient CRISPR-mediated gene editing in a rotifer. PLoS Biol 2023; 21:e3001888. [PMID: 37478130 PMCID: PMC10395877 DOI: 10.1371/journal.pbio.3001888] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/09/2023] [Indexed: 07/23/2023] Open
Abstract
Rotifers have been studied in the laboratory and field for over 100 years in investigations of microevolution, ecological dynamics, and ecotoxicology. In recent years, rotifers have emerged as a model system for modern studies of the molecular mechanisms of genome evolution, development, DNA repair, aging, life history strategy, and desiccation tolerance. However, a lack of gene editing tools and transgenic strains has limited the ability to link genotype to phenotype and dissect molecular mechanisms. To facilitate genetic manipulation and the creation of reporter lines in rotifers, we developed a protocol for highly efficient, transgenerational, CRISPR-mediated gene editing in the monogonont rotifer Brachionus manjavacas by microinjection of Cas9 protein and synthetic single-guide RNA into the vitellaria of young amictic (asexual) females. To demonstrate the efficacy of the method, we created knockout mutants of the developmental gene vasa and the DNA mismatch repair gene mlh3. More than half of mothers survived injection and produced offspring. Genotyping these offspring and successive generations revealed that most carried at least 1 CRISPR-induced mutation, with many apparently mutated at both alleles. In addition, we achieved precise CRISPR-mediated knock-in of a stop codon cassette in the mlh3 locus, with half of injected mothers producing F2 offspring with an insertion of the cassette. Thus, this protocol produces knockout and knock-in CRISPR/Cas9 editing with high efficiency, to further advance rotifers as a model system for biological discovery.
Collapse
Affiliation(s)
- Haiyang Feng
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Gemma Bavister
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Kristin E Gribble
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - David B Mark Welch
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| |
Collapse
|
5
|
Compound combinations targeting longevity: Challenges and perspectives. Ageing Res Rev 2023; 85:101851. [PMID: 36642188 DOI: 10.1016/j.arr.2023.101851] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/05/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Aging is one of the world's greatest concerns, requiring urgent, effective, large-scale interventions to decrease the number of late-life chronic diseases and improve human healthspan. Anti-aging drug therapy is one of the most promising strategies to combat the effects of aging. However, most geroprotective compounds are known to successfully affect only a few aging-related targets. Given this, there is a great biological rationale for the use of combinations of anti-aging interventions. In this review, we characterize the various types of compound combinations used to modulate lifespan, discuss the existing evidence on their role in life extension, and present some key points about current challenges and future prospects for the development of combination drug anti-aging therapy.
Collapse
|
6
|
Yang EJ, Park JH, Cho HJ, Hwang JA, Woo SH, Park CH, Kim SY, Park JT, Park SC, Hwang D, Lee YS. Co-inhibition of ATM and ROCK synergistically improves cell proliferation in replicative senescence by activating FOXM1 and E2F1. Commun Biol 2022; 5:702. [PMID: 35835838 PMCID: PMC9283421 DOI: 10.1038/s42003-022-03658-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 06/29/2022] [Indexed: 12/30/2022] Open
Abstract
The multifaceted nature of senescent cell cycle arrest necessitates the targeting of multiple factors arresting or promoting the cell cycle. We report that co-inhibition of ATM and ROCK by KU-60019 and Y-27632, respectively, synergistically increases the proliferation of human diploid fibroblasts undergoing replicative senescence through activation of the transcription factors E2F1 and FOXM1. Time-course transcriptome analysis identified FOXM1 and E2F1 as crucial factors promoting proliferation. Co-inhibition of the kinases ATM and ROCK first promotes the G2/M transition via FOXM1 activation, leading to accumulation of cells undergoing the G1/S transition via E2F1 activation. The combination of both inhibitors increased this effect more significantly than either inhibitor alone, suggesting synergism. Our results demonstrate a FOXM1- and E2F1-mediated molecular pathway enhancing cell cycle progression in cells with proliferative potential under replicative senescence conditions, and treatment with the inhibitors can be tested for senomorphic effect in vivo.
Collapse
Affiliation(s)
- Eun Jae Yang
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Ji Hwan Park
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Hyun-Ji Cho
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Jeong-A Hwang
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Seung-Hwa Woo
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Chi Hyun Park
- Department of Computer Science and Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sung Young Kim
- Department of Biochemistry, Konkuk University School of Medicine, Seoul, 05029, Korea
| | - Joon Tae Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Sang Chul Park
- Well Aging Research Center, Division of Biotechnology, DGIST, Daegu, 42988, Republic of Korea.
- The Future Life & Society Research Center, Advanced Institute of Aging Science, Chonnam National University, Gwangju, 61469, Republic of Korea.
| | - Daehee Hwang
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Young-Sam Lee
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea.
- Well Aging Research Center, Division of Biotechnology, DGIST, Daegu, 42988, Republic of Korea.
- New Biology Research Center, DGIST, Daegu, 42988, Republic of Korea.
| |
Collapse
|
7
|
Kim DH, Byeon E, Kim MS, Lee YH, Park JC, Hagiwara A, Lee JS. The Genome of the Marine Rotifer Brachionus manjavacas: Genome-Wide Identification of 310 G Protein-Coupled Receptor (GPCR) Genes. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:226-242. [PMID: 35262805 DOI: 10.1007/s10126-022-10102-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
The marine rotifer Brachionus manjavacas is widely used in ecological, ecotoxicological, and ecophysiological studies. The reference genome of B. manjavacas is a good starting point to uncover the potential molecular mechanisms of responses to various environmental stressors. In this study, we assembled the whole-genome sequence (114.1 Mb total, N50 = 6.36 Mb) of B. manjavacas, consisting of 61 contigs with 18,527 annotated genes. To elucidate the potential ligand-receptor signaling pathways in marine Brachionus rotifers in response to environmental signals, we identified 310 G protein-coupled receptor (GPCR) genes in the B. manjavacas genome after comparing them with three other species, including the minute rotifer Proales similis, Drosophila melanogaster, and humans (Homo sapiens). The 310 full-length GPCR genes were categorized into five distinct classes: A (262), B (26), C (7), F (2), and other (13). Most GPCR gene families showed sporadic evolutionary processes, but some classes were highly conserved between species as shown in the minute rotifer P. similis. Overall, these results provide potential clues for in silico analysis of GPCR-based signaling pathways in the marine rotifer B. manjavacas and will expand our knowledge of ligand-receptor signaling pathways in response to various environmental signals in rotifers.
Collapse
Affiliation(s)
- Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Young Hwan Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Jun Chul Park
- Départment Des Sciences, Université Sainte-Anne, Church Point, NS, B0W 1M0, Canada
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
- Organization for Marine Science and Technology, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea.
| |
Collapse
|
8
|
Zhang Y, Zhang J, Wang S. The Role of Rapamycin in Healthspan Extension via the Delay of Organ Aging. Ageing Res Rev 2021; 70:101376. [PMID: 34089901 DOI: 10.1016/j.arr.2021.101376] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/07/2021] [Accepted: 05/30/2021] [Indexed: 12/17/2022]
Abstract
Aging can not only shorten a healthy lifespan, but can also lead to multi-organ dysfunction and failure. Anti-aging is a complex and worldwide conundrum for eliminating the various pathologies of senility. The past decade has seen great progress in the understanding of the aging-associated signaling pathways and their application for developing anti-aging approaches. Currently, some drugs can improve quality of life. The activation of mammalian target of rapamycin (mTOR) signaling is one of the core and detrimental mechanisms related to aging; rapamycin can reduce the rate of aging, improve age-related diseases by inhibiting the mTOR pathway, and prolong lifespan and healthspan effectively. However, the current evidence for rapamycin in lifespan extension and organ aging is fragmented and scattered. In this review, we summarize the efficacy and safety of rapamycin in prolonging a healthy lifespan by systematically alleviating aging in multiple organ systems, i.e., the nervous, urinary, digestive, circulatory, motor, respiratory, endocrine, reproductive, integumentary and immune systems, to provide a theoretical basis for the future clinical application of rapamycin in anti-aging.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
9
|
Yang Y, Jian X, Tang X, Ma W, Sun Z, Zhang X, Fang K, Zhang X. Feeding behavior toxicity in the marine rotifer Brachionus plicatilis caused by 2,2',4,4'-tetrabromodiphenyl ether (BDE-47): Characteristics and mechanisms. CHEMOSPHERE 2021; 271:129512. [PMID: 33465624 DOI: 10.1016/j.chemosphere.2020.129512] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Polybrominated diphenyl ether contamination in marine environments has received special attention due to its accumulation and magnification in the marine food web and toxicity to organisms. In the present study, a series of short-term toxicological tests were conducted with the marine rotifer Brachionus plicatilis to assess the effects on ingestion and digestive performance after treatment with 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) at nonlethal concentrations under controlled laboratory conditions and to analyze the possible mechanism. The results showed that with accumulation in rotifers, BDE-47 caused a significant decline in the filtration and feeding rates in a concentration-dependent manner. Moreover, the activities of amylase (AMS) and protease were affected, indicating that BDE-47 impaired ingestion and digestion efficiency. BDE-47 exposure did not lead to abnormal microstructures in the main digestive tract (e.g., cilia around the corona, mastax, stomach, digestive gland and esophagus), but the gastric parietal cells shrank, suggesting nutritional deficiency. BDE-47 prominently induced the occurrence of irregular mitochondria at the cilia root, and mitochondrial and isocitrate dehydrogenase activity declined, indicating mitochondrial dysfunction. Furthermore, the activity of ATPase, which catalyzes ATP hydrolysis, decreased as the BDE-47 concentration rose, implying that BDE-47 retarded rotifer ATP dynamics, inevitably interfering with cilia movement to ingest food. Additionally, a significant decline in acetylcholine esterase activity was observed, which led to a hindrance in neurotransmission involved in food intake and digestion. Altogether, our results demonstrated that nonlethal concentrations of BDE-47 could induce feeding depression in rotifers, which is mainly attributed to stymied energy metabolism and nerve conduction.
Collapse
Affiliation(s)
- Yingying Yang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Xiaoyang Jian
- North China Sea Environmental Monitoring Center, State Oceanic Administration, Fushun Road 22, Qingdao, Shandong Province, 266033, China
| | - Xuexi Tang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Wenqian Ma
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Zijie Sun
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Xin Zhang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Kuan Fang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Xinxin Zhang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
10
|
Gribble KE. Brachionus rotifers as a model for investigating dietary and metabolic regulators of aging. ACTA ACUST UNITED AC 2021; 6:1-15. [PMID: 33709041 PMCID: PMC7903245 DOI: 10.3233/nha-200104] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Because every species has unique attributes relevant to understanding specific aspects of aging, using a diversity of study systems and a comparative biology approach for aging research has the potential to lead to novel discoveries applicable to human health. Monogonont rotifers, a standard model for studies of aquatic ecology, evolutionary biology, and ecotoxicology, have also been used to study lifespan and healthspan for nearly a century. However, because much of this work has been published in the ecology and evolutionary biology literature, it may not be known to the biomedical research community. In this review, we provide an overview of Brachionus rotifers as a model to investigate nutritional and metabolic regulators of aging, with a focus on recent studies of dietary and metabolic pathway manipulation. Rotifers are microscopic, aquatic invertebrates with many advantages as a system for studying aging, including a two-week lifespan, easy laboratory culture, direct development without a larval stage, sexual and asexual reproduction, easy delivery of pharmaceuticals in liquid culture, and transparency allowing imaging of cellular morphology and processes. Rotifers have greater gene homology with humans than do established invertebrate models for aging, and thus rotifers may be used to investigate novel genetic mechanisms relevant to human lifespan and healthspan. The research on caloric restriction; dietary, pharmaceutical, and genetic interventions; and transcriptomics of aging using rotifers provide insights into the metabolic regulators of lifespan and health and suggest future directions for aging research. Capitalizing on the unique biology of Brachionus rotifers, referencing the vast existing literature about the influence of diet and drugs on rotifer lifespan and health, continuing the development of genetic tools for rotifers, and growing the rotifer research community will lead to new discoveries a better understanding of the biology of aging.
Collapse
|
11
|
Zhang X, Tang X, Yang Y, Sun Z, Ma W, Tong X, Wang C, Zhang X. Responses of the reproduction, population growth and metabolome of the marine rotifer Brachionus plicatilis to tributyl phosphate (TnBP). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116462. [PMID: 33497947 DOI: 10.1016/j.envpol.2021.116462] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/08/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
The typical alkyl organophosphorus flame retardant tributyl phosphate (TnBP) can leak from common products into the marine environment, with potential negative effects on marine organisms. However, risk assessments for TnBP regarding zooplankton are lacking. In this study, a marine rotifer, Brachionus plicatilis, was used to analyze the effect of TnBP (0.1 μg/L, environmental concentration; 1 and 6 mg/L) on reproduction, population growth, oxidative stress, mitochondrial function and metabolomics. Mortality increased as the TnBP concentration rose; the 24-h LC50 value was 12.45 mg/L. All tested TnBP concentrations inhibited B. plicatilis population growth, with reproductive toxicity at the higher levels. Microstructural imaging showed ovary injury, the direct cause of reproductive toxicity. Despite elevated glutathione reductase activities, levels of reactive oxygen species and malonyldialdehyde increased under TnBP stress, indicating oxidative imbalance. TnBP induced mitochondrial malformation and activity suppression; the ROS scavenger N-acetylcysteine alleviated this inhibition, suggesting an internal connection. Nontargeted metabolomics revealed 398 and 583 differentially expressed metabolites in the 0.1 μg/L and 6 mg/L treatments relative to control, respectively, which were enriched in the pathways such as biosynthesis of amino acids, purine metabolism, aminoacyl-tRNA biosynthesis. According to metabolic pathway analysis, oxidative stress from purine degradation, mitochondrial dysfunction, disturbed lipid metabolism and elevated protein synthesis were jointly responsible for reproduction and population growth changes. This study echoes the results previously found in rotifer on trade-off among different life processes in response to environmental stress. Our systematic study uncovers the TnBP toxic mode of action.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Xuexi Tang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yingying Yang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Zijie Sun
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Wenqian Ma
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Xin Tong
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Chengmin Wang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Xinxin Zhang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
12
|
Effects of low temperature on longevity and lipid metabolism in the marine rotifer Brachionus koreanus. Comp Biochem Physiol A Mol Integr Physiol 2020; 250:110803. [DOI: 10.1016/j.cbpa.2020.110803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022]
|
13
|
Dakik P, McAuley M, Chancharoen M, Mitrofanova D, Lozano Rodriguez ME, Baratang Junio JA, Lutchman V, Cortes B, Simard É, Titorenko VI. Pairwise combinations of chemical compounds that delay yeast chronological aging through different signaling pathways display synergistic effects on the extent of aging delay. Oncotarget 2019; 10:313-338. [PMID: 30719227 PMCID: PMC6349451 DOI: 10.18632/oncotarget.26553] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/20/2018] [Indexed: 01/08/2023] Open
Abstract
We have recently discovered six plant extracts that delay yeast chronological aging. Most of them affect different nodes, edges and modules of an evolutionarily conserved network of longevity regulation that integrates certain signaling pathways and protein kinases; this network is also under control of such aging-delaying chemical compounds as spermidine and resveratrol. We have previously shown that, if a strain carrying an aging-delaying single-gene mutation affecting a certain node, edge or module of the network is exposed to some of the six plant extracts, the mutation and the plant extract enhance aging-delaying efficiencies of each other so that their combination has a synergistic effect on the extent of aging delay. We therefore hypothesized that a pairwise combination of two aging-delaying plant extracts or a combination of one of these plant extracts and spermidine or resveratrol may have a synergistic effect on the extent of aging delay only if each component of this combination targets a different element of the network. To test our hypothesis, we assessed longevity-extending efficiencies of all possible pairwise combinations of the six plant extracts or of one of them and spermidine or resveratrol in chronologically aging yeast. In support of our hypothesis, we show that only pairwise combinations of naturally-occurring chemical compounds that slow aging through different nodes, edges and modules of the network delay aging in a synergistic manner.
Collapse
Affiliation(s)
- Pamela Dakik
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Mélissa McAuley
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | - Darya Mitrofanova
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | | | - Vicky Lutchman
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Berly Cortes
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Éric Simard
- Idunn Technologies Inc., Rosemere, Quebec, Canada
| | | |
Collapse
|
14
|
Sun X, Cui Y, Wang Q, Tang S, Cao X, Luo H, He Z, Hu X, Nie X, Yang Y, Wang T. Proteogenomic Analyses Revealed Favorable Metabolism Pattern Alterations in Rotifer Brachionus plicatilis Fed with Selenium-rich Chlorella. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6699-6707. [PMID: 29874910 DOI: 10.1021/acs.jafc.8b00139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Organoselenium have garnered attention because of their potential to be used as ingredients in new anti-aging and antioxidation medicines and food. Rotifers are frequently used as a model organism for aging research. In this study, we used Se-enriched Chlorella (Se- Chlorella), a novel organoselenium compound, to feed Brachionus plicatilis to establish a rotifer model with a prolonged lifespan. The results showed that the antioxidative effect in Se-enriched rotifer was associated with an increase in guaiacol peroxidase (GPX) and catalase (CAT). The authors then performed the first proteogenomic analysis of rotifers to understand their possible metabolic mechanisms. With the de novo assembly of RNA-Seq reads as the reference, we mapped the proteomic output generated by iTRAQ-based mass spectrometry. We found that the differentially expressed proteins were primarily involved in antireactive oxygen species (ROS) and antilipid peroxidation (LPO), selenocompound metabolism, glycolysis, and amino acid metabolisms. Furthermore, the ROS level of rotifers was diminished after Se- Chlorella feeding, indicating that Se- Chlorella could help rotifers to enhance their amino acid metabolism and shift the energy generating metabolism from tricarboxylic acid cycle to glycolysis, which leads to reduced ROS production. This is the first report to demonstrate the anti-aging effect of Se- Chlorella on rotifers and to provide a possible mechanism for this activity. Thus, Se- Chlorella is a promising novel organoselenium compound with the potential to prolong human lifespans.
Collapse
Affiliation(s)
- Xian Sun
- Institute of Hydrobiology and Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms , Guangdong Higher Education Institutes , Guangzhou 510006 , China
| | - Yizhi Cui
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and Institute of Life and Health Engineering , Jinan University , Guangzhou 510632 , China
| | - Qing Wang
- Institute of Hydrobiology and Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms , Guangdong Higher Education Institutes , Guangzhou 510006 , China
| | - Shengquan Tang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and Institute of Life and Health Engineering , Jinan University , Guangzhou 510632 , China
| | - Xin Cao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and Institute of Life and Health Engineering , Jinan University , Guangzhou 510632 , China
| | - Hongtian Luo
- Institute of Hydrobiology and Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms , Guangdong Higher Education Institutes , Guangzhou 510006 , China
| | - Zhili He
- School of Environmental Science and Engineering , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Xiaonong Hu
- Institute of Hydrobiology and Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms , Guangdong Higher Education Institutes , Guangzhou 510006 , China
| | - Xiangping Nie
- Institute of Hydrobiology and Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms , Guangdong Higher Education Institutes , Guangzhou 510006 , China
| | - Yufeng Yang
- Institute of Hydrobiology and Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms , Guangdong Higher Education Institutes , Guangzhou 510006 , China
| | - Tong Wang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and Institute of Life and Health Engineering , Jinan University , Guangzhou 510632 , China
| |
Collapse
|
15
|
Snell TW, Johnston RK, Matthews AB, Zhou H, Gao M, Skolnick J. Repurposed FDA-approved drugs targeting genes influencing aging can extend lifespan and healthspan in rotifers. Biogerontology 2018; 19:145-157. [PMID: 29340835 PMCID: PMC5834582 DOI: 10.1007/s10522-018-9745-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/09/2018] [Indexed: 12/29/2022]
Abstract
Pharmaceutical interventions can slow aging in animals, and have advantages because their dose can be tightly regulated and the timing of the intervention can be closely controlled. They also may complement environmental interventions like caloric restriction by acting additively. A fertile source for therapies slowing aging is FDA approved drugs whose safety has been investigated. Because drugs bind to several protein targets, they cause multiple effects, many of which have not been characterized. It is possible that some of the side effects of drugs prescribed for one therapy may have benefits in retarding aging. We used computationally guided drug screening for prioritizing drug targets to produce a short list of candidate compounds for in vivo testing. We applied the virtual ligand screening approach FINDSITEcomb for screening potential anti-aging protein targets against FDA approved drugs listed in DrugBank. A short list of 31 promising compounds was screened using a multi-tiered approach with rotifers as an animal model of aging. Primary and secondary survival screens and cohort life table experiments identified four drugs capable of extending rotifer lifespan by 8-42%. Exposures to 1 µM erythromycin, 5 µM carglumic acid, 3 µM capecitabine, and 1 µM ivermectin, extended rotifer lifespan without significant effect on reproduction. Some drugs also extended healthspan, as estimated by mitochondria activity and mobility (swimming speed). Our most promising result is that rotifer lifespan was extended by 7-8.9% even when treatment was started in middle age.
Collapse
Affiliation(s)
- Terry W Snell
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332-0230, USA.
| | - Rachel K Johnston
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332-0230, USA
| | - Amelia B Matthews
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332-0230, USA
| | - Hongyi Zhou
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332-0230, USA
| | - Mu Gao
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332-0230, USA
| | - Jeffrey Skolnick
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332-0230, USA
| |
Collapse
|
16
|
Pease LI, Clegg PD, Proctor CJ, Shanley DJ, Cockell SJ, Peffers MJ. Cross platform analysis of transcriptomic data identifies ageing has distinct and opposite effects on tendon in males and females. Sci Rep 2017; 7:14443. [PMID: 29089527 PMCID: PMC5663855 DOI: 10.1038/s41598-017-14650-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/13/2017] [Indexed: 01/21/2023] Open
Abstract
The development of tendinopathy is influenced by a variety of factors including age, gender, sex hormones and diabetes status. Cross platform comparative analysis of transcriptomic data elucidated the connections between these entities in the context of ageing. Tissue-engineered tendons differentiated from bone marrow derived mesenchymal stem cells from young (20-24 years) and old (54-70 years) donors were assayed using ribonucleic acid sequencing (RNA-seq). Extension of the experiment to microarray and RNA-seq data from tendon identified gender specific gene expression changes highlighting disparity with existing literature and published pathways. Separation of RNA-seq data by sex revealed underlying negative binomial distributions which increased statistical power. Sex specific de novo transcriptome assemblies generated fewer larger transcripts that contained miRNAs, lincRNAs and snoRNAs. The results identify that in old males decreased expression of CRABP2 leads to cell proliferation, whereas in old females it leads to cellular senescence. In conjunction with existing literature the results explain gender disparity in the development and types of degenerative diseases as well as highlighting a wide range of considerations for the analysis of transcriptomic data. Wider implications are that degenerative diseases may need to be treated differently in males and females because alternative mechanisms may be involved.
Collapse
Affiliation(s)
- Louise I Pease
- MRC - Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Liverpool, UK
| | - Peter D Clegg
- MRC - Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Liverpool, UK
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, The University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK
| | - Carole J Proctor
- MRC - Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Liverpool, UK
- Institute of Cellular Medicine, Newcastle University, Newcastle, NE2 4HH, UK
| | - Daryl J Shanley
- MRC - Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Liverpool, UK
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle, NE1 7RU, UK
| | - Simon J Cockell
- Faculty of Medical Sciences, Bioinformatics Support Unit, Framlington Place, Newcastle University, Newcastle, NE2 4HH, UK
| | - Mandy J Peffers
- MRC - Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Liverpool, UK.
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, The University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK.
| |
Collapse
|
17
|
Moskalev AA, Proshkina EN, Belyi AA, Solovyev IA. Genetics of aging and longevity. RUSSIAN JOURNAL OF GENETICS: APPLIED RESEARCH 2017; 7:369-384. [DOI: 10.1134/s2079059717040074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
18
|
Gribble KE, Mark Welch DB. Genome-wide transcriptomics of aging in the rotifer Brachionus manjavacas, an emerging model system. BMC Genomics 2017; 18:217. [PMID: 28249563 PMCID: PMC5333405 DOI: 10.1186/s12864-017-3540-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/02/2017] [Indexed: 12/22/2022] Open
Abstract
Background Understanding gene expression changes over lifespan in diverse animal species will lead to insights to conserved processes in the biology of aging and allow development of interventions to improve health. Rotifers are small aquatic invertebrates that have been used in aging studies for nearly 100 years and are now re-emerging as a modern model system. To provide a baseline to evaluate genetic responses to interventions that change health throughout lifespan and a framework for new hypotheses about the molecular genetic mechanisms of aging, we examined the transcriptome of an asexual female lineage of the rotifer Brachionus manjavacas at five life stages: eggs, neonates, and early-, late-, and post-reproductive adults. Results There are widespread shifts in gene expression over the lifespan of B. manjavacas; the largest change occurs between neonates and early reproductive adults and is characterized by down-regulation of developmental genes and up-regulation of genes involved in reproduction. The expression profile of post-reproductive adults was distinct from that of other life stages. While few genes were significantly differentially expressed in the late- to post-reproductive transition, gene set enrichment analysis revealed multiple down-regulated pathways in metabolism, maintenance and repair, and proteostasis, united by genes involved in mitochondrial function and oxidative phosphorylation. Conclusions This study provides the first examination of changes in gene expression over lifespan in rotifers. We detected differential expression of many genes with human orthologs that are absent in Drosophila and C. elegans, highlighting the potential of the rotifer model in aging studies. Our findings suggest that small but coordinated changes in expression of many genes in pathways that integrate diverse functions drive the aging process. The observation of simultaneous declines in expression of genes in multiple pathways may have consequences for health and longevity not detected by single- or multi-gene knockdown in otherwise healthy animals. Investigation of subtle but genome-wide change in these pathways during aging is an important area for future study. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3540-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kristin E Gribble
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - David B Mark Welch
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, 02543, USA.
| |
Collapse
|
19
|
Snell TW, Johnston RK, Srinivasan B, Zhou H, Gao M, Skolnick J. Repurposing FDA-approved drugs for anti-aging therapies. Biogerontology 2016; 17:907-920. [PMID: 27484416 PMCID: PMC5065615 DOI: 10.1007/s10522-016-9660-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/25/2016] [Indexed: 12/31/2022]
Abstract
There is great interest in drugs that are capable of modulating multiple aging pathways, thereby delaying the onset and progression of aging. Effective strategies for drug development include the repurposing of existing drugs already approved by the FDA for human therapy. FDA approved drugs have known mechanisms of action and have been thoroughly screened for safety. Although there has been extensive scientific activity in repurposing drugs for disease therapy, there has been little testing of these drugs for their effects on aging. The pool of FDA approved drugs therefore represents a large reservoir of drug candidates with substantial potential for anti-aging therapy. In this paper we employ FINDSITEcomb, a powerful ligand homology modeling program, to identify binding partners for proteins produced by temperature sensing genes that have been implicated in aging. This list of drugs with potential to modulate aging rates was then tested experimentally for lifespan and healthspan extension using a small invertebrate model. Three protein targets of the rotifer Brachionus manjavacas corresponding to products of the transient receptor potential gene 7, ribosomal protein S6 polypeptide 2 gene, or forkhead box C gene, were screened against a compound library consisting of DrugBank drugs including 1347 FDA approved, non-nutraceutical molecules. Twenty nine drugs ranked in the top 1 % for binding to each target were subsequently included in our experimental analysis. Continuous exposure of rotifers to 1 µM naproxen significantly extended rotifer mean lifespan by 14 %. We used three endpoints to estimate rotifer health: swimming speed (mobility proxy), reproduction (overall vitality), and mitochondria activity (cellular senescence proxy). The natural decline in swimming speed with aging was more gradual when rotifers were exposed to three drugs, so that on day 6, mean swimming speed of females was 1.19 mm/s for naproxen (P = 0.038), 1.20 for fludarabine (P = 0.040), 1.35 for hydralazine (P = 0.038), as compared to 0.88 mm/s in the control. The average reproduction of control females in the second half of their reproductive lifespan was 1.08 per day. In contrast, females treated with 1 µM naproxen produced 1.4 offspring per day (P = 0.027) and females treated with 10 µM fludarabine or 1 µM hydralazine produced 1.72 (P = <0.001) and 1.66 (P = 0.001) offspring per day, respectively. Mitochondrial activity naturally declines with rotifer aging, but B. manjavacas treated with 1 µM hydralazine or 10 µM fludarabine retained 49 % (P = 0.038) and 89 % (P = 0.002) greater mitochondria activity, respectively, than untreated controls. Our results demonstrate that coupling computation to experimentation can quickly identify new drug candidates with anti-aging potential. Screening drugs for anti-aging effects using a rotifer bioassay is a powerful first step in identifying compounds worthy of follow-up in vertebrate models. Even if lifespan extension is not observed, certain drugs could improve healthspan, slowing age-dependent losses in mobility and vitality.
Collapse
Affiliation(s)
- Terry W Snell
- School of Biology, Georgia Institute of Technology, Atlanta, GA, 30332-0230, USA.
| | - Rachel K Johnston
- School of Biology, Georgia Institute of Technology, Atlanta, GA, 30332-0230, USA
| | - Bharath Srinivasan
- School of Biology, Georgia Institute of Technology, Atlanta, GA, 30332-0230, USA
| | - Hongyi Zhou
- School of Biology, Georgia Institute of Technology, Atlanta, GA, 30332-0230, USA
| | - Mu Gao
- School of Biology, Georgia Institute of Technology, Atlanta, GA, 30332-0230, USA
| | - Jeffrey Skolnick
- School of Biology, Georgia Institute of Technology, Atlanta, GA, 30332-0230, USA
| |
Collapse
|
20
|
Moskalev A, Chernyagina E, Tsvetkov V, Fedintsev A, Shaposhnikov M, Krut'ko V, Zhavoronkov A, Kennedy BK. Developing criteria for evaluation of geroprotectors as a key stage toward translation to the clinic. Aging Cell 2016; 15:407-15. [PMID: 26970234 PMCID: PMC4854916 DOI: 10.1111/acel.12463] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2016] [Indexed: 01/15/2023] Open
Abstract
In the coming decades, a massive shift in the aging segment of the population will have major social and economic consequences around the world. One way to offset this increase is to expedite the development of geroprotectors, substances that slow aging, repair age‐associated damage and extend healthy lifespan, or healthspan. While over 200 geroprotectors are now reported in model organisms and some are in human use for specific disease indications, the path toward determining whether they affect aging in humans remains obscure. Translation to the clinic is hampered by multiple issues including absence of a common set of criteria to define, select, and classify these substances, given the complexity of the aging process and their enormous diversity in mechanism of action. Translational research efforts would benefit from the formation of a scientific consensus on the following: the definition of ‘geroprotector’, the selection criteria for geroprotectors, a comprehensive classification system, and an analytical model. Here, we review current approaches to selection and put forth our own suggested selection criteria. Standardizing selection of geroprotectors will streamline discovery and analysis of new candidates, saving time and cost involved in translation to clinic.
Collapse
Affiliation(s)
- Alexey Moskalev
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences Moscow 119991 Russia
- Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences Syktyvkar 167982 Russia
- Moscow Institute of Physics and Technology Dolgoprudny 141700 Russia
| | | | - Vasily Tsvetkov
- Moscow Institute of Physics and Technology Dolgoprudny 141700 Russia
- The Research Institute for Translational Medicine Pirogov Russian National Research Medical University Moscow 117997 Russia
| | - Alexander Fedintsev
- Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences Syktyvkar 167982 Russia
| | - Mikhail Shaposhnikov
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences Moscow 119991 Russia
| | - Vyacheslav Krut'ko
- Institute for Systems Analysis Russian Academy of Sciences Moscow 117312 Russia
| | - Alex Zhavoronkov
- Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences Syktyvkar 167982 Russia
- D. Rogachev FRC Center for Pediatric Hematology, Oncology and Immunology Samory Machela 1 Moscow 117997 Russia
- The Biogerontology Research Foundation 2354 Chynoweth House, Trevissome Park, Blackwater, Truro Cornwall TR4 8UN UK
| | | |
Collapse
|
21
|
Johnston RK, Snell TW. Moderately lower temperatures greatly extend the lifespan of Brachionus manjavacas (Rotifera): Thermodynamics or gene regulation? Exp Gerontol 2016; 78:12-22. [PMID: 26939542 PMCID: PMC4841702 DOI: 10.1016/j.exger.2016.02.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 02/19/2016] [Accepted: 02/25/2016] [Indexed: 01/30/2023]
Abstract
Environmental temperature greatly affects lifespan in a wide variety of animals, but the exact mechanisms underlying this effect are still largely unknown. A moderate temperature decrease from 22°C to 16°C extends the lifespan of the monogonont rotifer Brachionus manjavacas by up to 163%. Thermodynamic effects on metabolism contribute to this increase in longevity, but are not the only cause. When rotifers are exposed to 16°C for four days and then transfered to 22°C, they survive until day 13 at nearly identical rates as rotifers maintained at 16°C continuously. This persistence of the higher survival for nine days after transfer to 22°C suggests that low temperature exposure alters the expression of genes that affect the rate of aging. The relative persistence of the gene regulation effect suggests that it may play an even larger role in slowing aging than the thermodynamic effects. The life extending effects of these short-term low temperature treatments are largest when the exposure happens early in the life cycle, demonstrating the importance of early development. There is no advantage to lowering the temperature below 16°C to 11° or 5°C. Rotifers exposed to 16°C also displayed increased resistance to heat, starvation, oxidative and osmotic stress. Reproductive rates at 16°C were lower than those at 22°C, but because they reproduce longer, there is no significant change in the lifetime fecundity of females. To investigate which genes contribute to these effects, the expression of specific temperature sensing genes was knocked down using RNAi. Of 12 genes tested, RNAi knockdown of four eliminated the survival enhancing effects of the four-day cold treatment: TRP7, forkhead box C, Y-box factor, and ribosomal protein S6. This demonstrates that active gene regulation is an important factor in temperature mediated life extension, and that these particular genes play an integral role in these pathways. As a thermoresponsive sensor, TRP7 may be responsible for triggering the signaling cascade contributing to temperature mediated life extension. The TRP genes may also provide especially promising candidates for targeted gene manipulations or pharmacological interventions capable of mimicking the effects of low temperature exposure. These results support recent theories of aging that claim rate of aging is determined by an actively regulated genetic mechanism rather than an accumulation of molecular damage.
Collapse
Affiliation(s)
- Rachel K Johnston
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA.
| | - Terry W Snell
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| |
Collapse
|
22
|
Erdogan CS, Hansen BW, Vang O. Are invertebrates relevant models in ageing research? Focus on the effects of rapamycin on TOR. Mech Ageing Dev 2016; 153:22-9. [PMID: 26763146 DOI: 10.1016/j.mad.2015.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/24/2015] [Accepted: 12/29/2015] [Indexed: 12/16/2022]
Abstract
Ageing is the organisms increased susceptibility to death, which is linked to accumulated damage in the cells and tissues. Ageing is a complex process regulated by crosstalk of various pathways in the cells. Ageing is highly regulated by the Target of Rapamycin (TOR) pathway activity. TOR is an evolutionary conserved key protein kinase in the TOR pathway that regulates growth, proliferation and cell metabolism in response to nutrients, growth factors and stress. Comparing the ageing process in invertebrate model organisms with relatively short lifespan with mammals provides valuable information about the molecular mechanisms underlying the ageing process faster than mammal systems. Inhibition of the TOR pathway activity via either genetic manipulation or rapamycin increases lifespan profoundly in most invertebrate model organisms. This contribution will review the recent findings in invertebrates concerning the TOR pathway and effects of TOR inhibition by rapamycin on lifespan. Besides some contradictory results, the majority points out that rapamycin induces longevity. This suggests that administration of rapamycin in invertebrates is a promising tool for pursuing the scientific puzzle of lifespan prolongation.
Collapse
Affiliation(s)
- Cihan Suleyman Erdogan
- Roskilde University, Department of Science and Environment, Universitetsvej 1, DK-4000, Denmark
| | - Benni Winding Hansen
- Roskilde University, Department of Science and Environment, Universitetsvej 1, DK-4000, Denmark
| | - Ole Vang
- Roskilde University, Department of Science and Environment, Universitetsvej 1, DK-4000, Denmark.
| |
Collapse
|
23
|
Murthy M, Ram JL. Invertebrates as model organisms for research on aging biology. INVERTEBR REPROD DEV 2014; 59:1-4. [PMID: 26241448 PMCID: PMC4464166 DOI: 10.1080/07924259.2014.970002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 10/31/2022]
Abstract
Invertebrate model systems, such as nematodes and fruit flies, have provided valuable information about the genetics and cellular biology involved in aging. However, limitations of these simple, genetically tractable organisms suggest the need for other model systems, some of them invertebrate, to facilitate further advances in the understanding of mechanisms of aging and longevity in mammals, including humans. This paper introduces 10 review articles about the use of invertebrate model systems for the study of aging by authors who participated in an 'NIA-NIH symposium on aging in invertebrate model systems' at the 2013 International Congress for Invertebrate Reproduction and Development. In contrast to the highly derived characteristics of nematodes and fruit flies as members of the superphylum Ecdysozoa, cnidarians, such as Hydra, are more 'basal' organisms that have a greater number of genetic orthologs in common with humans. Moreover, some other new model systems, such as the urochordate Botryllus schlosseri, the tunicate Ciona, and the sea urchins (Echinodermata) are members of the Deuterostomia, the same superphylum that includes all vertebrates, and thus have mechanisms that are likely to be more closely related to those occurring in humans. Additional characteristics of these new model systems, such as the recent development of new molecular and genetic tools and a more similar pattern to humans of regeneration and stem cell function suggest that these new model systems may have unique advantages for the study of mechanisms of aging and longevity.
Collapse
Affiliation(s)
- Mahadev Murthy
- Division of Aging Biology, National Institute on Aging, National Institutes of Health , Bethesda , MD 20892 , USA
| | - Jeffrey L Ram
- Department of Physiology, Wayne State University , Detroit , MI 48201 , USA
| |
Collapse
|
24
|
Abstract
Comparative biogerontology has much to contribute to the study of aging. A broad range of aging rates have evolved to meet environmental challenges, and understanding these adaptations can produce valuable insights into aging. The supra Phylum Lophotrochozoa is particularly understudied and has several groups that have intriguing patterns of aging. Members of the Lophotrochozoan phylum Rotifera are particularly useful for aging studies because cohort life tables can be conducted with them easily, and biochemical and genomic tools are available for examining aging mechanisms. This paper reviews a variety of caloric restriction (CR) regimens, small molecule inhibitors, and dietary supplements that extend rotifer lifespan, as well as important interactions between CR and genotype, antioxidant supplements, and TOR and jun-N-terminal kinase (JNK) pathways, and the use of RNAi to identify key genes involved in modulating the aging response. Examples of how rapamycin and JNK inhibitor exposure keeps mortality rates low during the reproductive phase of the life cycle are presented, and the ease of conducting life table experiments to screen natural products from red algae for life extending effects is illustrated. Finally, experimental evolution to produce longer-lived rotifer individuals is demonstrated, and future directions to determine the genetic basis of aging are discussed.
Collapse
Affiliation(s)
- Terry W Snell
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, 30332-0230, USA
| | - Rachel K Johnston
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, 30332-0230, USA
| | | | | |
Collapse
|
25
|
Snell TW, Johnston RK. Glycerol extends lifespan of Brachionus manjavacas (Rotifera) and protects against stressors. Exp Gerontol 2014; 57:47-56. [PMID: 24835191 DOI: 10.1016/j.exger.2014.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 05/03/2014] [Accepted: 05/05/2014] [Indexed: 01/18/2023]
Abstract
Diet has profound effects on animal longevity and manipulation of nutrient sensing pathways is one of the primary interventions capable of lifespan extension. This often is done through caloric restriction (CR) and a variety of CR mimics have been identified that produce life extending effects without adhering to the rigorous CR dietary regimen. Glycerol is a dietary supplement capable mimicking CR by shifting metabolism away from glycolysis and towards oxidative phosphorylation. Glycerol supplementation has a number of beneficial effects, including lifespan extension, improved stress resistance, and enhanced locomotory and mitochondria activity in older age classes. Using rotifers as a model, we show that supplements of 150-300mM glycerol produced 40-50% extension of mean lifespan. This effect was produced by raising glycerol concentration only three times higher than its baseline concentration in rotifer tissues. Glycerol supplementation decreased rotifer reliance on glycolysis and reduced the pro-aging effects of glucose. Glycerol also acted as a chemical chaperone, mitigating damage by protein aggregation. Glycerol treatment improved rotifer swimming performance in older age classes and maintained more mitochondrial activity. Glycerol treatment provided increased resistance to starvation, heat, oxidation, and osmotic stress, but not UV stress. When glycerol was co-administered with the hexokinase inhibitor 2-deoxyglucose, the lifespan extending effect of glycerol was enhanced. Co-administration of glycerol with inhibitors like 2-deoxyglucose can lower their efficacious doses, thereby reducing their toxic side effects.
Collapse
Affiliation(s)
- Terry W Snell
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA.
| | - Rachel K Johnston
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| |
Collapse
|