1
|
Bertrand MF, Varesco G, Millet GY, Féasson L, Lapole T, Rozand V. Are females getting more fatigable as they age? Eur J Appl Physiol 2025; 125:793-804. [PMID: 39417863 DOI: 10.1007/s00421-024-05637-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
PURPOSE The aim of this study was to compare performance fatigability between young (n = 13; 18-35 yr.; 23.5 ± 3.3 yr.), old (n = 13; 60-79 yr.; 68.2 ± 4.3 yr.), and very old (n = 11; ≥ 80 yr.; 85.6 ± 1.8 yr.) females during single-limb isometric (ISO) vs. isokinetic concentric (CON) vs. cycling (BIKE) fatiguing tasks. METHODS Participants randomly performed three incremental fatiguing tasks where increments were set as percentage of body weight to better reflect the daily life: (1) ISO and (2) CON consisted of stages of 75 contractions (120 s, 0.8 s on/0.8 s off) on an isokinetic dynamometer and (3) BIKE consisted of stages of 120 s at 37.5 rpm with similar duty cycle. Knee extensors maximal force, voluntary activation and potentiated twitch amplitude were measured at baseline, after each stage and at exhaustion. RESULTS Compared to young, exercise performance was 20% and 53% lower in old and very old females in ISO, 46% and 76% lower in CON and 32% and 62% lower in BIKE (all p < 0.01). For a given workload (i.e. common stages), performance fatigability (i.e. force loss) was greater for very old compared to young females in CON only (p = 0.018). At exhaustion, performance fatigability was similar across groups and conditions (~ 30%; all p > 0.05), with similar impairments in both voluntary activation and twitch amplitude. CONCLUSION These results emphasize the importance of the kind of fatiguing task and modalities of evaluation when investigating the effects of aging on performance fatigability.
Collapse
Affiliation(s)
- Mathilde Fiona Bertrand
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, 42023, Saint-Etienne, France
| | - Giorgio Varesco
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Center for Advanced Research in Sleep Medicine (CEAMS), Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord de l'Île-de- Montréal, Montreal, QC, Canada
- Institut National du Sport du Québec, Montréal, QC, Canada
| | - Guillaume Y Millet
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, 42023, Saint-Etienne, France
- IUF, Institut Universitaire de France, Paris, France
| | - Léonard Féasson
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, 42023, Saint-Etienne, France
- Unité de Myologie, Service de Physiologie Clinique et de l'Exercice, Centre Référent Maladies Neuromusculaires Euro-NmD, CHU de Saint-Etienne, Saint-Etienne, France
| | - Thomas Lapole
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, 42023, Saint-Etienne, France
- IUF, Institut Universitaire de France, Paris, France
| | - Vianney Rozand
- CAPS, Inserm UMR1093, UFR des Sciences du Sport, Faculté des Sciences du Sport, Université de Bourgogne, BP 27877, 21078, Dijon, France.
| |
Collapse
|
2
|
Cohen JW, Vieira TM, Ivanova TD, Garland SJ. Regional recruitment and differential behavior of motor units during postural control in older adults. J Neurophysiol 2023; 130:1321-1333. [PMID: 37877159 PMCID: PMC10972635 DOI: 10.1152/jn.00068.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 10/26/2023] Open
Abstract
Aging is associated with neuromuscular system changes that may have implications for the recruitment and firing behaviors of motor units (MUs). In previous studies, we observed that young adults recruit subpopulations of triceps surae MUs during tasks that involved leaning in five directions: common units that were active during different leaning directions and unique units that were active in only one leaning direction. Furthermore, the MU subpopulation firing behaviors [average firing rate (AFR), coefficient of variation (CoVISI), and intermittent firing] modulated with leaning direction. The purpose of this study was to examine whether older adults exhibited this regional recruitment of MUs and firing behaviors. Seventeen older adults (aged 74.8 ± 5.3 yr) stood on a force platform and maintained their center of pressure leaning in five directions. High-density surface electromyography recordings from the triceps surae were decomposed into single MU action potentials. A MU tracking analysis identified groups of MUs as being common or unique across the leaning directions. Although leaning in different directions did not affect the AFR and CoVISI of common units (P > 0.05), the unique units responded to the leaning directions by increasing AFR and CoVISI, albeit modestly (F = 18.51, P < 0.001). The unique units increased their intermittency with forward leaning (F = 9.22, P = 0.003). The mediolateral barycenter positions of MU activity in both subpopulations were found in similar locations for all leaning directions (P > 0.05). These neuromuscular changes may contribute to the reduced balance performance seen in older adults.NEW & NOTEWORTHY In this study, we observed differences in motor unit recruitment and firing behaviors of distinct subpopulations of motor units in the older adult triceps surae muscle from those observed in the young adult. Our results suggest that the older adult central nervous system may partially lose the ability to regionally recruit and differentially control motor units. This finding may be an underlying cause of balance difficulties in older adults during directionally challenging leaning tasks.
Collapse
Affiliation(s)
- Joshua W Cohen
- School of Kinesiology, Western University, London, Ontario, Canada
- Faculty of Health Sciences, School of Physical Therapy, Western University, London, Ontario, Canada
| | - Taian M Vieira
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Tanya D Ivanova
- Faculty of Health Sciences, School of Physical Therapy, Western University, London, Ontario, Canada
| | - S Jayne Garland
- Faculty of Health Sciences, School of Physical Therapy, Western University, London, Ontario, Canada
- Collaborative Specialization in Musculoskeletal Health Research, Bone and Joint Institute, Western University, London, Ontario, Canada
| |
Collapse
|
3
|
Pethick J, Moran J, Behm DG. Prolonged static stretching increases the magnitude and decreases the complexity of knee extensor muscle force fluctuations. PLoS One 2023; 18:e0288167. [PMID: 37478104 PMCID: PMC10361527 DOI: 10.1371/journal.pone.0288167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 06/21/2023] [Indexed: 07/23/2023] Open
Abstract
Static stretching decreases maximal muscle force generation in a dose-response manner, but its effects on the generation of task-relevant and precise levels of submaximal force, i.e. force control, is unclear. We investigated the effect of acute static stretching on knee extensor force control, quantified according to both the magnitude and complexity of force fluctuations. Twelve healthy participants performed a series of isometric knee extensor maximal voluntary contractions (MVCs) and targeted intermittent submaximal contractions at 25, 50 and 75% MVC (3 x 6 seconds contraction separated by 4 seconds rest, with 60 seconds rest between each intensity) prior to, and immediately after, one of four continuous static stretch conditions: 1) no stretch; 2) 30-second stretch; 3) 60-second stretch; 4) 120-second stretch. The magnitude of force fluctuations was quantified using the standard deviation (SD) and coefficient of variation (CV), while the complexity of fluctuations was quantified using approximate entropy (ApEn) and detrended fluctuation analysis (DFA) α. These measures were calculated using the steadiest 5 seconds of the targeted submaximal contractions at each intensity (i.e., that with the lowest SD). Significant decreases in MVC were evident following the 30, 60 and 120-second stretch conditions (all P < 0.001), with a significant correlation observed between stretch duration and the magnitude of decrease in MVC (r = -0.58, P < 0.001). The 120-second stretch resulted in significant increases in SD at 50% MVC (P = 0.007) and CV at 50% (P = 0.009) and 75% MVC (P = 0.005), and a significant decrease in ApEn at 75% MVC (P < 0.001). These results indicate that the negative effects of prolonged static stretching extend beyond maximal force generation tasks to those involving generation of precise levels of force during moderate- to high-intensity submaximal contractions.
Collapse
Affiliation(s)
- Jamie Pethick
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, Essex, United Kingdom
| | - Jason Moran
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, Essex, United Kingdom
| | - David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
4
|
Pethick J, Tallent J. The Neuromuscular Fatigue-Induced Loss of Muscle Force Control. Sports (Basel) 2022; 10:184. [PMID: 36422953 PMCID: PMC9694672 DOI: 10.3390/sports10110184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Neuromuscular fatigue is characterised not only by a reduction in the capacity to generate maximal muscle force, but also in the ability to control submaximal muscle forces, i.e., to generate task-relevant and precise levels of force. This decreased ability to control force is quantified according to a greater magnitude and lower complexity (temporal structure) of force fluctuations, which are indicative of decreased force steadiness and adaptability, respectively. The "loss of force control" is affected by the type of muscle contraction used in the fatiguing exercise, potentially differing between typical laboratory tests of fatigue (e.g., isometric contractions) and the contractions typical of everyday and sporting movements (e.g., dynamic concentric and eccentric contractions), and can be attenuated through the use of ergogenic aids. The loss of force control appears to relate to a fatigue-induced increase in common synaptic input to muscle, though the extent to which various mechanisms (afferent feedback, neuromodulatory pathways, cortical/reticulospinal pathways) contribute to this remains to be determined. Importantly, this fatigue-induced loss of force control could have important implications for task performance, as force control is correlated with performance in a range of tasks that are associated with activities of daily living, occupational duties, and sporting performance.
Collapse
Affiliation(s)
- Jamie Pethick
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Jamie Tallent
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester CO4 3SQ, UK
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne 3800, Australia
| |
Collapse
|
5
|
Tempo-controlled resistance training of the hip abductors and ankle dorsiflexors with light loads does not improve postural sway in older adults. Exp Brain Res 2022; 240:3049-3060. [PMID: 36227344 DOI: 10.1007/s00221-022-06477-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/30/2022] [Indexed: 11/04/2022]
Abstract
The force steadiness capabilities of the hip abductors and ankle dorsiflexors can explain a significant amount of the variance in postural sway during four types of standing balance tests. Control over balance, as well as force steadiness, generally worsens with aging, although the latter can be improved with unique training interventions. The purpose of our study was to assess how tempo-controlled, light-load resistance training of the hip abductors and ankle dorsiflexors influences performance in clinical movement tests, postural sway, muscle strength, and force steadiness in older adults. Participants (n = 28, 70 ± 7 years, 8 men) completed nine training sessions for either the hip abductors or ankle dorsiflexors in the nondominant leg. Training involved lifting a load equal to 15% of the maximal force achieved during an isometric contraction. Linear mixed-effects models revealed no changes (p > 0.05) in Sit-To-Stand test, Timed Up-and-Go test, maximal voluntary contraction (MVC) torque, or postural sway from before to after either training intervention. Only the dorsiflexor group significantly improved nondominant leg dorsiflexion force steadiness, but this did not translate to any other tasks. However, absolute and relative measures of MVC torque and force steadiness of the hip abductors and ankle dorsiflexors in the dominant and nondominant legs could predict sway-area rate in each of the four standing balance conditions. The responsiveness of leg muscles to light-load steadiness training in older adults appears to depend on the type of exercises performed during the intervention.
Collapse
|
6
|
Pethick J, Taylor MJD, Harridge SDR. Ageing and skeletal muscle force control: current perspectives and future directions. Scand J Med Sci Sports 2022; 32:1430-1443. [PMID: 35815914 PMCID: PMC9541459 DOI: 10.1111/sms.14207] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/23/2022] [Accepted: 06/22/2022] [Indexed: 11/29/2022]
Abstract
During voluntary muscle contractions, force output is characterized by constant inherent fluctuations, which can be quantified either according to their magnitude or temporal structure, that is, complexity. The presence of such fluctuations when targeting a set force indicates that control of force is not perfectly accurate, which can have significant implications for task performance. Compared to young adults, older adults demonstrate a greater magnitude and lower complexity in force fluctuations, indicative of decreased steadiness, and adaptability of force output, respectively. The nature of this loss‐of‐force control depends not only on the age of the individual but also on the muscle group performing the task, the intensity and type of contraction and whether the task is performed with additional cognitive load. Importantly, this age‐associated loss‐of‐force control is correlated with decreased performance in a range of activities of daily living and is speculated to be of greater importance for functional capacity than age‐associated decreases in maximal strength. Fortunately, there is evidence that acute physical activity interventions can reverse the loss‐of‐force control in older individuals, though whether this translates to improved functional performance and whether lifelong physical activity can protect against the changes have yet to be established. A number of mechanisms, related to both motor unit properties and the behavior of motor unit populations, have been proposed for the age‐associated changes in force fluctuations. It is likely, though, that age‐associated changes in force control are related to increased common fluctuations in the discharge times of motor units.
Collapse
Affiliation(s)
- Jamie Pethick
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Essex, UK
| | - Matthew J D Taylor
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Essex, UK
| | | |
Collapse
|
7
|
Forman CR, Jacobsen KJ, Karabanov AN, Nielsen JB, Lorentzen J. Corticomuscular coherence is reduced in relation to dorsiflexion fatigability to the same extent in adults with cerebral palsy as in neurologically intact adults. Eur J Appl Physiol 2022; 122:1459-1471. [PMID: 35366090 DOI: 10.1007/s00421-022-04938-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/18/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Fatigue is frequent in adults with cerebral palsy (CP) and it is unclear whether this is due to altered corticospinal drive. We aimed to compare changes in corticospinal drive following sustained muscle contractions in adults with CP and neurologically intact (NI) adults. METHODS Fourteen adults with CP [age 37.6 (10.1), seven females, GMFCS levels I-II] and ten NI adults [age 35.4 (10.3), 6 females] performed 1-min static dorsiflexion at 30% of maximal voluntary contraction (MVC) before and after a submaximal contraction at 60% MVC. Electroencephalography (EEG) and electromyography (EMG) from the anterior tibial muscle were analyzed to quantify the coupling, expressed by corticomuscular coherence (CMC). RESULTS Adults with CP had lower MVCs but similar time to exhaustion during the relative load of the fatigability trial. Both groups exhibited fatigability-related changes in EMG median frequency and EMG amplitude. The CP group showed lower beta band (16-35 Hz) CMC before fatigability, but both groups decreased beta band CMC following fatigability. There was a linear correlation between decrease of beta band CMC and fatigability-related increase in EMG. CONCLUSION Fatigability following static contraction until failure was related to decreased beta band CMC in both NI adults and adults with CP. Our findings indicate that compensatory mechanisms to fatigability are present in both groups, and that fatigability affects the corticospinal drive in the same way. We suggest that the perceived physical fatigue in CP is related to the high relative load of activities of daily living rather than any particular physiological mechanism.
Collapse
Affiliation(s)
- Christian Riis Forman
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark. .,Elsass Foundation, Charlottenlund, Denmark.
| | - Kim Jennifer Jacobsen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark.,Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Anke Ninija Karabanov
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Jens Bo Nielsen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark.,Elsass Foundation, Charlottenlund, Denmark
| | - Jakob Lorentzen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark.,Elsass Foundation, Charlottenlund, Denmark
| |
Collapse
|
8
|
Varesco G, Luneau E, Féasson L, Lapole T, Rozand V. Very old adults show impaired fatigue resistance compared to old adults independently of sex during a knee-extensors isometric test. Exp Gerontol 2022; 161:111732. [DOI: 10.1016/j.exger.2022.111732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 11/26/2022]
|
9
|
Ryan ED, Laffan MR, Trivisonno AJ, Gerstner GR, Mota JA, Giuliani HK, Pietrosimone BG. Neuromuscular determinants of simulated occupational performance in career firefighters. APPLIED ERGONOMICS 2022; 98:103555. [PMID: 34425517 DOI: 10.1016/j.apergo.2021.103555] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
PURPOSE Although firefighters are required to perform various high-intensity critically essential tasks, the influence of neuromuscular function on firefighter occupational performance is unclear. The primary aim of the current study was to identify the key neuromuscular determinants of stair climb (SC) performance in firefighters. METHODS Leg extension isometric peak torque (PT), peak power (PP), torque steadiness at 10% (Steadiness10%) and 50% (Steadiness50%) of PT, fatigability following 30 repeated isotonic concentric contractions at 40% of PT, percent body fat (%BF), and a weighted and timed SC task were examined in 41 (age: 32.3 ± 8.2 yrs; %BF: 24.1 ± 7.9%) male career firefighters. RESULTS Faster SC times (74.7 ± 13.4 s) were associated with greater PT and PP, less fatigability, younger age, and lower %BF (r = -0.530-0.629; P ≤ 0.014), but not Steadiness10% or Steadiness50% (P ≥ 0.193). Stepwise regression analyses indicated that PP and Steadiness50% were the strongest predictors of SC time (R2 = 0.442, P < 0.001). However, when age and %BF were included in the model, these variables became the only significant predictors of SC time (R2 = 0.521, P < 0.001) due to age and %BF being collectively associated with all the neuromuscular variables (excluding Steadiness10%). CONCLUSIONS Lower extremity neuromuscular function, specifically PP and steadiness, and %BF are important modifiable predictors of firefighter SC performance, which becomes increasingly important in aging firefighters.
Collapse
Affiliation(s)
- Eric D Ryan
- Neuromuscular Assessment Laboratory, Department of Exercise and Sport Science University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Human Movement Science Curriculum University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Allied Health University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Megan R Laffan
- Lineberger Comprehensive Cancer Center University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Abigail J Trivisonno
- Neuromuscular Assessment Laboratory, Department of Exercise and Sport Science University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gena R Gerstner
- Department of Human Movement Sciences Old Dominion University, Norfolk, VA, USA; North Carolina Occupational Safety and Health Education and Research Center, Department of Environmental Sciences and Engineering, Gillings School of Global Public Health University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jacob A Mota
- Department of Kinesiology University of Alabama, Tuscaloosa, AL, USA
| | - Hayden K Giuliani
- Neuromuscular Assessment Laboratory, Department of Exercise and Sport Science University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Human Movement Science Curriculum University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brian G Pietrosimone
- Neuromuscular Assessment Laboratory, Department of Exercise and Sport Science University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Human Movement Science Curriculum University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Allied Health University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
10
|
Thomas E, Gennaro V, Battaglia G, Bellafiore M, Iovane A, Palma A, Bianco A. Upper body strength endurance evaluation: A comparison between the handgrip strength and three body weight tests. ISOKINET EXERC SCI 2021. [DOI: 10.3233/ies-202206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND: The hand-grip strength test has been widely adopted to evaluate upper limb strength. Other field based tests as push-ups and pull-ups are commonly used for the same purpose. It is however unclear if these may be used interchangeably for upper body strength evaluation. OBJECTIVE: The purpose of this investigation was to evaluate strength endurance of the upper body and understand which test could be the most appropriate for upper body evaluation. METHODS: Thirty-eight healthy young male participants were tested with three tests comprised of: 1) push-ups (PS), 2) pull-ups (PL) and 3) parallel dips (PD) performed to exhaustion. Grip strength (GS), total number of repetitions, time-to-complete the test, repetition cadence and rate of perceived exertion (RPE) were also retrieved for investigation. RESULTS: Repetitions, time-to-complete the test and repetition cadence significantly differed across the three tests (p< 0.001). No difference in the RPE was present. No correlation was present between GS and the other tests. No correlation was present between RPE and performance values and time-to-complete the tests. BMI was positively correlated to RPE in all tests. All tests strongly correlate to each other (PS vs. PL r= 0.55; PS vs. PD r= 0.64; PL vs. PD r= 0.70) and to time-to-complete the test (PS r= 0.79; PL r= 0.69; PD r= 0.66). Only the results of the PD correlate to their respective repetition cadence (r= 0.66). CONCLUSIONS: GS is not suitable to evaluate strength endurance. PS, PL and PD are all suitable to evaluate strength endurance. However, PD may be preferred to evaluate the upper body, if velocity also needs to be taken into account.
Collapse
|
11
|
Davis LA, Alenazy MS, Almuklass AM, Feeney DF, Vieira T, Botter A, Enoka RM. Force control during submaximal isometric contractions is associated with walking performance in persons with multiple sclerosis. J Neurophysiol 2020; 123:2191-2200. [PMID: 32347151 DOI: 10.1152/jn.00085.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Individuals with multiple sclerosis (MS) experience progressive declines in movement capabilities, especially walking performance. The purpose of our study was to compare the amount of variance in walking performance that could be explained by the functional capabilities of lower leg muscles in persons with MS and a sex- and age-matched control group. Participants performed two walking tests (6-min walk and 25-ft walk), strength tests for the plantar flexor and dorsiflexor muscles, and steady submaximal (10% and 20% maximum) isometric contractions. High-density electromyography (EMG) was recorded during the steady contractions, and the signals were decomposed to identify the discharge times of concurrently active motor units. There were significant differences between the two groups in the force fluctuations during the steady contractions (force steadiness), the strength of the plantar flexor and dorsiflexor muscles, and the discharge characteristics during the steady contractions. Performance on the two walking tests by the MS group was moderately associated with force steadiness of the plantar flexor and dorsiflexor muscles; worse force steadiness was associated with poorer walking performance. In contrast, the performance of the control group was associated with muscle strength (25-ft test) and force steadiness of the dorsiflexors and variance in common input of motor units to the plantar flexors (6-min test). These findings indicate that a reduction in the ability to maintain a steady force during submaximal isometric contractions is moderately associated with walking performance of persons with MS.NEW & NOTEWORTHY The variance in walking endurance and walking speed was associated with force control of the lower leg muscles during submaximal isometric contractions in individuals with multiple sclerosis (MS). In contrast, the fast walking speed of a sex- and age-matched control group was associated with the strength of lower leg muscles. These findings indicate that moderate declines in the walking performance of persons with MS are more associated with impairments in force control rather than decreases in muscle strength.
Collapse
Affiliation(s)
- Leah A Davis
- Department of Integrative Physiology University of Colorado, Boulder, Colorado
| | - Mohammed S Alenazy
- Department of Integrative Physiology University of Colorado, Boulder, Colorado
| | - Awad M Almuklass
- Department of Integrative Physiology University of Colorado, Boulder, Colorado
| | - Daniel F Feeney
- Department of Integrative Physiology University of Colorado, Boulder, Colorado
| | - Taian Vieira
- Department of Integrative Physiology University of Colorado, Boulder, Colorado
| | - Alberto Botter
- Department of Integrative Physiology University of Colorado, Boulder, Colorado
| | - Roger M Enoka
- Department of Integrative Physiology University of Colorado, Boulder, Colorado
| |
Collapse
|
12
|
Davis LA, Allen SP, Hamilton LD, Grabowski AM, Enoka RM. Differences in postural sway among healthy adults are associated with the ability to perform steady contractions with leg muscles. Exp Brain Res 2020; 238:487-497. [PMID: 31960103 DOI: 10.1007/s00221-019-05719-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022]
Abstract
Upright standing involves small displacements of the center of mass about the base of support. These displacements are often quantified by measuring various kinematic features of the center-of-pressure trajectory. The plantar flexors have often been identified as the key muscles for the control of these displacements; however, studies have suggested that the hip abductor and adductors may also be important. The purpose of our study was to determine the association between the force capabilities of selected leg muscles and sway-area rate across four balance conditions in young (25 ± 4 years; 12/19 women) and older adults (71 ± 5 years; 5/19 women). Due to the marked overlap in sway-area rate between the two age groups, the data were collapsed, and individuals were assigned to groups of low- and high-sway area rates based on a k-medoid cluster analysis. The number of participants assigned to each group varied across balance conditions and a subset of older adults was always included in the low-sway group for each balance condition. The most consistent explanatory variable for the variance in sway-area rate was force control of the hip abductors and ankle dorsiflexors as indicated by the magnitude of the normalized force fluctuations (force steadiness) during a submaximal isometric contraction. The explanatory power of the regression models varied across conditions, thereby identifying specific balance conditions that should be examined further in future studies of postural control.
Collapse
Affiliation(s)
- Leah A Davis
- Department of Integrative Physiology, University of Colorado Boulder, Campus Box 354, Boulder, CO, 80309, USA.
| | - Stephen P Allen
- Department of Integrative Physiology, University of Colorado Boulder, Campus Box 354, Boulder, CO, 80309, USA
| | - Landon D Hamilton
- Center for Orthopedic Biomechanics, Ritchie School of Mechanical Engineering and Computer Science, University of Denver, 2155 E. Wesley Ave., Denver, CO, 80210, USA
| | - Alena M Grabowski
- Department of Integrative Physiology, University of Colorado Boulder, Campus Box 354, Boulder, CO, 80309, USA
| | - Roger M Enoka
- Department of Integrative Physiology, University of Colorado Boulder, Campus Box 354, Boulder, CO, 80309, USA
| |
Collapse
|
13
|
Magnani PE, Freire Junior RC, Zanellato NFG, Genovez MB, Alvarenga IC, Abreu DCCD. The influence of aging on the spatial and temporal variables of gait during usual and fast speeds in older adults aged 60 to 102 years. Hum Mov Sci 2019; 68:102540. [DOI: 10.1016/j.humov.2019.102540] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 10/25/2022]
|
14
|
Capobianco RA, Mazzo MM, Enoka RM. Self-massage prior to stretching improves flexibility in young and middle-aged adults. J Sports Sci 2019; 37:1543-1550. [PMID: 30714484 DOI: 10.1080/02640414.2019.1576253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We examined the influence of stretching alone (SS) or combined with self-massage (SM) on maximal ankle dorsiflexion angle, maximal voluntary contraction (MVC) torque and calf muscle activity, and subcutaneous tissue thickness in 15 young (25 ± 3 years) and 15 middle-aged (45 ± 5 years) adults. Participants performed two sessions of calf muscle stretches (3x 30-s stretches, 30-s rest): stretch after a 60-s control condition (SS) and stretch after 60 s of self-massage with therapy balls (SM). Evaluations were performed before and 5 min after the intervention. Linear mixed effects model revealed no main effect for age on ROM or MVC and significant main effects for treatment and time. Change in ankle angle was greater after SM: SS = 3.1 ± 2°, SM = 6.2 ± 3.3° (Hedges' g = 0.98, p < 0.001). Similar results were observed for MVC torque: SS = -4 ± 16%, SM = 12 ± 16% (Hedges' g = 0.97, p = 0.0001). Changes in MVC torque and absolute EMG amplitude were correlated, but subcutaneous tissue thickness was not altered by treatment. The gains in ROM were more pronounced in less flexible middle-aged adults, underscoring the need to include flexibility exercises in their training.
Collapse
Affiliation(s)
- Robyn A Capobianco
- a Neurophysiology of Movement Laboratory, Department of Integrative Physiology , University of Colorado , Boulder , CO , USA
| | - Melissa M Mazzo
- a Neurophysiology of Movement Laboratory, Department of Integrative Physiology , University of Colorado , Boulder , CO , USA
| | - Roger M Enoka
- a Neurophysiology of Movement Laboratory, Department of Integrative Physiology , University of Colorado , Boulder , CO , USA
| |
Collapse
|
15
|
Grosicki GJ, Englund DA, Price L, Iwai M, Kashiwa M, Reid KF, Fielding RA. Lower-Extremity Torque Capacity and Physical Function in Mobility-Limited Older Adults. J Nutr Health Aging 2019; 23:703-709. [PMID: 31560027 PMCID: PMC7386562 DOI: 10.1007/s12603-019-1232-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Skeletal muscle weakness and an increase in fatigability independently contribute to age-related functional decline. The objective of this study was to examine the combined contribution of these deficiencies (i.e., torque capacity) to physical function, and then to assess the functional implications of progressive resistance training (PRT) mediated-torque capacity improvements in mobility-limited older adults. DESIGN Randomized controlled trial. SETTING Exercise laboratory on the Health Sciences campus of an urban university. PARTICIPANTS Seventy mobility-limited (Short Physical Performance Battery (SPPB) ≤9) older adults (~79 yrs). INTERVENTION Progressive resistance training or home-based flexibility 3 days/week for 12 weeks. MEASUREMENTS Torque capacity was defined as the sum of peak torques from an isokinetic knee extension fatigue test. Relationships between torque capacity and performance-based and patient-reported functional measures before and after PRT were examined using partial correlations adjusted for age, sex, and body mass index. RESULTS Torque capacity explained (P<0.05) 10 and 28% of the variance in six-minute walk distance and stair climb time, respectively. PRT-mediated torque capacity improvements were paralleled by increases (P<0.05) in self-reported activity participation (+20%) and advanced lower extremity function (+7%), and associated (P<0.05) with a reduction in activity limitations (r=0.44) and an improved SPPB score (r=0.32). CONCLUSION Skeletal muscle torque capacity, a composite of strength and fatigue, may be a proximal determinant of physical function in mobility-limited older individuals. To more closely replicate the musculoskeletal demands of real-life tasks, future studies are encouraged to consider the combined interaction of distinct skeletal muscle faculties to overall functional ability in older adults.
Collapse
Affiliation(s)
- G J Grosicki
- Gregory J. Grosicki, Ph.D., Department of Health Sciences and Kinesiology, Biodynamics and Human Performance Center, Georgia Southern University (Armstrong Campus), 11935 Abercorn Street, Savannah, GA, 31419. Phone: (912) 344-3317. Fax: (912) 344-3490.
| | | | | | | | | | | | | |
Collapse
|
16
|
KRÜGER RENATAL, ABOODARDA SAIEDJALAL, SAMOZINO PIERRE, RICE CHARLESL, MILLET GUILLAUMEY. Isometric versus Dynamic Measurements of Fatigue: Does Age Matter? A Meta-analysis. Med Sci Sports Exerc 2018; 50:2132-2144. [DOI: 10.1249/mss.0000000000001666] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Internal Loads, but Not External Loads and Fatigue, Are Similar in Young and Middle-Aged Resistance-Trained Males during High Volume Squatting Exercise †. J Funct Morphol Kinesiol 2018; 3:jfmk3030045. [PMID: 33466974 PMCID: PMC7739293 DOI: 10.3390/jfmk3030045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/11/2018] [Accepted: 08/20/2018] [Indexed: 11/18/2022] Open
Abstract
Little is known about the internal and external loads experienced during resistance exercise, or the subsequent fatigue-related response, across different age groups. This study compared the internal (heart rate, OMNI ratings of perceived exertion (RPE), session RPE) and external loads (peak velocity and power and volume load) during high volume squatting exercise (10 × 10 at 60% one-repetition maximum (1RM)) and the fatigue-related response (maximal voluntary contraction (MVC), voluntary activation (VA), resting doublet force, peak power, and blood lactate) in young (n = 9; age 22.3 ± 1.7 years) and middle-aged (n = 9; age 39.9 ± 6.2 years) resistance-trained males. All internal load variables and peak velocity illustrated unclear differences between groups during exercise. Peak power and volume load were likely higher in the young group compared to their middle-aged counterparts. The unclear differences in MVC, VA and blood lactate between groups after exercise were accompanied by very likely greater decrements in resting doublet force and peak power at 20 and 80% 1RM in the middle-aged group compared to the young group. These data indicate that internal load is not different between young and middle-aged resistance-trained males, though certain external load measures and the fatigue response are.
Collapse
|
18
|
Mani D, Almuklass AM, Hamilton LD, Vieira TM, Botter A, Enoka RM. Motor unit activity, force steadiness, and perceived fatigability are correlated with mobility in older adults. J Neurophysiol 2018; 120:1988-1997. [PMID: 30044670 DOI: 10.1152/jn.00192.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The purpose of our study was to examine the associations between the performance of older adults on four tests of mobility and the physical capabilities of the lower leg muscles. The assessments included measures of muscle strength, muscle activation, and perceived fatigability. Muscle activation was quantified as the force fluctuations-a measure of force steadiness-and motor unit discharge characteristics of lower leg muscles during submaximal isometric contractions. Perceived fatigability was measured as the rating of perceived exertion achieved during a test of walking endurance. Twenty participants (73 ± 4 yr) completed one to four evaluation sessions that were separated by at least 3 wk. The protocol included a 400-m walk, a 10-m walk at maximal and preferred speeds, a chair-rise test, and the strength, force steadiness, and discharge characteristics of motor units detected by high-density electromyography of lower leg muscles. Multiple-regression analyses yielded statistically significant models that explained modest amounts of the variance in the four mobility tests. The variance explained by the regression models was 39% for 400-m walk time, 33% for maximal walk time, 42% for preferred walk time, and 27% for chair-rise time. The findings indicate that differences in mobility among healthy older adults were partially associated with the level of perceived fatigability (willingness of individuals to exert themselves) achieved during the test of walking endurance and the discharge characteristics of soleus, medial gastrocnemius, and tibialis anterior motor units during steady submaximal contractions with the plantar flexor and dorsiflexor muscles. NEW & NOTEWORTHY Differences among healthy older adults in walking endurance, walking speed, and ability to rise from a chair can be partially explained by the performance capabilities of lower leg muscles. Assessments comprised the willingness to exert effort (perceived fatigability) and the discharge times of action potentials by motor units in calf muscles during submaximal isometric contractions. These findings indicate that the nervous system contributes significantly to differences in mobility among healthy older adults.
Collapse
Affiliation(s)
- Diba Mani
- Department of Integrative Physiology, University of Colorado , Boulder, Colorado
| | - Awad M Almuklass
- Department of Integrative Physiology, University of Colorado , Boulder, Colorado.,College of Medicine, King Saud bin Abdulaziz University for Health Sciences , Riyadh , Saudi Arabia
| | - Landon D Hamilton
- Department of Integrative Physiology, University of Colorado , Boulder, Colorado
| | - Taian M Vieira
- LISiN, Department of Electronics and Telecommunications, Politecnico di Torino, Turin , Italy
| | - Alberto Botter
- LISiN, Department of Electronics and Telecommunications, Politecnico di Torino, Turin , Italy
| | - Roger M Enoka
- Department of Integrative Physiology, University of Colorado , Boulder, Colorado
| |
Collapse
|
19
|
Abstract
Performance fatigability is characterized as an acute decline in motor performance caused by an exercise-induced reduction in force or power of the involved muscles. Multiple mechanisms contribute to performance fatigability and originate from neural and muscular processes, with the task demands dictating the mechanisms. This review highlights that (1) inadequate activation of the motoneuron pool can contribute to performance fatigability, and (2) the demands of the task and the physiological characteristics of the population assessed, dictate fatigability and the involved mechanisms. Examples of task and population differences in fatigability highlighted in this review include contraction intensity and velocity, stability and support provided to the fatiguing limb, sex differences, and aging. A future challenge is to define specific mechanisms of fatigability and to translate these findings to real-world performance and exercise training in healthy and clinical populations across the life span.
Collapse
Affiliation(s)
- Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin 53201
| |
Collapse
|
20
|
Santos-Parker JR, Lubieniecki KL, Rossman MJ, Van Ark HJ, Bassett CJ, Strahler TR, Chonchol MB, Justice JN, Seals DR. Curcumin supplementation and motor-cognitive function in healthy middle-aged and older adults. NUTRITION AND HEALTHY AGING 2018; 4:323-333. [PMID: 29951592 PMCID: PMC6004902 DOI: 10.3233/nha-170029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Recent studies suggest curcumin is a promising nutraceutical for improving important clinical and physiological markers of healthy aging, including motor and cognitive function. OBJECTIVE To determine if curcumin supplementation improves motor and cognitive function in healthy middle-aged and older adults. METHODS 39 healthy men and postmenopausal women (45-74 yrs) were randomized to 12 weeks of placebo (n = 19) or curcumin supplementation (2000 mg/day Longvida®; n = 20) with motor and cognitive function assessed at week 0 and 12. RESULTS Using measures of the NIH Toolbox and other standardized tests, there were no changes in muscle strength and rate of torque development, dexterity, fatigability, mobility, endurance, and balance between the placebo and curcumin groups after 12 weeks (all P > 0.05). Additionally, there were no changes after 12 weeks of placebo and curcumin supplementation in measures of fluid cognitive ability, a cognitive domain that declines with age, including processing speed, executive function, working memory, and episodic memory (all P > 0.3). There were marginal changes in language, a measure of crystallized cognitive ability that is stable with age, following the intervention, wherein reading decoding increased 3% in the curcumin group (post: 2428±35 vs. pre: 2357±34, P = 0.003), but was unchanged in the placebo group (post: 2334±39 vs. pre: 2364±40, P = 0.07). CONCLUSIONS Overall, 12 weeks of curcumin supplementation does not improve motor and cognitive functions in healthy middle-aged and older adults. It is possible that curcumin may enhance these functions in groups with greater baseline impairments than those studied here, including adults greater than 75 years of age and/or patients with clinical disorders.
Collapse
Affiliation(s)
| | | | - Matthew J. Rossman
- Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Hannah J. Van Ark
- Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Candace J. Bassett
- Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Talia R. Strahler
- Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Michel B. Chonchol
- Medicine (Renal Diseases and Hypertension), University of Colorado Denver, Aurora, CO, USA
| | - Jamie N. Justice
- Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Douglas R. Seals
- Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
21
|
Kyguoliene L, Skurvydas A, Eimantas N, Baranauskiene N, Steponaviciute R, Daniuseviciute L, Paulauskas H, Cernych M, Brazaitis M. Three different motor task strategies to assess neuromuscular adjustments during fatiguing muscle contractions in young and older men. Exp Brain Res 2018; 236:2085-2096. [PMID: 29754195 DOI: 10.1007/s00221-018-5285-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 05/07/2018] [Indexed: 10/16/2022]
Abstract
Healthy aging is associated with a marked decline in motor performance. The functional consequences of applying varying novel or unexpected motor stimuli during intermittent isometric prolonged (fatiguing) motor tasks for lower limb neuromuscular fatigability and steadiness, perception of effort, and blood markers of stress in healthy aged men compared with young men have not been investigated. The participants in this study were 15 young men (aged 22 ± 4 years) and 10 older men (aged 67 ± 6 years). They performed 100 intermittent isometric knee extensions under three experimental conditions involving intermittent isometric contraction tasks according to constant, predictable, and unpredictable torque target sequences. The variability in maximal voluntary contraction averaged 50%, and was 25, 50, and 75% for the three strategies. All included a 5-s contraction and 20-s rest. The main variables were measured before exercise, after 100 repetitions, and 1 h after exercise. In all experimental trials, the decreases in the maximal voluntary contraction and central activation ratio, and the increases in effort sensation and muscle temperature, were smaller in older men than in younger men. The coefficient of variation during the motor performance did not differ between age groups. However, in all three strategies, the dopamine concentration was significantly higher in older than in younger men. The prolactin concentration did not differ significantly between age groups or conditions, although its decrease during loading correlated negatively with the central activation ratio.
Collapse
Affiliation(s)
- Laura Kyguoliene
- Department of Applied Biology and Rehabilitation, Lithuanian Sports University, Sporto Str. 6, 44221, Kaunas, Lithuania
| | - Albertas Skurvydas
- Department of Applied Biology and Rehabilitation, Lithuanian Sports University, Sporto Str. 6, 44221, Kaunas, Lithuania.,Institute of Sports Science and Innovation, Lithuanian Sports University, Sporto Str. 6, 44221, Kaunas, Lithuania
| | - Nerijus Eimantas
- Institute of Sports Science and Innovation, Lithuanian Sports University, Sporto Str. 6, 44221, Kaunas, Lithuania
| | - Neringa Baranauskiene
- Institute of Sports Science and Innovation, Lithuanian Sports University, Sporto Str. 6, 44221, Kaunas, Lithuania
| | - Rasa Steponaviciute
- Department of Laboratory Medicines, Medical Academy, Lithuanian University of Health Science, Kaunas, Lithuania
| | - Laura Daniuseviciute
- Department of Physical Education, Kaunas University of Technology, Kaunas, Lithuania
| | - Henrikas Paulauskas
- Institute of Sports Science and Innovation, Lithuanian Sports University, Sporto Str. 6, 44221, Kaunas, Lithuania
| | - Margarita Cernych
- Institute of Sports Science and Innovation, Lithuanian Sports University, Sporto Str. 6, 44221, Kaunas, Lithuania
| | - Marius Brazaitis
- Department of Applied Biology and Rehabilitation, Lithuanian Sports University, Sporto Str. 6, 44221, Kaunas, Lithuania. .,Institute of Sports Science and Innovation, Lithuanian Sports University, Sporto Str. 6, 44221, Kaunas, Lithuania.
| |
Collapse
|
22
|
Sundberg CW, Kuplic A, Hassanlouei H, Hunter SK. Mechanisms for the age-related increase in fatigability of the knee extensors in old and very old adults. J Appl Physiol (1985) 2018; 125:146-158. [PMID: 29494293 DOI: 10.1152/japplphysiol.01141.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The mechanisms for the age-related increase in fatigability during high-velocity contractions in old and very old adults (≥80 yr) are unresolved. Moreover, whether the increased fatigability with advancing age and the underlying mechanisms differ between men and women is not known. The purpose of this study was to quantify the fatigability of knee extensor muscles and identify the mechanisms of fatigue in 30 young (22.6 ± 0.4 yr; 15 men), 62 old (70.5 ± 0.7 yr; 33 men), and 12 very old (86.0 ± 1.3 yr; 6 men) men and women elicited by high-velocity concentric contractions. Participants performed 80 maximal velocity contractions (1 contraction per 3 s) with a load equivalent to 20% of the maximum voluntary isometric contraction. Voluntary activation and contractile properties were quantified before and immediately following exercise (<10 s) using transcranial magnetic stimulation and electrical stimulation. Absolute mechanical power output was 97 and 217% higher in the young compared with old and very old adults, respectively. Fatigability (reductions in power) progressively increased across age groups, with a power loss of 17% in young, 31% in old, and 44% in very old adults. There were no sex differences in fatigability among any of the age groups. The age-related increase in power loss was strongly associated with changes in the involuntary twitch amplitude ( r = 0.75, P < 0.001). These data suggest that the age-related increased power loss during high-velocity fatiguing exercise is unaffected by biological sex and determined primarily by mechanisms that disrupt excitation contraction coupling and/or cross-bridge function. NEW & NOTEWORTHY We show that aging of the neuromuscular system results in an increase in fatigability of the knee extensors during high-velocity exercise that is more pronounced in very old adults (≥80 yr) and occurs similarly in men and women. Importantly, the age-related increase in power loss was strongly associated with the changes in the electrically evoked contractile properties suggesting that the increased fatigability with aging is determined primarily by mechanisms within the muscle for both sexes.
Collapse
Affiliation(s)
- Christopher W Sundberg
- Exercise Science Program, Department of Physical Therapy, Marquette University , Milwaukee, Wisconsin.,Clinical and Translational Rehabilitation Health Sciences Program, Department of Physical Therapy, Marquette University , Milwaukee, Wisconsin
| | - Andrew Kuplic
- Exercise Science Program, Department of Physical Therapy, Marquette University , Milwaukee, Wisconsin.,Clinical and Translational Rehabilitation Health Sciences Program, Department of Physical Therapy, Marquette University , Milwaukee, Wisconsin
| | - Hamidollah Hassanlouei
- Exercise Science Program, Department of Physical Therapy, Marquette University , Milwaukee, Wisconsin
| | - Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, Marquette University , Milwaukee, Wisconsin.,Clinical and Translational Rehabilitation Health Sciences Program, Department of Physical Therapy, Marquette University , Milwaukee, Wisconsin
| |
Collapse
|
23
|
Abstract
Despite flourishing interest in the topic of fatigue-as indicated by the many presentations on fatigue at the 2015 Annual Meeting of the American College of Sports Medicine-surprisingly little is known about its effect on human performance. There are two main reasons for this dilemma: 1) the inability of current terminology to accommodate the scope of the conditions ascribed to fatigue, and 2) a paucity of validated experimental models. In contrast to current practice, a case is made for a unified definition of fatigue to facilitate its management in health and disease. On the basis of the classic two-domain concept of Mosso, fatigue is defined as a disabling symptom in which physical and cognitive function is limited by interactions between performance fatigability and perceived fatigability. As a symptom, fatigue can only be measured by self-report, quantified as either a trait characteristic or a state variable. One consequence of such a definition is that the word fatigue should not be preceded by an adjective (e.g., central, mental, muscle, peripheral, and supraspinal) to suggest the locus of the changes responsible for an observed level of fatigue. Rather, mechanistic studies should be performed with validated experimental models to identify the changes responsible for the reported fatigue. As indicated by three examples (walking endurance in old adults, time trials by endurance athletes, and fatigue in persons with multiple sclerosis) discussed in the review, however, it has proven challenging to develop valid experimental models of fatigue. The proposed framework provides a foundation to address the many gaps in knowledge of how laboratory measures of fatigue and fatigability affect real-world performance.
Collapse
Affiliation(s)
- Roger M Enoka
- 1Department of Integrative Physiology, University of Colorado, Boulder, CO; and 2Laboratory of Applied Biology and Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Bruxelles, BELGIUM
| | | |
Collapse
|
24
|
Storer TW, Basaria S, Traustadottir T, Harman SM, Pencina K, Li Z, Travison TG, Miciek R, Tsitouras P, Hally K, Huang G, Bhasin S. Effects of Testosterone Supplementation for 3 Years on Muscle Performance and Physical Function in Older Men. J Clin Endocrinol Metab 2017; 102:583-593. [PMID: 27754805 PMCID: PMC5413164 DOI: 10.1210/jc.2016-2771] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/06/2016] [Indexed: 11/19/2022]
Abstract
CONTEXT Findings of studies of testosterone's effects on muscle strength and physical function in older men have been inconsistent; its effects on muscle power and fatigability have not been studied. OBJECTIVE To determine the effects of testosterone administration for 3 years in older men on muscle strength, power, fatigability, and physical function. DESIGN, SETTING, AND PARTICIPANTS This was a double-blind, placebo-controlled, randomized trial of healthy men ≥60 years old with total testosterone levels of 100 to 400 ng/dL or free testosterone levels <50 pg/mL. INTERVENTIONS Random assignment to 7.5 g of 1% testosterone or placebo gel daily for 3 years. OUTCOME MEASURES Loaded and unloaded stair-climbing power, muscle strength, power, and fatigability in leg press and chest press exercises, and lean mass at baseline, 6, 18, and 36 months. RESULTS The groups were similar at baseline. Testosterone administration for 3 years was associated with significantly greater performance in unloaded and loaded stair-climbing power than placebo (mean estimated between-group difference, 10.7 W [95% confidence interval (CI), -4.0 to 25.5], P = 0.026; and 22.4 W [95% CI, 4.6 to 40.3], P = 0.027), respectively. Changes in chest-press strength (estimated mean difference, 16.3 N; 95% CI, 5.5 to 27.1; P < 0.001) and power (mean difference 22.5 W; 95% CI, 7.5 to 37.5; P < 0.001), and leg-press power were significantly greater in men randomized to testosterone than in those randomized to placebo. Lean body mass significantly increased more in the testosterone group. CONCLUSION Compared with placebo, testosterone replacement in older men for 3 years was associated with modest but significantly greater improvements in stair-climbing power, muscle mass, and power. Clinical meaningfulness of these treatment effects and their impact on disability in older adults with functional limitations remains to be studied.
Collapse
Affiliation(s)
- Thomas W. Storer
- Research Program in Men’s Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115;
| | - Shehzad Basaria
- Research Program in Men’s Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115;
| | - Tinna Traustadottir
- Kronos Longevity Research Institute, Phoenix, Arizona 85016;
- Northern Arizona University, Flagstaff, Arizona 86011;
| | - S. Mitchell Harman
- Kronos Longevity Research Institute, Phoenix, Arizona 85016;
- Phoenix VA Health Care System, Phoenix, Arizona 85012;
| | - Karol Pencina
- Research Program in Men’s Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115;
| | - Zhuoying Li
- Research Program in Men’s Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115;
| | - Thomas G. Travison
- Research Program in Men’s Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115;
- Institute for Aging Research, Hebrew Senior Life, Boston, Massachusetts 02131
| | - Renee Miciek
- Division of Endocrinology, Boston University School of Medicine, Boston, Massachusetts 02118;
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115;
| | - Panayiotis Tsitouras
- Kronos Longevity Research Institute, Phoenix, Arizona 85016;
- DWR Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104; and
| | - Kathleen Hally
- Research Program in Men’s Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115;
| | - Grace Huang
- Research Program in Men’s Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115;
| | - Shalender Bhasin
- Research Program in Men’s Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115;
| |
Collapse
|
25
|
Age differences in dynamic fatigability and variability of arm and leg muscles: Associations with physical function. Exp Gerontol 2016; 87:74-83. [PMID: 27989926 DOI: 10.1016/j.exger.2016.10.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/27/2016] [Accepted: 10/24/2016] [Indexed: 12/25/2022]
Abstract
INTRODUCTION It is not known whether the age-related increase in fatigability of fast dynamic contractions in lower limb muscles also occurs in upper limb muscles. We compared age-related fatigability and variability of maximal-effort repeated dynamic contractions in the knee extensor and elbow flexor muscles; and determined associations between fatigability, variability of velocity between contractions and functional performance. METHODS 35 young (16 males; 21.0±2.6years) and 32 old (18 males; 71.3±6.2years) adults performed a dynamic fatiguing task involving 90 maximal-effort, fast, concentric, isotonic contractions (1 contraction/3s) with a load equivalent to 20% maximal voluntary isometric contraction (MVIC) torque with the elbow flexor and knee extensor muscles on separate days. Old adults also performed tests of balance and walking endurance. RESULTS Old adults had greater fatigue-related reductions in peak velocity compared with young adults for both the elbow flexor and knee extensor muscles (P<0.05) with no sex differences (P>0.05). Old adults had greater variability of peak velocity during the knee extensor, but not during the elbow flexor fatiguing task. The age difference in fatigability was greater for the knee extensor muscles (35.9%) compared with elbow flexor muscles (9.7%, P<0.05). Less fatigability of the knee extensor muscles was associated with greater walking endurance (r=-0.34, P=0.048) and balance (r=-0.41, P=0.014) among old adults. CONCLUSIONS An age-related increase in fatigability of a dynamic fatiguing task was greater for the knee extensor compared with the elbow flexor muscles in males and females, and greater fatigability was associated with lesser walking endurance and balance.
Collapse
|
26
|
Hunter SK, Pereira HM, Keenan KG. The aging neuromuscular system and motor performance. J Appl Physiol (1985) 2016; 121:982-995. [PMID: 27516536 PMCID: PMC5142309 DOI: 10.1152/japplphysiol.00475.2016] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/08/2016] [Indexed: 12/25/2022] Open
Abstract
Age-related changes in the basic functional unit of the neuromuscular system, the motor unit, and its neural inputs have a profound effect on motor function, especially among the expanding number of old (older than ∼60 yr) and very old (older than ∼80 yr) adults. This review presents evidence that age-related changes in motor unit morphology and properties lead to impaired motor performance that includes 1) reduced maximal strength and power, slower contractile velocity, and increased fatigability; and 2) increased variability during and between motor tasks, including decreased force steadiness and increased variability of contraction velocity and torque over repeat contractions. The age-related increase in variability of motor performance with aging appears to involve reduced and more variable synaptic inputs that drive motor neuron activation, fewer and larger motor units, less stable neuromuscular junctions, lower and more variable motor unit action potential discharge rates, and smaller and slower skeletal muscle fibers that coexpress different myosin heavy chain isoforms in the muscle of older adults. Physical activity may modify motor unit properties and function in old men and women, although the effects on variability of motor performance are largely unknown. Many studies are of cross-sectional design, so there is a tremendous opportunity to perform high-impact and longitudinal studies along the continuum of aging that determine 1) the influence and cause of the increased variability with aging on functional performance tasks, and 2) whether lifestyle factors such as physical exercise can minimize this age-related variability in motor performance in the rapidly expanding numbers of very old adults.
Collapse
Affiliation(s)
- Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin; and
| | - Hugo M Pereira
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin; and
| | - Kevin G Keenan
- Department of Kinesiology, College of Health Sciences, University of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
27
|
Justice JN, Johnson LC, DeVan AE, Cruickshank-Quinn C, Reisdorph N, Bassett CJ, Evans TD, Brooks FA, Bryan NS, Chonchol MB, Giordano T, McQueen MB, Seals DR. Improved motor and cognitive performance with sodium nitrite supplementation is related to small metabolite signatures: a pilot trial in middle-aged and older adults. Aging (Albany NY) 2016; 7:1004-21. [PMID: 26626856 PMCID: PMC4694069 DOI: 10.18632/aging.100842] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Advancing age is associated with reductions in nitric oxide bioavailability and changes in metabolic activity, which are implicated in declines in motor and cognitive function. In preclinical models, sodium nitrite supplementation (SN) increases plasma nitrite and improves motor function, whereas other nitric oxide-boosting agents improve cognitive function. This pilot study was designed to translate these findings to middle-aged and older (MA/O) humans to provide proof-of-concept support for larger trials. SN (10 weeks, 80 or 160 mg/day capsules, TheraVasc, Inc.) acutely and chronically increased plasma nitrite and improved performance on measures of motor and cognitive outcomes (all p<0.05 or better) in healthy MA/O adults (62 ± 7 years). Untargeted metabolomics analysis revealed that SN significantly altered 33 (160 mg/day) to 45 (80 mg/day) different metabolites, 13 of which were related to changes in functional outcomes; baseline concentrations of 99 different metabolites predicted functional improvements with SN. This pilot study provides the first evidence that SN improves aspects of motor and cognitive function in healthy MA/O adults, and that these improvements are associated with, and predicted by, the plasma metabolome. Our findings provide the necessary support for larger clinical trials on this promising pharmacological strategy for preserving physiological function with aging.
Collapse
Affiliation(s)
- Jamie N Justice
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Lawrence C Johnson
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Allison E DeVan
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Charmion Cruickshank-Quinn
- Integrated Department of Immunology, University of Colorado Anschutz Medical Campus and National Jewish Hospital, Denver, CO 80045, USA
| | - Nichole Reisdorph
- Integrated Department of Immunology, University of Colorado Anschutz Medical Campus and National Jewish Hospital, Denver, CO 80045, USA
| | - Candace J Bassett
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Trent D Evans
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Forrest A Brooks
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | | | - Michel B Chonchol
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO 80045, USA
| | | | - Matthew B McQueen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
28
|
Arellano CJ, Caha D, Hennessey JE, Amiridis IG, Baudry S, Enoka RM. Fatigue-induced adjustment in antagonist coactivation by old adults during a steadiness task. J Appl Physiol (1985) 2016; 120:1039-46. [PMID: 26846553 DOI: 10.1152/japplphysiol.00908.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/22/2016] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to determine the adjustments in the level of coactivation during a steadiness task performed by young and old adults after the torque-generating capacity of the antagonist muscles was reduced by a fatiguing contraction. Torque steadiness (coefficient of variation) and electromyographic activity of the extensor and flexor carpi radialis muscles were measured as participants matched a wrist extensor target torque (10% maximum) before and after sustaining an isometric contraction (30% maximum) with wrist flexors to task failure. Time to failure was similar (P = 0.631) for young (417 ± 121 s) and old (452 ± 174 s) adults. The reduction in maximal voluntary contraction torque (%initial) for the wrist flexors after the fatiguing contraction was greater (P = 0.006) for young (32.5 ± 13.7%) than old (21.8 ± 6.6%) adults. Moreover, maximal voluntary contraction torque for the wrist extensors declined for old (-13.7 ± 12.7%; P = 0.030), but not young (-5.4 ± 13.8%; P = 0.167), adults. Torque steadiness during the matching task with the wrist extensors was similar before and after the fatiguing contraction for both groups, but the level of coactivation increased after the fatiguing contraction for old (P = 0.049) but not young (P = 0.137) adults and was twice the amplitude for old adults (P = 0.002). These data reveal that old adults are able to adjust the amount of antagonist muscle activity independent of the agonist muscle during steady submaximal contractions.
Collapse
Affiliation(s)
- Christopher J Arellano
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island; Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - David Caha
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Joseph E Hennessey
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Ioannis G Amiridis
- Department of Physical Education and Sport Sciences, Aristotle University of Thessaloniki, Serres, Greece; and
| | - Stéphane Baudry
- Laboratory of Applied Biology, Neurosciences Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Roger M Enoka
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| |
Collapse
|
29
|
Morrison S, Colberg SR, Parson HK, Neumann S, Handel R, Vinik EJ, Paulson J, Vinik AI. Walking-Induced Fatigue Leads to Increased Falls Risk in Older Adults. J Am Med Dir Assoc 2016; 17:402-9. [PMID: 26825684 DOI: 10.1016/j.jamda.2015.12.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/03/2015] [Accepted: 12/10/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND For older adults, falls are a serious health problem, with more than 30% of people older than 65 suffering a fall at least once a year. One element often overlooked in the assessment of falls is whether a person's balance, walking ability, and overall falls risk is affected by performing activities of daily living such as walking. OBJECTIVE This study assessed the immediate impact of incline walking at a moderate pace on falls risk, leg strength, reaction time, gait, and balance in 75 healthy adults from 30 to 79 years of age. Subjects were subdivided into 5 equal groups based on their age (group 1, 30-39 years; group 2, 40-49 years; group 3, 50-59 years; group 4, 60-69 years; group 5, 70-79 years). METHODS Each person's falls risk (using the Physiological Profile Assessment), simple reaction time, leg strength, walking ability, and standing balance were assessed before and after a period of incline walking on an automated treadmill. The walking task consisted of three 5-minute trials at a faster than preferred pace. Fatigue during walking was elicited by increasing the treadmill incline in increments of 2° (from level) every minute to a maximum of 8°. RESULTS As predicted, significant age-related differences were observed before the walking activity. In general, increasing age was associated with declines in gait speed, lower limb strength, slower reaction times, and increases in overall falls risk. Following the treadmill task, older adults exhibited increased sway (path length 60-69 years; 10.2 ± 0.7 to 12.1 ± 0.7 cm: 70-79 years; 12.8 ± 1.1 to 15.1 ± 0.8 cm), slower reaction times (70-79 years; 256 ± 6 to 287 ± 8 ms), and declines in lower limb strength (60-69 years; 36 ± 2 to 31 ± 1 kg: 70-79 years; 32.3 ± 2 to 27 ± 1 kg). However, a significant increase in overall falls risk (pre; 0.51 ± 0.17: post; 1.01 ± 0.18) was only seen in the oldest group (70-79 years). For all other persons (30-69 years), changes resulting from the treadmill-walking task did not lead to a significant increase in falls risk. CONCLUSIONS As most falls occur when an individual is moving and/or fatigued, assessing functional properties related to balance, gait, strength, and falls risk in older adults both at rest and following activity may provide additional insight.
Collapse
Affiliation(s)
- Steven Morrison
- School of Physical Therapy and Athletic Training, Old Dominion University, Norfolk, VA.
| | - Sheri R Colberg
- Human Movement Sciences Department, Old Dominion University, Norfolk, VA
| | - Henri K Parson
- Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, VA
| | - Serina Neumann
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, Norfolk, VA
| | - Richard Handel
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, Norfolk, VA
| | - Etta J Vinik
- Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, VA
| | - James Paulson
- Psychology Sciences Department, Old Dominion University, Norfolk, VA
| | - Arthur I Vinik
- Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, VA
| |
Collapse
|
30
|
Hepple RT, Rice CL. Innervation and neuromuscular control in ageing skeletal muscle. J Physiol 2015; 594:1965-78. [PMID: 26437581 DOI: 10.1113/jp270561] [Citation(s) in RCA: 250] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/28/2015] [Indexed: 12/28/2022] Open
Abstract
Changes in the neuromuscular system affecting the ageing motor unit manifest structurally as a reduction in motor unit number secondary to motor neuron loss; fibre type grouping due to repeating cycles of denervation-reinnervation; and instability of the neuromuscular junction that may be due to either or both of a gradual perturbation in postsynaptic signalling mechanisms necessary for maintenance of the endplate acetylcholine receptor clusters or a sudden process involving motor neuron death or traumatic injury to the muscle fibre. Functionally, these changes manifest as a reduction in strength and coordination that precedes a loss in muscle mass and contributes to impairments in fatigue. Regular muscle activation in postural muscles or through habitual physical activity can attenuate some of these structural and functional changes up to a point along the ageing continuum. On the other hand, regular muscle activation in advanced age (>75 years) loses its efficacy, and at least in rodents may exacerbate age-related motor neuron death. Transgenic mouse studies aimed at identifying potential mechanisms of motor unit disruptions in ageing muscle are not conclusive due to many different mechanisms converging on similar motor unit alterations, many of which phenocopy ageing muscle. Longitudinal studies of ageing models and humans will help clarify the cause and effect relationships and thus, identify relevant therapeutic targets to better preserve muscle function across the lifespan.
Collapse
Affiliation(s)
- Russell T Hepple
- Department of Kinesiology & Physical Education, McGill University, Montreal, Québec, Canada.,McGill Research Centre for Physical Activity and Health, Montreal, Québec, Canada.,Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| | - Charles L Rice
- School of Kinesiology, University of Western Ontario, London, Ontario, Canada.,Canadian Centre for Activity and Aging, London, Ontario, Canada.,Department of Anatomy & Cell Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
31
|
Wallace JW, Power GA, Rice CL, Dalton BH. Time-dependent neuromuscular parameters in the plantar flexors support greater fatigability of old compared with younger males. Exp Gerontol 2015; 74:13-20. [PMID: 26657724 DOI: 10.1016/j.exger.2015.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/29/2015] [Accepted: 12/01/2015] [Indexed: 11/19/2022]
Abstract
Older adults are more fatigable than young during dynamic tasks, especially those that involve moderate to fast unconstrained velocity shortening contractions. Rate of torque development (RTD), rate of velocity development (RVD) and rate of neuromuscular activation are time-dependent neuromuscular parameters which have not been explored in relation to age-related differences in fatigability. The purpose was to determine whether these time-dependent measures affect the greater age-related fatigability in peak power during moderately fast and maximal effort shortening plantar flexions. Neuromuscular properties were recorded from 10 old (~ 78 years) and 10 young (~ 24 years) men during 50 maximal-effort unconstrained velocity shortening plantar flexions against a resistance equivalent to 20% maximal voluntary isometric contraction torque. At task termination, peak power, and angular velocity, and torque at peak power were decreased by 30, 18, and 16%, respectively, for the young (p < 0.05), and 46, 28, 30% for the old (p < 0.05) compared to pre-fatigue values with the old exhibiting greater reductions across all measures (p<0.05). Voluntary RVD and RTD decreased, respectively, by 24 and 26% in the young and by 47 and 40% in the old at task termination, with greater decrements in the old (p < 0.05). Rate of neuromuscular activation of the soleus decreased over time for both age groups (~ 47%; p < 0.05), but for the medial gastrocnemius (MG) only the old experienced significant decrements (46%) by task termination. All parameters were correlated strongly with the fatigue-related reduction in peak power (r = 0.81-0.94, p < 0.05), except for MG and soleus rates of neuromuscular activation (r = 0.25-0.30, p > 0.10). Fatigue-related declines in voluntary RTD and RVD were both moderately correlated with MG rate of neuromuscular activation (r = 0.51-0.52, p < 0.05), but exhibited a trend with soleus (r = 0.39-0.41, p = 0.07-0.09). Thus, time-dependent factors, RVD and RTD, are likely important indicators of intrinsic muscle properties leading to the greater age-related decline in peak power when performing a repetitive dynamic fatigue task, which may be due to greater fatigue-related central impairments for the older men than young.
Collapse
Affiliation(s)
- Jonathan W Wallace
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Charles L Rice
- Canadian Centre for Activity and Aging, School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada; Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Brian H Dalton
- Department of Human Physiology, University of Oregon, Eugene, OR, United States.
| |
Collapse
|
32
|
Involvement of IL-1 in the Maintenance of Masseter Muscle Activity and Glucose Homeostasis. PLoS One 2015; 10:e0143635. [PMID: 26599867 PMCID: PMC4658060 DOI: 10.1371/journal.pone.0143635] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/06/2015] [Indexed: 11/19/2022] Open
Abstract
Physical exercise reportedly stimulates IL-1 production within working skeletal muscles, but its physiological significance remains unknown due to the existence of two distinct IL-1 isoforms, IL-1α and IL-1β. The regulatory complexities of these two isoforms, in terms of which cells in muscles produce them and their distinct/redundant biological actions, have yet to be elucidated. Taking advantage of our masticatory behavior (Restrained/Gnawing) model, we herein show that IL-1α/1β-double-knockout (IL-1-KO) mice exhibit compromised masseter muscle (MM) activity which is at least partially attributable to abnormalities of glucose handling (rapid glycogen depletion along with impaired glucose uptake) and dysfunction of IL-6 upregulation in working MMs. In wild-type mice, masticatory behavior clearly increased IL-1β mRNA expression but no incremental protein abundance was detectable in whole MM homogenates, whereas immunohistochemical staining analysis revealed that both IL-1α- and IL-1β-immunopositive cells were recruited around blood vessels in the perimysium of MMs after masticatory behavior. In addition to the aforementioned phenotype of IL-1-KO mice, we found the IL-6 mRNA and protein levels in MMs after masticatory behavior to be significantly lower in IL-1-KO than in WT. Thus, our findings confirm that the locally-increased IL-1 elicited by masticatory behavior, although present small in amounts, contributes to supporting MM activity by maintaining normal glucose homeostasis in these muscles. Our data also underscore the importance of IL-1-mediated local interplay between autocrine myokines including IL-6 and paracrine cytokines in active skeletal muscles. This interplay is directly involved in MM performance and fatigability, perhaps mediated through maintaining muscular glucose homeostasis.
Collapse
|
33
|
Dalton BH, Power GA, Paturel JR, Rice CL. Older men are more fatigable than young when matched for maximal power and knee extension angular velocity is unconstrained. AGE (DORDRECHT, NETHERLANDS) 2015; 37:9790. [PMID: 25943700 PMCID: PMC4420757 DOI: 10.1007/s11357-015-9790-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/27/2015] [Indexed: 06/04/2023]
Abstract
The underlying factors related to the divergent findings of age-related fatigue for dynamic tasks are not well understood. The purpose here was to investigate age-related fatigability and recovery between a repeated constrained (isokinetic) and an unconstrained velocity (isotonic) task, in which participants performed fatiguing contractions at the velocity (isokinetic) or resistance (isotonic) corresponding with maximal power. To compare between tasks, isotonic torque-power relationships were constructed prior to and following both fatiguing tasks and during short-term recovery. Contractile properties were recorded from 9 old (~75 years) and 11 young (~25 years) men during three testing sessions. In the first session, maximal power was assessed, and sessions 2 and 3 involved an isokinetic or an isotonic concentric fatigue task performed until maximal power was reduced by 40 %. Compared with young, the older men performed the same number of contractions to task failure for the isokinetic task (~45 contractions), but 20 % fewer for the isotonic task (p < 0.05). Regardless of age and task, maximal voluntary isometric contraction strength, angular velocity, and power were reduced by ~30, ~13, and ~25 %, respectively, immediately following task failure, and only isometric torque was not recovered fully by 10 min. In conclusion, older men are more fatigable than the young when performing a repetitive maximal dynamic task at a relative resistance (isotonic) but not an absolute velocity (isokinetic), corresponding to maximal power.
Collapse
Affiliation(s)
- Brian H Dalton
- Department of Human Physiology, University of Oregon, 1240 University of Oregon, 122C Esslinger Hall, Eugene, OR, 97403, USA,
| | | | | | | |
Collapse
|
34
|
Allen MD, Kimpinski K, Doherty TJ, Rice CL. Decreased muscle endurance associated with diabetic neuropathy may be attributed partially to neuromuscular transmission failure. J Appl Physiol (1985) 2015; 118:1014-22. [PMID: 25663671 DOI: 10.1152/japplphysiol.00441.2014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 02/03/2015] [Indexed: 01/25/2023] Open
Abstract
Diabetic polyneuropathy (DPN) can cause muscle atrophy, weakness, contractile slowing, and neuromuscular transmission instability. Our objective was to assess the response of the impaired neuromuscular system of DPN in humans when stressed with a sustained maximal voluntary contraction (MVC). Baseline MVC and evoked dorsiflexor contractile properties were assessed in DPN patients (n = 10) and controls (n = 10). Surface electromyography was used to record tibialis anterior evoked maximal compound muscle action potentials (CMAPs) and neuromuscular activity during MVCs. Participants performed a sustained isometric dorsiflexion MVC for which task termination was determined by the inability to sustain ≥60% MVC torque. The fatigue protocol was immediately followed by a maximal twitch, with additional maximal twitches and MVCs assessed at 30 s and 2 min postfatigue. DPN patients fatigued ∼21% more quickly than controls (P < 0.05) and featured less relative electromyographic activity during the first one-third of the fatigue protocol compared with controls (P < 0.05). Immediately following fatigue, maximal twitch torque was reduced similarly (∼20%) in both groups, and concurrently CMAPs were reduced (∼12%) in DPN patients, whereas they were unaffected in controls (P > 0.05). Twitch torque and CMAP amplitude recovered to baseline 30 s postfatigue. Additionally, at 30 s postfatigue, both groups had similar (∼10%) reductions in MVC torque relative to baseline, and MVC strength recovered by 2 min postfatigue. We conclude DPN patients possess less endurance than controls, and neuromuscular transmission failure may contribute to this greater fatigability.
Collapse
Affiliation(s)
- Matti D Allen
- School of Medicine, Queen's University, Kingston, Ontario, Canada; School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada; School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada;
| | - Kurt Kimpinski
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Timothy J Doherty
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada; Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada; Department of Physical Medicine and Rehabilitation, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada; and
| | - Charles L Rice
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada; Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|