1
|
Li TT, Bai HY, Zhang JH, Kang XH, Qu YQ. Identification and Validation of Aging Related Genes Signature in Chronic Obstructive Pulmonary Disease. COPD 2024; 21:2379811. [PMID: 39138958 DOI: 10.1080/15412555.2024.2379811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024]
Abstract
PURPOSE Chronic Obstructive Pulmonary Disease (COPD) is regarded as an accelerated aging disease. Aging-related genes in COPD are still poorly understood. METHOD Data set GSE76925 was obtained from the Gene Expression Omnibus (GEO) database. The "limma" package identified the differentially expressed genes. The weighted gene co-expression network analysis (WGCNA) constructes co-expression modules and detect COPD-related modules. The least absolute shrinkage and selection operator (LASSO) and the support vector machine recursive feature elimination (SVM-RFE) algorithms were chosen to identify the hub genes and the diagnostic ability. Three external datasets were used to identify differences in the expression of hub genes. Real-time reverse transcription polymerase chain reaction (RT-qPCR) was used to verify the expression of hub genes. RESULT We identified 15 differentially expressed genes associated with aging (ARDEGs). The SVM-RFE and LASSO algorithms pinpointed four potential diagnostic biomarkers. Analysis of external datasets confirmed significant differences in PIK3R1 expression. RT-qPCR results indicated decreased expression of hub genes. The ROC curve demonstrated that PIK3R1 exhibited strong diagnostic capability for COPD. CONCLUSION We identified 15 differentially expressed genes associated with aging. Among them, PIK3R1 showed differences in external data sets and RT-qPCR results. Therefore, PIK3R1 may play an essential role in regulating aging involved in COPD.
Collapse
Affiliation(s)
- Tian-Tian Li
- Department of Pulmonary and Critical Care Medicine, Shandong Key Laboratory of Infectious Respiratory Diseases, Qilu Hospital of Shandong University, Jinan, China
| | - Hong-Yan Bai
- Department of Pulmonary and Critical Care Medicine, Shandong Key Laboratory of Infectious Respiratory Diseases, Qilu Hospital of Shandong University, Jinan, China
| | - Jing-Hong Zhang
- Department of Pulmonary and Critical Care Medicine, Shandong Key Laboratory of Infectious Respiratory Diseases, Qilu Hospital of Shandong University, Jinan, China
| | - Xiu-He Kang
- Department of Pulmonary and Critical Care Medicine, Shandong Key Laboratory of Infectious Respiratory Diseases, Qilu Hospital of Shandong University, Jinan, China
| | - Yi-Qing Qu
- Department of Pulmonary and Critical Care Medicine, Shandong Key Laboratory of Infectious Respiratory Diseases, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
2
|
Wei Y, Lu X, Liu C. Gut microbiota and chronic obstructive pulmonary disease: a Mendelian randomization study. Front Microbiol 2023; 14:1196751. [PMID: 37405157 PMCID: PMC10315658 DOI: 10.3389/fmicb.2023.1196751] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/19/2023] [Indexed: 07/06/2023] Open
Abstract
Background A growing number of studies implies a strong association between gut microbiota and chronic obstructive pulmonary disease (COPD). However, the causal impact between gut microbiota and COPD remains unclear. As a result, we used a two-sample Mendelian randomization (MR) method to investigate the connection between gut microbiota and COPD in this study. Methods The largest available genome-wide association study (GWAS) of gut microbiota was obtained from the MiBioGen consortium. Summary-level dataset for COPD were obtained from the FinnGen consortium. The main analysis method for determining the causal link between gut microbiota and COPD was inverse variance weighted (IVW). Subsequently, pleiotropy and heterogeneity tests were performed to determine the reliability of the results. Results IVW method identified 9 bacterial taxa nominally associated with the risk of COPD. Class Actinobacteria (p = 0.020), genus Allisonella (p = 0.024), genus Coprococcus2 (p = 0.002) and genus Oscillospira (p = 0.018) were protective against COPD. In addition, order Desulfovibrionales (p = 0.011), family Desulfovibrionaceae (p = 0.039), family Peptococcaceae (p = 0.020), family Victivallaceae (p = 0.012) and genus Marvinbryantia (p = 0.017) were associated with a higher risk of COPD. No pleiotropy or heterogeneity were found. Conclusion According to the findings of this MR analysis, a causal relationship exists between certain gut microbiota and COPD. New insights into the mechanisms of COPD mediated by gut microbiota are provided.
Collapse
Affiliation(s)
- Yi Wei
- Department of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuechao Lu
- Department of Respiratory and Critical Care Medicine, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao, China
| | - Chao Liu
- Department of Medical Imaging, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao, China
| |
Collapse
|
3
|
Zhong S, Yang L, Liu N, Zhou G, Hu Z, Chen C, Wang Y. Identification and validation of aging-related genes in COPD based on bioinformatics analysis. Aging (Albany NY) 2022; 14:4336-4356. [PMID: 35609226 PMCID: PMC9186770 DOI: 10.18632/aging.204064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/12/2022] [Indexed: 11/25/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a serious chronic respiratory disorder. One of the major risk factors for COPD progression is aging. Therefore, we investigated aging-related genes in COPD using bioinformatic analyses. Firstly, the Aging Atlas database containing 500 aging-related genes and the Gene Expression Omnibus database (GSE38974) were utilized to screen candidates. A total of 24 candidate genes were identified related to both COPD and aging. Using gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses, we found that this list of 24 genes was enriched in genes associated with cytokine activity, cell apoptosis, NF-κB and IL-17 signaling. Four of these genes (CDKN1A, HIF1A, MXD1 and SOD2) were determined to be significantly upregulated in clinical COPD samples and in cigarette smoke extract-exposed Beas-2B cells in vitro, and their expression was negatively correlated with predicted forced expiratory volume and forced vital capacity. In addition, the combination of expression levels of these four genes had a good discriminative ability for COPD patients (AUC = 0.794, 95% CI 0.743-0.845). All four were identified as target genes of hsa-miR-519d-3p, which was significantly down-regulated in COPD patients. The results from this study proposed that regulatory network of hsa-miR-519d-3p/CDKN1A, HIF1A, MXD1, and SOD2 closely associated with the progression of COPD, which provides a theoretical basis to link aging effectors with COPD progression, and may suggest new diagnostic and therapeutic targets of this disease.
Collapse
Affiliation(s)
- Shan Zhong
- Guangdong Key Laboratory of Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, P.R. China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518061, P.R. China
| | - Li Yang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, P.R. China
| | - Naijia Liu
- Guangdong Key Laboratory of Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, P.R. China
| | - Guangkeng Zhou
- Guangdong Key Laboratory of Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, P.R. China
| | - Zhangli Hu
- Guangdong Key Laboratory of Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, P.R. China.,Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P.R. China
| | - Chengshui Chen
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, P.R. China
| | - Yun Wang
- Guangdong Key Laboratory of Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, P.R. China
| |
Collapse
|
4
|
de Vries M, Nwozor KO, Muizer K, Wisman M, Timens W, van den Berge M, Faiz A, Hackett TL, Heijink IH, Brandsma CA. The relation between age and airway epithelial barrier function. Respir Res 2022; 23:43. [PMID: 35241091 PMCID: PMC8892715 DOI: 10.1186/s12931-022-01961-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/11/2022] [Indexed: 11/10/2022] Open
Abstract
Background The prevalence of age-associated diseases, such as chronic obstructive pulmonary disease (COPD), is increasing as the average life expectancy increases around the world. We previously identified a gene signature for ageing in the human lung which included genes involved in apical and tight junction assembly, suggesting a role for airway epithelial barrier dysfunction with ageing. Aim To investigate the association between genes involved in epithelial barrier function and age both in silico and in vitro in the airway epithelium. Methods We curated a gene signature of 274 genes for epithelial barrier function and tested the association with age in two independent cohorts of bronchial brushings from healthy individuals with no respiratory disease, using linear regression analysis (FDR < 0.05). Protein–protein interactions were identified using STRING©. The barrier function of primary bronchial epithelial cells at air–liquid interface and CRISPR–Cas9-induced knock-down of target genes in human bronchial 16HBE14o-cells was assessed using Trans epithelial resistance (TER) measurement and Electric cell-surface impedance sensing (ECIS) respectively. Results In bronchial brushings, we found 55 genes involved in barrier function to be significantly associated with age (FDR < 0.05). EPCAM was most significantly associated with increasing age and TRPV4 with decreasing age. Protein interaction analysis identified CDH1, that was negatively associated with higher age, as potential key regulator of age-related epithelial barrier function changes. In vitro, barrier function was lower in bronchial epithelial cells from subjects > 45 years of age and significantly reduced in CDH1-deficient 16HBE14o-cells. Conclusion The significant association between genes involved in epithelial barrier function and age, supported by functional studies in vitro, suggest a role for epithelial barrier dysfunction in age-related airway disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-01961-7.
Collapse
Affiliation(s)
- M de Vries
- University Medical Center Groningen, University of Groningen, Department of Epidemiology, Hanzeplein 1, 9713, Groningen, The Netherlands. .,University Medical Center Groningen, University of Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.
| | - K O Nwozor
- University Medical Center Groningen, University of Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University Medical Center Groningen, University of Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands.,Department of Anesthesiology, Pharmacology & Therapeutics, Centre for Heart Lung Innovation, The University of British Columbia, Vancouver, Canada
| | - K Muizer
- University Medical Center Groningen, University of Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University Medical Center Groningen, University of Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - M Wisman
- University Medical Center Groningen, University of Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University Medical Center Groningen, University of Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - W Timens
- University Medical Center Groningen, University of Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University Medical Center Groningen, University of Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - M van den Berge
- University Medical Center Groningen, University of Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University Medical Center Groningen, University of Groningen, Department of Pulmonary Diseases, Groningen, The Netherlands
| | - A Faiz
- University Medical Center Groningen, University of Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University Medical Center Groningen, University of Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands.,University Medical Center Groningen, University of Groningen, Department of Pulmonary Diseases, Groningen, The Netherlands
| | - T-L Hackett
- Department of Anesthesiology, Pharmacology & Therapeutics, Centre for Heart Lung Innovation, The University of British Columbia, Vancouver, Canada
| | - I H Heijink
- University Medical Center Groningen, University of Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University Medical Center Groningen, University of Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands.,University Medical Center Groningen, University of Groningen, Department of Pulmonary Diseases, Groningen, The Netherlands
| | - C A Brandsma
- University Medical Center Groningen, University of Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University Medical Center Groningen, University of Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| |
Collapse
|
5
|
Mgbemena N, Jones A, Leicht AS. Relationship between handgrip strength and lung function in adults: a systematic review. Physiother Theory Pract 2021; 38:1908-1927. [PMID: 33870831 DOI: 10.1080/09593985.2021.1901323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Handgrip strength (HGS) is a functional test that has been directly associated with lung function in some healthy populations; however, inconsistent findings have been reported for populations with chronic diseases. The aim of this study was to identify the relationship between HGS and lung function in both healthy and unhealthy adults. A systematic search was conducted using six databases from their earliest inception to February 29, 2020. Two authors reviewed and assessed methodological quality of eligible studies using the Crowe Critical Appraisal Tool (CCAT). Twenty-five studies met the inclusion criteria with 8 and 17 studies examining healthy and unhealthy populations, respectively. Reported average methodological quality of all included studies using the CCAT was 38-85% with most rated as Good to Excellent. Despite the use of heterogeneous equipment and protocols during HGS and lung function assessments, significant positive and moderate correlations and/or regression coefficients were reported for healthy populations consistently. Conversely, the reported relationships between HGS and lung function for unhealthy counterparts were variable. Handgrip strength was significantly associated with lung function in most healthy adults. Future robust studies are needed to confirm the suitability of HGS to assess lung function for healthy and unhealthy adults.
Collapse
Affiliation(s)
- Nnamdi Mgbemena
- Department of Physiotherapy, James Cook University, Townsville, Queensland, Australia.,Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Anne Jones
- Department of Physiotherapy, James Cook University, Townsville, Queensland, Australia.,Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Anthony S Leicht
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia.,Department of Sport and Exercise Science, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
6
|
Mazzoccoli G, Kvetnoy I, Mironova E, Yablonskiy P, Sokolovich E, Krylova J, Carbone A, Anderson G, Polyakova V. The melatonergic pathway and its interactions in modulating respiratory system disorders. Biomed Pharmacother 2021; 137:111397. [PMID: 33761613 DOI: 10.1016/j.biopha.2021.111397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 02/08/2023] Open
Abstract
Melatonin is a key intracellular neuroimmune-endocrine regulator and coordinator of multiple complex and interrelated biological processes. The main functions of melatonin include the regulation of neuroendocrine and antioxidant system activity, blood pressure, rhythms of the sleep-wake cycle, the retardation of ageing processes, as well as reseting and optimizing mitochondria and thereby the cells of the immune system. Melatonin and its agonists have therefore been mooted as a treatment option across a wide array of medical disorders. This article reviews the role of melatonin in the regulation of respiratory system functions under normal and pathological conditions. Melatonin can normalize the structural and functional organization of damaged lung tissues, by a number of mechanisms, including the regulation of signaling molecules, oxidant status, lipid raft function, optimized mitochondrial function and reseting of the immune response over the circadian rhythm. Consequently, melatonin has potential clinical utility for bronchial asthma, chronic obstructive pulmonary disease, lung cancer, lung vascular diseases, as well as pulmonary and viral infections. The integration of melatonin's effects with the alpha 7 nicotinic receptor and the aryl hydrocarbon receptor in the regulation of mitochondrial function are proposed as a wider framework for understanding the role of melatonin across a wide array of diverse pulmonary disorders.
Collapse
Affiliation(s)
- Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo 71013, Italy.
| | - Igor Kvetnoy
- Saint Petersburg Institute of Phthisiopulmonology, Lygovsky Ave. 2-4, Saint Petersburg 191036, Russian Federation; Department of Pathology, Saint Petersburg State University, University Embankment, 7/9, Saint Petersburg 199034, Russian Federation
| | - Ekaterina Mironova
- Saint Petersburg Institute of Bioregulation and Gerontology, Dynamo Ave., 3, Saint Petersburg 197110, Russian Federation
| | - Petr Yablonskiy
- Saint Petersburg Institute of Phthisiopulmonology, Lygovsky Ave. 2-4, Saint Petersburg 191036, Russian Federation
| | - Evgenii Sokolovich
- Saint Petersburg Institute of Phthisiopulmonology, Lygovsky Ave. 2-4, Saint Petersburg 191036, Russian Federation
| | - Julia Krylova
- Saint Petersburg Institute of Phthisiopulmonology, Lygovsky Ave. 2-4, Saint Petersburg 191036, Russian Federation; Pavlov First Saint Petersburg State Medical University, Lev Tolstoy str. 6-8, Saint Petersburg 197022, Russian Federation
| | - Annalucia Carbone
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo 71013, Italy
| | | | - Victoria Polyakova
- Saint Petersburg Institute of Phthisiopulmonology, Lygovsky Ave. 2-4, Saint Petersburg 191036, Russian Federation; St. Petersburg State Pediatric Medical University, Litovskaia str. 2, Saint-Petersburg 194100, Russian Federation
| |
Collapse
|
7
|
Easter M, Bollenbecker S, Barnes JW, Krick S. Targeting Aging Pathways in Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2020; 21:E6924. [PMID: 32967225 PMCID: PMC7555616 DOI: 10.3390/ijms21186924] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/05/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) has become a global epidemic and is the third leading cause of death worldwide. COPD is characterized by chronic airway inflammation, loss of alveolar-capillary units, and progressive decline in lung function. Major risk factors for COPD are cigarette smoking and aging. COPD-associated pathomechanisms include multiple aging pathways such as telomere attrition, epigenetic alterations, altered nutrient sensing, mitochondrial dysfunction, cell senescence, stem cell exhaustion and chronic inflammation. In this review, we will highlight the current literature that focuses on the role of age and aging-associated signaling pathways as well as their impact on current treatment strategies in the pathogenesis of COPD. Furthermore, we will discuss established and experimental COPD treatments including senolytic and anti-aging therapies and their potential use as novel treatment strategies in COPD.
Collapse
Affiliation(s)
- Molly Easter
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.E.); (S.B.); (J.W.B.)
| | - Seth Bollenbecker
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.E.); (S.B.); (J.W.B.)
| | - Jarrod W. Barnes
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.E.); (S.B.); (J.W.B.)
- Gregory Fleming James Cystic Fibrosis Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Stefanie Krick
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.E.); (S.B.); (J.W.B.)
- Gregory Fleming James Cystic Fibrosis Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
8
|
Yang L, Wen M, Liu X, Wang K, Wang Y. Feikang granules ameliorate pulmonary inflammation in the rat model of chronic obstructive pulmonary disease via TLR2/4-mediated NF-κB pathway. BMC Complement Med Ther 2020; 20:170. [PMID: 32493287 PMCID: PMC7268508 DOI: 10.1186/s12906-020-02964-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/19/2020] [Indexed: 12/21/2022] Open
Abstract
Purpose Several reports have shown that traditional Chinese medicine could be an alternative therapeutic approach for COPD patients, but the mechanism remains unknown. The present study aimed to examine the effects of Feikang granules in a COPD model rat and investigate the possible mechanisms via Toll-like receptor (TLR)/ nuclear factor kappa B (NF-κB) signaling. Methods The COPD model rats were treated with Feikang granules, dexamethasone, or normal saline. The pulmonary function; lung tissue histology; levels of inflammatory cytokines; mRNA levels of TNFα, IL-6, TLR4, and TLR2; and protein levels of TLR4, TLR2, p-IκB, IκB and P65 in lung tissues were evaluated. Results The present study confirmed that the pro-inflammatory cytokines, TNF-α, IL-1β, IL-6, and IL-17 levels were elevated and the pulmonary function and morphology are altered in COPD model rats. The TLR2 and TLR4 -mediated NF-kB signaling pathway plays a role in the mechanism of action. Feikang granules, a type of Chinese herbal medicine, significantly reduced LPS induced inflammatory cytokines release from lung tissue and alveolar macrophage in a dose-dependent manner. These medical herbs also prevented TLR2/4 and IκB downregulation and reversed the p-IκB and NF-κB p65 upregulation of the lung tissue in the COPD rats. Feikang granules were also found to protect against pulmonary dysfunction and pathological changes in the COPD rats. Conclusion The Chinese herbal medicine formula Feikang granules prevent pulmonary inflammation and improve pulmonary function, suggesting that Feikang granules may be an effective treatment for chronic pulmonary diseases, such as COPD.
Collapse
Affiliation(s)
- Liuliu Yang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 16 Airport Road, Baiyun District, Guangzhou, 510405, Guangdong, China.
| | - Minyong Wen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 16 Airport Road, Baiyun District, Guangzhou, 510405, Guangdong, China
| | - Xiaohong Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 16 Airport Road, Baiyun District, Guangzhou, 510405, Guangdong, China
| | - Kai Wang
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Yong Wang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 16 Airport Road, Baiyun District, Guangzhou, 510405, Guangdong, China
| |
Collapse
|
9
|
Du X, Yuan L, Wu M, Men M, He R, Wang L, Wu S, Xiang Y, Qu X, Liu H, Qin X, Hu C, Qin L, Liu C. Variable DNA methylation of aging-related genes is associated with male COPD. Respir Res 2019; 20:243. [PMID: 31684967 PMCID: PMC6829949 DOI: 10.1186/s12931-019-1215-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a chronic lung inflammatory disease which has a close relationship with aging. Genome-wide analysis reveals that DNA methylation markers vary obviously with age. DNA methylation variations in peripheral blood have the potential to be biomarkers for COPD. However, the specific DNA methylation of aging-related genes in the peripheral blood of COPD patients remains largely unknown. Methods Firstly, 9 aging-related differentially expressed genes (DEGs) in COPD patients were screened out from the 25 aging-related genes profile through a comprehensive screening strategy. Secondly, qPCR and multiple targeted bisulfite enrichment sequencing (MethTarget) were used to detect the mRNA level and DNA methylation level of the 9 differentially expressed genes in the peripheral blood of 60 control subjects and 45 COPD patients. The candidate functional CpG sites were selected on the basis of the regulation ability of the target gene expression. Thirdly, the correlation was evaluated between the DNA methylation level of the key CpG sites and the clinical parameters of COPD patients, including forced expiratory volume in one second (FEV1), forced expiratory volume in one second as percentage of predicted volume (FEV1%), forced expiratory volume/ forced vital capacity (FEV/FVC), modified British medical research council (mMRC) score, acute exacerbation frequency and the situation of frequent of acute aggravation (CAT) score. Lastly, differentially methylated CpG sites unrelated to smoking were also determined in COPD patients. Results Of the 9 differentially expressed aging-related genes, the mRNA expression of 8 genes were detected to be significantly down-regulated in COPD group, compared with control group. Meanwhile, the methylated level of all aging-related genes was changed in COPD group containing 219 COPD-related CpG sites in total. Notably, 27 CpG sites of FOXO3 gene showed a lower False Discovery Rate (FDR) and higher methylation difference values. Also, some variable DNA methylation is associated with the severity of COPD. Additionally, of the 219 COPD-related CpG sites, 147 CpG sites were not related to smoking. Conclusion These results identified that the mRNA expression and DNA methylation level of aging-related genes were changed in male COPD patients, which provides a molecular link between aging and COPD. The identified CpG markers are associated with the severity of COPD and provide new insights into the prediction and identification of COPD.
Collapse
Affiliation(s)
- Xizi Du
- Department of Physiology; China-Africa Infection Diseases Research Center, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Yuan
- Department of Physiology; China-Africa Infection Diseases Research Center, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Mengping Wu
- Department of Physiology; China-Africa Infection Diseases Research Center, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Meichao Men
- Health Management Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruoxi He
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Leyuan Wang
- Department of Physiology; China-Africa Infection Diseases Research Center, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Shuangyan Wu
- Department of Physiology; China-Africa Infection Diseases Research Center, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Yang Xiang
- Department of Physiology; China-Africa Infection Diseases Research Center, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Xiangping Qu
- Department of Physiology; China-Africa Infection Diseases Research Center, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Huijun Liu
- Department of Physiology; China-Africa Infection Diseases Research Center, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Xiaoqun Qin
- Department of Physiology; China-Africa Infection Diseases Research Center, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Chengping Hu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling Qin
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Chi Liu
- Department of Physiology; China-Africa Infection Diseases Research Center, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
10
|
Lee JH, Hailey KL, Vitorino SA, Jennings PA, Bigby TD, Breen EC. Cigarette Smoke Triggers IL-33-associated Inflammation in a Model of Late-Stage Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 2019; 61:567-574. [PMID: 30973786 PMCID: PMC6827064 DOI: 10.1165/rcmb.2018-0402oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/10/2019] [Indexed: 01/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a worldwide threat. Cigarette smoke (CS) exposure causes cardiopulmonary disease and COPD and increases the risk for pulmonary tumors. In addition to poor lung function, patients with COPD are susceptible to bouts of dangerous inflammation triggered by pollutants or infection. These severe inflammatory episodes can lead to additional exacerbations, hospitalization, further deterioration of lung function, and reduced survival. Suitable models of the inflammatory conditions associated with CS, which potentiate the downward spiral in patients with COPD, are lacking, and the underlying mechanisms that trigger exacerbations are not well understood. Although initial CS exposure activates a protective role for vascular endothelial growth factor (VEGF) functions in barrier integrity, chronic exposure depletes the pulmonary VEGF guard function in severe COPD. Thus, we hypothesized that mice with compromised VEGF production and challenged with CS would trigger human-like severe inflammatory progression of COPD. In this model, we discovered that CS exposure promotes an amplified IL-33 cytokine response and severe disease progression. Our VEGF-knockout model combined with CS recapitulates severe COPD with an influx of IL-33-expressing macrophages and neutrophils. Normally, IL-33 is quickly inactivated by a post-translational disulfide bond formation. Our results reveal that BAL fluid from the CS-exposed, VEGF-deficient cohort promotes a significantly prolonged lifetime of active proinflammatory IL-33. Taken together, our data demonstrate that with the loss of a VEGF-mediated protective barrier, the CS response switches from a localized danger to an uncontrolled long-term and long-range, amplified, IL-33-mediated inflammatory response that ultimately destroys lung function.
Collapse
Affiliation(s)
| | - Kendra L. Hailey
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California; and
| | | | - Patricia A. Jennings
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California; and
| | - Timothy D. Bigby
- Department of Medicine and
- Pulmonary and Critical Care, Veterans Affairs San Diego, La Jolla, California
| | | |
Collapse
|
11
|
Zhu A, Teng Y, Ge D, Zhang X, Hu M, Yao X. Role of metformin in treatment of patients with chronic obstructive pulmonary disease: a systematic review. J Thorac Dis 2019; 11:4371-4378. [PMID: 31737323 PMCID: PMC6837976 DOI: 10.21037/jtd.2019.09.84] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/28/2019] [Indexed: 02/05/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is commonly associated with type 2 diabetes mellitus (T2DM). Metformin is a first-line treatment for most patients with T2DM, and may have antiaging, antioxidant, and anti-tumour effects. A few published studies report the use of metformin for the treatment of COPD in patients with or without T2DM, but the results are inconsistent. This study aimed to confirm the effectiveness and safety of metformin as a treatment option in patients with COPD. We performed a systematic search of PubMed, EMBASE, and the Cochrane database from their starting date to December 2017. Randomised controlled trials (RCTs), controlled clinical trials, and retrospective researches reporting the use of metformin for treating patients with COPD were identified. We included a total of six articles (involving 3,467 participants) and found that metformin may benefit patients with COPD and T2DM by improving health status and symptoms, hospitalisations, and mortality. There was no effect on patients with COPD without T2DM. Metformin causes minimal increases in plasma lactate concentrations without lactic acidosis and has little impact on blood glucose and minor adverse events. Metformin is safe and effective for treating COPD in patients with concomitant T2DM.
Collapse
Affiliation(s)
- Ailing Zhu
- Department of Respiratory Medicine, Nanjing Meishan Hospital, Nanjing 210039, China
| | - Yue Teng
- Department of Respiratory Medicine, Jiangsu Province Cancer Hospital, Nanjing 210009, China
| | - Dehai Ge
- Department of Respiratory Medicine, Nanjing Meishan Hospital, Nanjing 210039, China
| | - Xiujian Zhang
- Department of Respiratory Medicine, Nanjing Meishan Hospital, Nanjing 210039, China
| | - Manman Hu
- Department of Respiratory Medicine, Nanjing Meishan Hospital, Nanjing 210039, China
| | - Xin Yao
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
12
|
Lima TRL, Almeida VP, Ferreira AS, Guimarães FS, Lopes AJ. Handgrip Strength and Pulmonary Disease in the Elderly: What is the Link? Aging Dis 2019; 10:1109-1129. [PMID: 31595206 PMCID: PMC6764733 DOI: 10.14336/ad.2018.1226] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/26/2018] [Indexed: 12/15/2022] Open
Abstract
Societies in developed countries are aging at an unprecedented rate. Considering that aging is the most significant risk factor for many chronic lung diseases (CLDs), understanding this process may facilitate the development of new interventionist approaches. Skeletal muscle dysfunction is a serious problem in older adults with CLDs, reducing their quality of life and survival. In this study, we reviewed the possible links between handgrip strength (HGS)—a simple, noninvasive, low-cost measure of muscle function—and CLDs in the elderly. Different mechanisms appear to be involved in this association, including systemic inflammation, chronic hypoxemia, physical inactivity, malnutrition, and corticosteroid use. Respiratory and peripheral myopathy, associated with muscle atrophy and a shift in muscle fiber type, also seem to be major etiological contributors to CLDs. Moreover, sarcopenic obesity, which occurs in older adults with CLDs, impairs common inflammatory pathways that can potentiate each other and further accelerate the functional decline of HGS. Our findings support the concept that the systemic effects of CLDs may be determined by HGS, and HGS is a relevant measurement that should be considered in the clinical assessment of the elderly with CLDs. These reasons make HGS a useful practical tool for indirectly evaluating functional status in the elderly. At present, early muscle reconditioning and optimal nutrition appear to be the most effective approaches to reduce the impact of CLDs and low muscle strength on the quality of life of these individuals. Nonetheless, larger in-depth studies are needed to evaluate the link between HGS and CLDs.
Collapse
Affiliation(s)
- Tatiana Rafaela Lemos Lima
- 1Rehabilitation Sciences Post-Graduate Program, Augusto Motta University Center (UNISUAM), Bonsucesso, 21041-010, Rio de Janeiro, Brazil
| | - Vívian Pinto Almeida
- 1Rehabilitation Sciences Post-Graduate Program, Augusto Motta University Center (UNISUAM), Bonsucesso, 21041-010, Rio de Janeiro, Brazil
| | - Arthur Sá Ferreira
- 1Rehabilitation Sciences Post-Graduate Program, Augusto Motta University Center (UNISUAM), Bonsucesso, 21041-010, Rio de Janeiro, Brazil
| | - Fernando Silva Guimarães
- 1Rehabilitation Sciences Post-Graduate Program, Augusto Motta University Center (UNISUAM), Bonsucesso, 21041-010, Rio de Janeiro, Brazil
| | - Agnaldo José Lopes
- 1Rehabilitation Sciences Post-Graduate Program, Augusto Motta University Center (UNISUAM), Bonsucesso, 21041-010, Rio de Janeiro, Brazil.,2Post-graduate Program in Medical Sciences, School of Medical Sciences, State University of Rio de Janeiro (UERJ), Vila Isabel, 20550-170, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Shi K, Chen X, Xie B, Yang SS, Liu D, Dai G, Chen Q. Celastrol Alleviates Chronic Obstructive Pulmonary Disease by Inhibiting Cellular Inflammation Induced by Cigarette Smoke via the Ednrb/Kng1 Signaling Pathway. Front Pharmacol 2018; 9:1276. [PMID: 30498444 PMCID: PMC6249343 DOI: 10.3389/fphar.2018.01276] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/18/2018] [Indexed: 12/14/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a debilitating disease caused by chronic exposure to cigarette smoke (CS). Celastrol is a pentacyclic triterpenoid compound exhibits potent antioxidant and anti-inflammatory activities. Also it is presently known to protect against liver damage induced by type II diabetes. However, its role in COPD is unclear. In this study, we investigated the effects of Celastrol on cellular inflammation in mice exposed to CS and Beas-2B cells treated with CS extract (CSE). C57BL/6 mice and Beas-2B cells were randomly divided into three groups: control group, COPD or CSE group, and Celastrol treatment group. The COPD mice models were subjected to smoke exposure and cell models were treated with CSE. Bioinformatics analysis was performed to identify differentially expressed genes following treatment with Celastrol in COPD, the molecular networks was mapped by Cytoscape. The levels of inflammatory cytokinesinterleukin-8, tumor necrosis factor α, monocyte chemoattractant protein-1, and oxidative stress factors superoxide dismutase and catalase were measured by enzyme-linked immunosorbent assay. Hematoxylin and eosin staining to detect the injury of mouse lung tissue. mRNA and protein levels of Ednrb and Kng1 in the tissues and cells were measured by quantitative polymerase chain reaction (PCR) and western blotting, respectively. Apoptosis was measured by flow cytometry and TUNEL staining. Compared to mice in the COPD group, mice treated with Celastrol had significantly reduced levels of inflammatory cytokines interleukin-8, tumor necrosis factor α and monocyte chemoattractant protein-1 in the serum and bronchoalveolar lavage fluid, and significantly increased levels of oxidative stress factors superoxide dismutase and catalase. The same results were obtained at the cellular level using Beas-2B cells. Compared to the model groups, Celastrol reduced lung injury in mice and significantly reduced cellular apoptosis. Bioinformatics analysis showed that Ednrb is a target gene of Celastrol and differentially expressed in COPD. Quantitative PCR analysis showed that Ednrb expression in patients with COPD was significantly increased compared to that in healthy controls. Additionally, Celastrol effectively reduced Ednrb/Kng1 expression in both cell and animal models. Celastrol has a therapeutic effect on COPD and may alleviate COPD by inhibiting inflammation development by suppressing the Ednrb/Kng1 signaling pathway.
Collapse
Affiliation(s)
- Ke Shi
- Department of Geriatrics, Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Chen
- Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Bin Xie
- Department of Geriatrics, Xiangya Hospital of Central South University, Changsha, China
| | - Sha Sha Yang
- Department of Geriatrics, Xiangya Hospital of Central South University, Changsha, China
| | - Da Liu
- Department of Geriatrics, Xiangya Hospital of Central South University, Changsha, China
| | - Gan Dai
- Department of Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Qiong Chen
- Department of Geriatrics, Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Białas AJ, Siewiera K, Watała C, Rybicka A, Grobelski B, Kośmider L, Kurek J, Miłkowska-Dymanowska J, Piotrowski WJ, Górski P. Mitochondrial functioning abnormalities observed in blood platelets of chronic smoke-exposed guinea pigs - a pilot study. Int J Chron Obstruct Pulmon Dis 2018; 13:3707-3717. [PMID: 30519014 PMCID: PMC6233694 DOI: 10.2147/copd.s175444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background COPD represents a major global health issue, which is often accompanied by cardiovascular diseases. A considerable body of evidence suggests that cardiovascular risk is elevated by the activation of blood platelets, which in turn is exacerbated by inflammation. As reactive oxygen species are believed to be an important factor in platelet metabolism and functioning, the aim of our study was to perform a complex assessment of mitochondrial function in platelets in chronic smoke exposed animals with COPD-like lung lesions. Materials and methods Eight-week-old, male Dunkin Hartley guinea pigs (the study group) were exposed to the cigarette smoke from commercial unfiltered cigarettes (0.9 mg/cig of nicotine content) or to the air without cigarette smoke (control group), using the Candela Constructions® exposure system. The animals were exposed for 4 hours daily, 5 days a week, with 2×70 mL puff/minute, until signs of dyspnea were observed. The animals were bled, and isolated platelets were used to monitor blood platelet respiration. The mitochondrial respiratory parameters of the platelets were monitored in vitro based on continuous recording of oxygen consumption by high-resolution respirometry. Results An elevated respiration trend was observed in the LEAK-state (adjusted for number of platelets) in the smoke-exposed animals: 6.75 (5.09) vs 2.53 (1.28) (pmol O2/[s ⋅ 1108 platelets]); bootstrap-boosted P1α=0.04. The study group also demonstrated lowered respiration in the ET-state (normalized for protein content): 12.31 (4.84) vs 16.48 (1.72) (pmol O2/[s ⋅ mg of protein]); bootstrap-boosted P1α=0.049. Conclusion Our results suggest increased proton and electron leak and decreased electron transfer system capacity in platelets from chronic smoke-exposed animals. These observations may also indicate that platelets play an important role in the pathobiology of COPD and its comorbidities and may serve as a background for possible therapeutic targeting. However, these preliminary outcomes should be further validated in studies based on larger samples.
Collapse
Affiliation(s)
- Adam J Białas
- Department of Pneumology and Allergy, Medical University of Lodz, Lodz, Poland,
| | - Karolina Siewiera
- Department of Hemostasis and Hemostatic Disorders, Medical University of Lodz, Lodz, Poland
| | - Cezary Watała
- Department of Hemostasis and Hemostatic Disorders, Medical University of Lodz, Lodz, Poland
| | - Anna Rybicka
- The animal house, Pharmaceutical Faculty, Medical University of Lodz, Lodz, Poland
| | - Bartłomiej Grobelski
- The animal house, Pharmaceutical Faculty, Medical University of Lodz, Lodz, Poland
| | - Leon Kośmider
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA.,Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, VA, USA
| | - Jolanta Kurek
- Institute of Occupational Medicine and Environmental Health, Sosnowiec, Poland
| | | | | | - Paweł Górski
- Department of Pneumology and Allergy, Medical University of Lodz, Lodz, Poland,
| |
Collapse
|
15
|
Yen FS, Chen W, Wei JCC, Hsu CC, Hwu CM. Effects of metformin use on total mortality in patients with type 2 diabetes and chronic obstructive pulmonary disease: A matched-subject design. PLoS One 2018; 13:e0204859. [PMID: 30286138 PMCID: PMC6171883 DOI: 10.1371/journal.pone.0204859] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/14/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUNDS Few studies have investigated the therapeutic effects of metformin in patients with type 2 diabetes mellitus (T2DM) and chronic obstructive pulmonary disease (COPD). We compared the risk of all-cause mortality between metformin users and nonusers. METHODS We conducted a retrospective cohort study for patients with T2DM and COPD who were enrolled between January 1, 2000 and June 30, 2012. Individuals with exacerbated symptoms who were hospitalized or sent to the emergency department (ED) were identified as having exacerbated COPD; outpatient claims were identified as having stable COPD. A total of 40,597 metformin users and 39,529 nonusers comprised the cohort of stable COPD; 14,001 metformin users and 21,613 nonusers comprised the cohort of exacerbated COPD. Users and nonusers were matched using propensity score (1:1). Our primary outcome was all-cause mortality. RESULTS A total of 19,505 metformin users were matched to 19,505 nonusers in the cohort of diabetes with stable COPD. The mean follow-up time was 3.91 years. All-cause mortality was reported in 1326 and 1609 metformin users and nonusers, respectively. After multivariate adjustment, metformin users had lower risk of mortality (adjusted hazard ratio [aHR] = 0.84, p < 0.0001). Metformin users had significantly lower risk of noncardiovascular death (aHR = 0.86, p = 0.0008). A total of 7721 metformin users were matched to 7721 nonusers in the cohort of diabetes with exacerbated COPD. The mean follow-up time was 3.18 years. All-cause mortality was reported in 1567 and 1865 metformin users and nonusers, respectively. After multivariate adjustment, metformin users had significantly lower risk of mortality (aHR = 0.89, p = 0.002) and cardiovascular death (aHR = 0.70, p = 0.01). CONCLUSION This large-series, nationwide cohort study demonstrated that metformin use could significantly lower the risk of all-cause mortality in patients with T2DM and either stable or exacerbated COPD.
Collapse
Affiliation(s)
| | - Weishan Chen
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - James Cheng-Chung Wei
- Division of Allergy, Immunology and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Cheng Hsu
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli, Taiwan
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
- Department of Family Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Chii-Min Hwu
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
16
|
Lakhdar R, Rabinovich RA. Can muscle protein metabolism be specifically targeted by nutritional support and exercise training in chronic obstructive pulmonary disease? J Thorac Dis 2018; 10:S1377-S1389. [PMID: 29928520 PMCID: PMC5989103 DOI: 10.21037/jtd.2018.05.81] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/08/2018] [Indexed: 12/18/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) associates with several extra-pulmonary effects. Muscle dysfunction and wasting is one of the most prominent extra-pulmonary effects and contributes to exercise limitation and health related quality of life (HRQoL), morbidity as well as mortality. The loss of muscle mass is characterised by an impaired balance between protein synthesis (anabolism) and protein breakdown (catabolism) which relates to nutritional disturbances, muscle disuse and the presence of a systemic inflammation, among other factors. Current approaches to reverse skeletal muscle dysfunction and wasting attain only modest improvements. The development of new therapeutic strategies aiming at improving skeletal muscle dysfunction and wasting are needed. This requires a better understanding of the underlying molecular pathways responsible for these abnormalities. In this review we update recent research on protein metabolism, nutritional depletion as well as physical (in)activity in relation to muscle wasting and dysfunction in patients with COPD. We also discuss the role of nutritional supplementation and exercise training as strategies to re-establish the disrupted balance of protein metabolism in the muscle of patients with COPD. Future areas of research and clinical practice directions are also addressed.
Collapse
Affiliation(s)
- Ramzi Lakhdar
- ELEGI Colt Laboratory, MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Scotland, UK
| | - Roberto A. Rabinovich
- ELEGI Colt Laboratory, MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Scotland, UK
- Respiratory Medicine Department, Royal Infirmary of Edinburgh, Scotland, UK
| |
Collapse
|
17
|
Rogliani P, Ora J, Di Daniele N, Lauro D. Pleiotropic effects of hypoglycemic agents: implications in asthma and COPD. Curr Opin Pharmacol 2018; 40:34-38. [PMID: 29427967 DOI: 10.1016/j.coph.2018.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/21/2018] [Indexed: 12/29/2022]
Abstract
Diabetes mellitus (DM) is a complex multifactorial disease due to the interaction between environmental noxae and genetic predisposition. Furthermore, an increased association between DM, especially Type 2 diabetes mellitus (T2DM), and the onset of pulmonary function impairment with a bronchial hyperresponsiveness has been documented. DM is a risk factor for accelerated decline in FEV1 and the development of asthma and COPD. The increased blood glucose concentrations along with higher levels of oxidative stress and inflammation can influence the pulmonary function and, since hypoglycemic drugs can act on these different defects we can hypothesize their direct effect on obstructive pulmonary diseases. Metformin, a biguanide, is the molecule having several evidences of its action on asthma and COPD in patients with T2DM. In this population, Metformin can ameliorate pulmonary outcomes reducing high glucose concentrations, inflammation through the activation of the AMP-activated protein kinase, leading to the decreased production of pro-inflammatory cytokines and blunting allergic eosinophilic airway inflammation. There are evidences of Pioglitazone role on asthma, since the activation of PPARγ Pioglitazone might inhibit the synthesis and release of pro-inflammatory cytokines. Indeed, Pioglitazone can improve symptoms associated with asthma reducing episodes of exacerbation and oral steroid prescription. Finally, randomized clinical trials using hypoglycemic agents on patients with asthma and COPD with and without DM should be proposed as well as the implementation of a new formulation of hypoglycemic agents to make it possible to administer it via aerosol.
Collapse
Affiliation(s)
- Paola Rogliani
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy; Unit of Respiratory Medicine, University Hospital 'Fondazione Policlinico di Tor Vergata', Rome, Italy.
| | - Josuel Ora
- Unit of Respiratory Medicine, University Hospital 'Fondazione Policlinico di Tor Vergata', Rome, Italy
| | - Nicola Di Daniele
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Davide Lauro
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Unit of Endocrinology, Diabetes Mellitus and Metabolic Diseases, University Hospital 'Fondazione Policlinico di Tor Vergata', Rome, Italy
| |
Collapse
|
18
|
Mitani A, Azam A, Vuppusetty C, Ito K, Mercado N, Barnes PJ. Quercetin restores corticosteroid sensitivity in cells from patients with chronic obstructive pulmonary disease. Exp Lung Res 2017; 43:417-425. [PMID: 29227717 PMCID: PMC5961477 DOI: 10.1080/01902148.2017.1393707] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Corticosteroid resistance is a major barrier to the effective treatment of chronic obstructive pulmonary disease (COPD). Oxidative stress from cigarette smoke and chronic inflammation is likely to induce this corticosteroid insensitivity. Quercetin is a polyphenol that has been reported to be an active oxygen scavenger as well as a functional adenosine monophosphate-activated protein kinase (AMPK) activator. The aim of this study was to investigate the effect of quercetin on corticosteroid responsiveness in COPD cells. Corticosteroid sensitivity was examined in human monocytic U937 cells exposed to cigarette smoke extract (CSE) and peripheral blood mononuclear cells (PBMC) collected from patients with COPD. Corticosteroid sensitivity was determined as the dexamethasone concentration causing 40% inhibition of tumor necrosis factor alpha-induced CXCL8 production (Dex-IC40) in the presence or absence of quercetin. In U937 cells, treatment with quercetin activated AMPK and induced expression of nuclear factor erythroid 2-related factor 2, and consequently reversed CSE-induced corticosteroid insensitivity. PBMC from patients with COPD showed corticosteroid insensitivity compared with those from healthy volunteers, and treatment with quercetin restored corticosteroid sensitivity. In conclusion, quercetin restores corticosteroid sensitivity, and has the potential to be a novel treatment in combination with corticosteroids in COPD.
Collapse
Affiliation(s)
- Akihisa Mitani
- a Airway Disease Section, National Heart & Lung Institute, Imperial College London , London , UK
| | - Aishah Azam
- a Airway Disease Section, National Heart & Lung Institute, Imperial College London , London , UK
| | - Chaitanya Vuppusetty
- a Airway Disease Section, National Heart & Lung Institute, Imperial College London , London , UK
| | - Kazuhiro Ito
- a Airway Disease Section, National Heart & Lung Institute, Imperial College London , London , UK
| | - Nicolas Mercado
- a Airway Disease Section, National Heart & Lung Institute, Imperial College London , London , UK
| | - Peter J Barnes
- a Airway Disease Section, National Heart & Lung Institute, Imperial College London , London , UK
| |
Collapse
|
19
|
Miłkowska-Dymanowska J, Białas AJ, Makowska J, Wardzynska A, Górski P, Piotrowski WJ. Geroprotectors as a therapeutic strategy for COPD - where are we now? Clin Interv Aging 2017; 12:1811-1817. [PMID: 29123386 PMCID: PMC5661461 DOI: 10.2147/cia.s142483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although current therapies in chronic obstructive pulmonary disease (COPD) improve the quality of life, they do not satisfactorily reduce disease progression or mortality. There are still many gaps in knowledge about the cellular, molecular, and genetic mechanisms contributing to pathobiology of this disease. However, increasing evidence suggests that accelerated aging, chronic systemic inflammation, and oxidative stress play major roles in pathogenesis in COPD, thus opening new opportunities in therapy. Therefore, the aim of our review was to describe and discuss some of the most widely used therapeutics that affect the root cause of aging and oxidative stress (metformin, melatonin, sirolimus, statins, vitamin D, and testosterone) in context of COPD therapy.
Collapse
Affiliation(s)
| | - Adam J Białas
- Department of Pneumology and Allergy, 1st Chair of Internal Medicine
- Healthy Aging Research Centre
| | | | - Aleksandra Wardzynska
- Healthy Aging Research Centre
- Department of Immunology, Rheumatology, and Allergy, Medical University of Lodz, Lodz, Poland
| | - Paweł Górski
- Department of Pneumology and Allergy, 1st Chair of Internal Medicine
- Healthy Aging Research Centre
| | - Wojciech J Piotrowski
- Department of Pneumology and Allergy, 1st Chair of Internal Medicine
- Healthy Aging Research Centre
| |
Collapse
|
20
|
Lakhdar R, Drost EM, MacNee W, Bastos R, Rabinovich RA. 2D-DIGE proteomic analysis of vastus lateralis from COPD patients with low and normal fat free mass index and healthy controls. Respir Res 2017; 18:81. [PMID: 28468631 PMCID: PMC5415759 DOI: 10.1186/s12931-017-0525-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/21/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is associated with several extra-pulmonary effects of which skeletal muscle wasting is one of the most common and contributes to reduced quality of life, increased morbidity and mortality. The molecular mechanisms leading to muscle wasting are not fully understood. Proteomic analysis of human skeletal muscle is a useful approach for gaining insight into the molecular basis for normal and pathophysiological conditions. METHODS To identify proteins involved in the process of muscle wasting in COPD, we searched differentially expressed proteins in the vastus lateralis of COPD patients with low fat free mass index (FFMI), as a surrogate of muscle mass (COPDL, n = 10) (FEV1 33 ± 4.3% predicted, FFMI 15 ± 0.2 Kg.m-2), in comparison to patients with COPD and normal FFMI (COPDN, n = 8) and a group of age, smoking history, and sex matched healthy controls (C, n = 9) using two-dimensional fluorescence difference in gel electrophoresis (2D-DIGE) technology, combined with mass spectrometry (MS). The effect of silencing DOT1L protein expression on markers of cell arrest was analyzed in skeletal muscle satellite cells (HSkMSCs) in vitro and assessed by qPCR and Western blotting. RESULTS A subset of 7 proteins was differentially expressed in COPDL compared to both COPDN and C. We found an increased expression of proteins associated with muscle homeostasis and protection against oxidative stress, and a decreased expression of structural muscle proteins and proteins involved in myofibrillogenesis, cell proliferation, cell cycle arrest and energy production. Among these was a decreased expression of the histone methyltransferase DOT1L. In addition, silencing of the DOT1L gene in human skeletal muscle satellite cells in vitro was significantly related to up regulation of p21 WAF1/Cip1/CDKN1A, a marker of cell arrest and ageing. CONCLUSIONS 2D-DIGE coupled with MS identified differences in the expression of several proteins in the wasted vastus lateralis that are relevant to the disease process. Down regulation of DOT1L in the vastus lateralis of COPDL patients may mediate the muscle wasting process through up regulation of markers of cell arrest and senescence.
Collapse
Affiliation(s)
- Ramzi Lakhdar
- ELEGI Colt Laboratory, Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ Scotland, UK
| | - Ellen M. Drost
- ELEGI Colt Laboratory, Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ Scotland, UK
| | - William MacNee
- ELEGI Colt Laboratory, Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ Scotland, UK
| | - Ricardo Bastos
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Roberto A. Rabinovich
- ELEGI Colt Laboratory, Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ Scotland, UK
| |
Collapse
|
21
|
Angulo J, El Assar M, Rodríguez-Mañas L. Frailty and sarcopenia as the basis for the phenotypic manifestation of chronic diseases in older adults. Mol Aspects Med 2016; 50:1-32. [PMID: 27370407 DOI: 10.1016/j.mam.2016.06.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/18/2016] [Indexed: 12/13/2022]
Abstract
Frailty is a functional status that precedes disability and is characterized by decreased functional reserve and increased vulnerability. In addition to disability, the frailty phenotype predicts falls, institutionalization, hospitalization and mortality. Frailty is the consequence of the interaction between the aging process and some chronic diseases and conditions that compromise functional systems and finally produce sarcopenia. Many of the clinical manifestations of frailty are explained by sarcopenia which is closely related to poor physical performance. Reduced regenerative capacity, malperfusion, oxidative stress, mitochondrial dysfunction and inflammation compose the sarcopenic skeletal muscle alterations associated to the frailty phenotype. Inflammation appears as a common determinant for chronic diseases, sarcopenia and frailty. The strategies to prevent the frailty phenotype include an adequate amount of physical activity and exercise as well as pharmacological interventions such as myostatin inhibitors and specific androgen receptor modulators. Cell response to stress pathways such as Nrf2, sirtuins and klotho could be considered as future therapeutic interventions for the management of frailty phenotype and aging-related chronic diseases.
Collapse
Affiliation(s)
- Javier Angulo
- Unidad de Investigación Cardiovascular (IRYCIS/UFV), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Mariam El Assar
- Instituto de Investigación Sanitaria de Getafe, Getafe, Madrid, Spain
| | | |
Collapse
|
22
|
Mitani A, Ito K, Vuppusetty C, Barnes PJ, Mercado N. Restoration of Corticosteroid Sensitivity in Chronic Obstructive Pulmonary Disease by Inhibition of Mammalian Target of Rapamycin. Am J Respir Crit Care Med 2016; 193:143-53. [PMID: 26426522 DOI: 10.1164/rccm.201503-0593oc] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
RATIONALE Corticosteroid resistance is a major barrier to the effective treatment of chronic obstructive pulmonary disease (COPD). Several molecular mechanisms have been proposed, such as activations of the phosphoinositide-3-kinase/Akt pathway and p38 mitogen-activated protein kinase. However, the mechanism for corticosteroid resistance is still not fully elucidated. OBJECTIVES To investigate the role of mammalian target of rapamycin (mTOR) in corticosteroid sensitivity in COPD. METHODS The corticosteroid sensitivity of peripheral blood mononuclear cells collected from patients with COPD, smokers, and nonsmoking control subjects, or of human monocytic U937 cells exposed to cigarette smoke extract (CSE), was quantified as the dexamethasone concentration required to achieve 30% inhibition of tumor necrosis factor-α-induced CXCL8 production in the presence or absence of the mTOR inhibitor rapamycin. mTOR activity was determined as the phosphorylation of p70 S6 kinase, using Western blotting. MEASUREMENTS AND MAIN RESULTS mTOR activity was increased in peripheral blood mononuclear cells from patients with COPD, and treatment with rapamycin inhibited this as well as restoring corticosteroid sensitivity. In U937 cells, CSE stimulated mTOR activity and c-Jun expression, but pretreatment with rapamycin inhibited both and also reversed CSE-induced corticosteroid insensitivity. CONCLUSIONS mTOR inhibition by rapamycin restores corticosteroid sensitivity via inhibition of c-Jun expression, and thus mTOR is a potential novel therapeutic target for COPD.
Collapse
Affiliation(s)
- Akihisa Mitani
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Kazuhiro Ito
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Chaitanya Vuppusetty
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Peter J Barnes
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Nicolas Mercado
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
23
|
|
24
|
Rabinovich RA, Drost E, Manning JR, Dunbar DR, Díaz-Ramos M, Lakhdar R, Bastos R, MacNee W. Genome-wide mRNA expression profiling in vastus lateralis of COPD patients with low and normal fat free mass index and healthy controls. Respir Res 2015; 16:1. [PMID: 25567521 PMCID: PMC4333166 DOI: 10.1186/s12931-014-0139-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 10/24/2014] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Chronic Obstructive Pulmonary Disease (COPD) has significant systemic effects beyond the lungs amongst which muscle wasting is a prominent contributor to exercise limitation and an independent predictor of morbidity and mortality. The molecular mechanisms leading to skeletal muscle dysfunction/wasting are not fully understood and are likely to be multi-factorial. The need to develop therapeutic strategies aimed at improving skeletal muscle dysfunction/wasting requires a better understanding of the molecular mechanisms responsible for these abnormalities. Microarrays are powerful tools that allow the investigation of the expression of thousands of genes, virtually the whole genome, simultaneously. We aim at identifying genes and molecular pathways involved in skeletal muscle wasting in COPD. METHODS We assessed and compared the vastus lateralis transcriptome of COPD patients with low fat free mass index (FFMI) as a surrogate of muscle mass (COPDL) (FEV1 30 ± 3.6%pred, FFMI 15 ± 0.2 Kg.m(-2)) with patients with COPD and normal FFMI (COPDN) (FEV1 44 ± 5.8%pred, FFMI 19 ± 0.5 Kg.m(-2)) and a group of age and sex matched healthy controls (C) (FEV1 95 ± 3.9%pred, FFMI 20 ± 0.8 Kg.m(-2)) using Agilent Human Whole Genome 4x44K microarrays. The altered expression of several of these genes was confirmed by real time TaqMan PCR. Protein levels of P21 were assessed by immunoblotting. RESULTS A subset of 42 genes was differentially expressed in COPDL in comparison to both COPDN and C (PFP < 0.05; -1.5 ≥ FC ≥ 1.5). The altered expression of several of these genes was confirmed by real time TaqMan PCR and correlated with different functional and structural muscle parameters. Five of these genes (CDKN1A, GADD45A, PMP22, BEX2, CGREF1, CYR61), were associated with cell cycle arrest and growth regulation and had been previously identified in studies relating muscle wasting and ageing. Protein levels of CDKN1A, a recognized marker of premature ageing/cell cycle arrest, were also found to be increased in COPDL. CONCLUSIONS This study provides evidence of differentially expressed genes in peripheral muscle in COPD patients corresponding to relevant biological processes associated with skeletal muscle wasting and provides potential targets for future therapeutic interventions to prevent loss of muscle function and mass in COPD.
Collapse
Affiliation(s)
- Roberto A Rabinovich
- ELEGI Colt Laboratory, Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, Scotland, EH16 4TJ, UK.
| | - Ellen Drost
- ELEGI Colt Laboratory, Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, Scotland, EH16 4TJ, UK.
| | - Jonathan R Manning
- Centre for Cardiovascular Science, University of Edinburgh, Scotland, UK.
| | - Donald R Dunbar
- Centre for Cardiovascular Science, University of Edinburgh, Scotland, UK.
| | - MaCarmen Díaz-Ramos
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Ramzi Lakhdar
- ELEGI Colt Laboratory, Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, Scotland, EH16 4TJ, UK.
| | - Ricardo Bastos
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Ciber de Enfermedades Respiratorias (CIBERES), Barcelona, Spain.
| | - William MacNee
- ELEGI Colt Laboratory, Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, Scotland, EH16 4TJ, UK.
| |
Collapse
|
25
|
Abstract
Ageing is associated with a progressive degeneration of the tissues, which has a negative impact on the structure and function of vital organs and is among the most important known risk factors for most chronic diseases. Since the proportion of the world's population aged >60 years will double in the next four decades, this will be accompanied by an increased incidence of chronic age-related diseases that will place a huge burden on healthcare resources. There is increasing evidence that many chronic inflammatory diseases represent an acceleration of the ageing process. Chronic pulmonary diseases represents an important component of the increasingly prevalent multiple chronic debilitating diseases, which are a major cause of morbidity and mortality, particularly in the elderly. The lungs age and it has been suggested that chronic obstructive pulmonary disease (COPD) is a condition of accelerated lung ageing and that ageing may provide a mechanistic link between COPD and many of its extrapulmonary effects and comorbidities. In this article we will describe the physiological changes and mechanisms of ageing, with particular focus on the pulmonary effects of ageing and how these may be relevant to the development of COPD and its major extrapulmonary manifestations.
Collapse
Affiliation(s)
- William MacNee
- ELEGI Colt Research Laboratories, MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Roberto A Rabinovich
- ELEGI Colt Research Laboratories, MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Gourab Choudhury
- ELEGI Colt Research Laboratories, MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| |
Collapse
|