1
|
Augenstein TE, Oh S, Norris TA, Mekler J, Sethi A, Krishnan C. Corticospinal excitability during motor preparation of upper extremity reaches reflects flexor muscle synergies: A novel principal component-based motor evoked potential analyses. Restor Neurol Neurosci 2024; 42:121-138. [PMID: 38607772 DOI: 10.3233/rnn-231367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Background Previous research has shown that noninvasive brain stimulation can be used to study how the central nervous system (CNS) prepares the execution of a motor task. However, these previous studies have been limited to a single muscle or single degree of freedom movements (e.g., wrist flexion). It is currently unclear if the findings of these studies generalize to multi-joint movements involving multiple muscles, which may be influenced by kinematic redundancy and muscle synergies. Objective The objective of this study was to characterize corticospinal excitability during motor preparation in the cortex prior to functional upper extremity reaches. Methods 20 participants without neurological impairments volunteered for this study. During the experiment, the participants reached for a cup in response to a visual "Go Cue". Prior to movement onset, we used transcranial magnetic stimulation (TMS) to stimulate the motor cortex and measured the changes in motor evoked potentials (MEPs) in several upper extremity muscles. We varied each participant's initial arm posture and used a novel synergy-based MEP analysis to examine the effect of muscle coordination on MEPs. Additionally, we varied the timing of the stimulation between the Go Cue and movement onset to examine the time course of motor preparation. Results We found that synergies with strong proximal muscle (shoulder and elbow) components emerged as the stimulation was delivered closer to movement onset, regardless of arm posture, but MEPs in the distal (wrist and finger) muscles were not facilitated. We also found that synergies varied with arm posture in a manner that reflected the muscle coordination of the reach. Conclusions We believe that these findings provide useful insight into the way the CNS plans motor skills.
Collapse
Affiliation(s)
- Thomas E Augenstein
- Department of Physical Medicine and Rehabilitation, NeuRRo Lab, Michigan Medicine, Ann Arbor, MI, USA
- Department of Robotics, University of Michigan, Ann Arbor, MI, USA
| | - Seonga Oh
- Department of Physical Medicine and Rehabilitation, NeuRRo Lab, Michigan Medicine, Ann Arbor, MI, USA
| | - Trevor A Norris
- Department of Physical Medicine and Rehabilitation, NeuRRo Lab, Michigan Medicine, Ann Arbor, MI, USA
| | | | - Amit Sethi
- Department of Occupational Therapy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chandramouli Krishnan
- Department of Physical Medicine and Rehabilitation, NeuRRo Lab, Michigan Medicine, Ann Arbor, MI, USA
- Department of Robotics, University of Michigan, Ann Arbor, MI, USA
- Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Seifert C, Zhao J, Brandi ML, Kampe T, Hermsdörfer J, Wohlschläger A. Investigating the effects of the aging brain on real tool use performance-an fMRI study. Front Aging Neurosci 2023; 15:1238731. [PMID: 37674783 PMCID: PMC10477673 DOI: 10.3389/fnagi.2023.1238731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
Introduction Healthy aging affects several domains of cognitive and motor performance and is further associated with multiple structural and functional neural reorganization patterns. However, gap of knowledge exists, referring to the impact of these age-related alterations on the neural basis of tool use-an important, complex action involved in everyday life throughout the entire lifespan. The current fMRI study aims to investigate age-related changes of neural correlates involved in planning and executing a complex object manipulation task, further providing a better understanding of impaired tool use performance in apraxia patients. Methods A balanced number of sixteen older and younger healthy adults repeatedly manipulated everyday tools in an event-related Go-No-Go fMRI paradigm. Results Our data indicates that the left-lateralized network, including widely distributed frontal, temporal, parietal and occipital regions, involved in tool use performance is not subjected to age-related functional reorganization processes. However, age-related changes regarding the applied strategical procedure can be detected, indicating stronger investment into the planning, preparatory phase of such an action in older participants.
Collapse
Affiliation(s)
- Clara Seifert
- Chair of Human Movement Science, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Jingkang Zhao
- Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany
- Department of Neuroradiology, TUM-Neuroimaging Center, Technical University of Munich, Munich, Germany
| | - Marie-Luise Brandi
- Department of Neuroradiology, TUM-Neuroimaging Center, Technical University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Thabea Kampe
- Chair of Human Movement Science, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Joachim Hermsdörfer
- Chair of Human Movement Science, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Afra Wohlschläger
- Department of Neuroradiology, TUM-Neuroimaging Center, Technical University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
3
|
Augenstein TE, Oh S, Norris TA, Mekler J, Sethi A, Krishnan C. Muscle Coordination Matters: Insights into Motor Planning using Corticospinal Responses during Functional Reaching. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540531. [PMID: 37292868 PMCID: PMC10245565 DOI: 10.1101/2023.05.15.540531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The central nervous system (CNS) moves the human body by forming a plan in the primary motor cortex and then executing this plan by activating the relevant muscles. It is possible to study motor planning by using noninvasive brain stimulation techniques to stimulate the motor cortex prior to a movement and examine the evoked responses. Studying the motor planning process can reveal useful information about the CNS, but previous studies have generally been limited to single degree of freedom movements ( e.g., wrist flexion). It is currently unclear if findings in these studies generalize to multi-joint movements, which may be influenced by kinematic redundancy and muscle synergies. Here, our objective was to characterize motor planning in the cortex prior to a functional reach involving the upper extremity. We asked participants to reach for a cup placed in front of them when presented with a visual "Go Cue". Following the go cue, but prior to movement onset, we used transcranial magnetic stimulation (TMS) to stimulate the motor cortex and measured the changes in the magnitudes of evoked responses in several upper extremity muscles (MEPs). We varied each participant's initial arm posture to examine the effect of muscle coordination on MEPs. Additionally, we varied the timing of the stimulation between the go cue and movement onset to examine the time course of changes in the MEPs. We found that the MEPs in all proximal (shoulder and elbow) muscles increased as the stimulation was delivered closer to movement onset, regardless of arm posture, but MEPs in the distal (wrist and finger) muscles were not facilitated or even inhibited. We also found that facilitation varied with arm posture in a manner that reflected the coordination of the subsequent reach. We believe that these findings provide useful insight into the way the CNS plans motor skills.
Collapse
|
4
|
Behrendt T, Altorjay AC, Bielitzki R, Behrens M, Glazachev OS, Schega L. Influence of acute and chronic intermittent hypoxic-hyperoxic exposure prior to aerobic exercise on cardiovascular risk factors in geriatric patients-a randomized controlled trial. Front Physiol 2022; 13:1043536. [PMID: 36388103 PMCID: PMC9650443 DOI: 10.3389/fphys.2022.1043536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/11/2022] [Indexed: 04/08/2024] Open
Abstract
Background: Intermittent hypoxic-hyperoxic exposure (IHHE) and aerobic training have been proposed as non-pharmacological interventions to reduce age-related risk factors. However, no study has yet examined the effects of IHHE before aerobic exercise on cardiovascular risk factors in the elderly. Therefore, the aim of this study was to investigate the acute and chronic effects of IHHE prior to aerobic cycling exercise on blood lipid and lipoprotein concentrations as well as blood pressure in geriatric patients. Methods: In a randomized, controlled, and single-blinded trial, thirty geriatric patients (72-94 years) were assigned to two groups: intervention (IG; n = 16) and sham control group (CG; n = 14). Both groups completed 6 weeks of aerobic cycling training, 3 times a week for 20 min per day. The IG and CG were additionally exposed to IHHE or sham IHHE (i.e., normoxia) for 30 min prior to aerobic cycling. Blood samples were taken on three occasions: immediately before the first, ∼10 min after the first, and immediately before the last session. Blood samples were analyzed for total (tCh), high-density (HDL-C), and low-density lipoprotein cholesterol (LDL-C), and triglyceride (Tgl) serum concentration. Resting systolic (SBP) and diastolic blood pressure (DBP) was assessed within 1 week before, during (i.e., at week two and four), and after the interventions. Results: The baseline-adjusted ANCOVA revealed a higher LDL-C concentration in the IG compared to the CG after the first intervention session (ηp 2 = 0.12). For tCh, HDL-C, Tgl, and tCh/HDL-C ratio there were no differences in acute changes between the IG and the CG (ηp 2 ≤ 0.01). With regard to the chronic effects on lipids and lipoproteins, data analysis indicated no differences between groups (ηp 2 ≤ 0.03). The repeated measures ANOVA revealed an interaction effect for SBP (ηp 2 = 0.06) but not for DBP (ηp 2 ≤ 0.01). Within-group post-hoc analysis for the IG indicated a reduction in SBP at post-test (d = 0.05). Conclusion: Applying IHHE prior to aerobic cycling seems to be effective to reduce SBP in geriatric patients after 6 weeks of training. The present study suggests that IHHE prior to aerobic cycling can influence the acute exercise-related responses in LDL-C concentration but did not induce chronic changes in basal lipid or lipoprotein concentrations.
Collapse
Affiliation(s)
- Tom Behrendt
- Department for Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Ann-Christin Altorjay
- Department of Internal Medicine, Division of Cardiology and Angiology, University Hospital Magdeburg, Magdeburg, Germany
| | - Robert Bielitzki
- Department for Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Martin Behrens
- Department for Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Department of Orthopedics, University Medicine Rostock, Rostock, Germany
| | - Oleg S. Glazachev
- Departement Human Physiology, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Lutz Schega
- Department for Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
5
|
Canepa P, Papaxanthis C, Bisio A, Biggio M, Paizis C, Faelli E, Avanzino L, Bove M. Motor Cortical Excitability Changes in Preparation to Concentric and Eccentric Movements. Neuroscience 2021; 475:73-82. [PMID: 34425159 DOI: 10.1016/j.neuroscience.2021.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022]
Abstract
Specific neural mechanisms operate at corticospinal levels during eccentric and concentric contractions. Here, we investigated the difference in corticospinal excitability (CSE) when preparing these two types of contraction. In this study we enrolled 16 healthy participants. They were asked to perform an instructed-delay reaction time (RT) task involving a concentric or an eccentric contraction of the right first dorsal interosseus muscle, as a response to a proprioceptive cue (Go signal) presented 1 s after a warning signal. We tested CSE at different time points ranging from 300 ms before up to 40 ms after a Go signal. CSE increased 300-150 ms before the Go signal for both contractions. Interestingly, significant changes in CSE in the time interval around the Go signal (from -150 ms to +40 ms) were only revealed in eccentric contraction. We observed a significant decrease in excitability immediately before the Go cue (Pre_50) and a significant increase 40 ms after it (Post_40) with respect to the MEPs recorded at Pre_150. Finally, CSE in eccentric contraction was lower before the Go cue (Pre_50) and greater after it (Post_40) compared to the concentric contraction. A similar result was also found in NoMov paradigm, used to disentangle the effects induced by movement preparation from those induced by the movement preparation linked to the proprioceptive cue. We could conclude that different neural mechanisms observed during concentric and eccentric contractions are mirrored with a different time-specific modulation of CSE in the preparatory phase to the movement.
Collapse
Affiliation(s)
- Patrizio Canepa
- Department of Experimental Medicine, Section of Human Physiology, and Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Genoa, Italy; INSERM UMR1093-CAPS, UFR des Sciences du Sport, University of Bourgogne Franche-Comté, Dijon, France
| | - Charalambos Papaxanthis
- INSERM UMR1093-CAPS, UFR des Sciences du Sport, University of Bourgogne Franche-Comté, Dijon, France
| | - Ambra Bisio
- Department of Experimental Medicine, Section of Human Physiology, and Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
| | - Monica Biggio
- Department of Experimental Medicine, Section of Human Physiology, and Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
| | - Christos Paizis
- INSERM UMR1093-CAPS, UFR des Sciences du Sport, University of Bourgogne Franche-Comté, Dijon, France; Centre for Performance Expertise, CAPS, U1093 INSERM, University of Bourgogne Franche-Comté, Faculty of Sport Sciences, Dijon, France
| | - Emanuela Faelli
- Department of Experimental Medicine, Section of Human Physiology, and Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
| | - Laura Avanzino
- Department of Experimental Medicine, Section of Human Physiology, and Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy; Ospedale Policlinico San Martino-IRCCS, Genoa, Italy
| | - Marco Bove
- Department of Experimental Medicine, Section of Human Physiology, and Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy; Ospedale Policlinico San Martino-IRCCS, Genoa, Italy.
| |
Collapse
|
6
|
Zschorlich VR, Behrendt F, de Lussanet MHE. Multimodal Sensorimotor Integration of Visual and Kinaesthetic Afferents Modulates Motor Circuits in Humans. Brain Sci 2021; 11:brainsci11020187. [PMID: 33546384 PMCID: PMC7913510 DOI: 10.3390/brainsci11020187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 11/16/2022] Open
Abstract
Optimal motor control requires the effective integration of multi-modal information. Visual information of movement performed by others even enhances potentials in the upper motor neurons through the mirror-neuron system. On the other hand, it is known that motor control is intimately associated with afferent proprioceptive information. Kinaesthetic information is also generated by passive, external-driven movements. In the context of sensory integration, it is an important question how such passive kinaesthetic information and visually perceived movements are integrated. We studied the effects of visual and kinaesthetic information in combination, as well as isolated, on sensorimotor integration, compared to a control condition. For this, we measured the change in the excitability of the motor cortex (M1) using low-intensity Transcranial magnetic stimulation (TMS). We hypothesised that both visual motoneurons and kinaesthetic motoneurons enhance the excitability of motor responses. We found that passive wrist movements increase the motor excitability, suggesting that kinaesthetic motoneurons do exist. The kinaesthetic influence on the motor threshold was even stronger than the visual information. Moreover, the simultaneous visual and passive kinaesthetic information increased the cortical excitability more than each of them independently. Thus, for the first time, we found evidence for the integration of passive kinaesthetic- and visual-sensory stimuli.
Collapse
Affiliation(s)
- Volker R. Zschorlich
- Department of Movement Science, University of Rostock, Ulmenstraße 69, 18057 Rostock, Germany
- Correspondence:
| | - Frank Behrendt
- Reha Rheinfelden, Research Department, Salinenstrasse 98, CH-4310 Rheinfelden, Switzerland;
| | - Marc H. E. de Lussanet
- Department of Movement Science, and OCC Center for Cognitive and Behavioral Neuroscience, University of Münster, Horstmarer Landweg 62b, 48149 Münster, Germany;
| |
Collapse
|
7
|
Hill C, Van Gemmert AWA, Fang Q, Hou L, Wang J, Pan Z. Asymmetry in the aging brain: A narrative review of cortical activation patterns and implications for motor function. Laterality 2019; 25:413-429. [PMID: 31875769 DOI: 10.1080/1357650x.2019.1707219] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Age-related changes have been identified in neural and motor level. A prominent change is reduced asymmetry in cortical activation as well as motor performance. Cortical activation models have been established based on cognitive research utilizing neuroimaging techniques to explain age-related effects on neural recruitment and reduced brain asymmetry. Recently, researchers in motor behaviour attempted to apply the models to explain motor pattern changes in aging and proposed compensation as the mechanism of the reduced motor asymmetry in older adults. Age-related alterations in movement patterns and brain activations seem to be correlated. However, based on the literature search result, no direct evidence substantiates the connection between reduced brain asymmetry and motor asymmetry in older adults. Therefore, a theoretical gap was identified. The theoretical gap exists because either neuroimaging studies have not considered motor asymmetry or motor asymmetry studies have not integrated neuroimaging techniques into study designs. Answering the research question can be valuable to both research and clinical practice. With the mechanisms of brain activation patterns during motor tasks in an aging population being better understood, protocols developed upon the new understandings can be applied to current motor interventions and better maintain the longevity of motor function of older adults.
Collapse
Affiliation(s)
- Christopher Hill
- Department of Kinesiology, Mississippi State University, Mississippi State, MS, USA.,Department of Kinesiology and Physical Education, Northern Illinois University, DeKalb, IL, USA
| | | | - Qun Fang
- Department of Kinesiology, Mississippi State University, Mississippi State, MS, USA
| | - Lijuan Hou
- College of Physical Education and Sports, Beijing Normal University, Beijing, People's Republic of China
| | - Jun Wang
- Department of Civil and Environmental Engineering, Mississippi State University, Mississippi State, MS, USA
| | - Zhujun Pan
- Department of Kinesiology, Mississippi State University, Mississippi State, MS, USA
| |
Collapse
|
8
|
Wermelinger S, Gampe A, Daum MM. The dynamics of the interrelation of perception and action across the life span. PSYCHOLOGICAL RESEARCH 2018; 83:116-131. [PMID: 30083839 DOI: 10.1007/s00426-018-1058-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/14/2018] [Indexed: 11/30/2022]
Abstract
Successful social interaction relies on the interaction partners' perception, anticipation and understanding of their respective actions. The perception of a particular action and the capability to produce this action share a common representational ground. So far, no study has explored the interrelation between action perception and production across the life span using the same tasks and the same measurement techniques. This study was designed to fill this gap. Participants between 3 and 80 years (N = 214) observed two multistep actions of different familiarities and then reproduced the according actions. Using eye tracking, we measured participants' action perception via their prediction of action goals during observation. To capture subtler perceptual processes, we additionally analysed the dynamics and recurrent patterns within participants' gaze behaviour. Action production was assessed via the accuracy of the participants' reproduction of the observed actions. No age-related differences were found for the perception of the familiar action, where participants of all ages could rely on previous experience. In the unfamiliar action, where participants had less experience, action goals were predicted more frequently with increasing age. The recurrence in participants' gaze behaviour was related to both, age and action production: gaze behaviour was more recurrent (i.e. less flexible) in very young and very old participants, and lower levels of recurrence (i.e. greater flexibility) were related to higher scores in action production across participants. Incorporating a life-span perspective, this study illustrates the dynamic nature of developmental differences in the associations of action production with action perception.
Collapse
Affiliation(s)
- Stephanie Wermelinger
- Department of Psychology, University of Zurich, Binzmuehlestrasse 14, Box 21, 8050, Zurich, Switzerland.
| | - Anja Gampe
- Department of Psychology, University of Zurich, Binzmuehlestrasse 14, Box 21, 8050, Zurich, Switzerland
| | - Moritz M Daum
- Department of Psychology, University of Zurich, Binzmuehlestrasse 14, Box 21, 8050, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Quirk DA, Hubley-Kozey CL. Do Older Adults and Those Recovered from Low Back Injury Share Common Muscle Activation Adaptations? J Mot Behav 2018; 51:222-238. [PMID: 29694298 DOI: 10.1080/00222895.2018.1458280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Theoretical models suggest trunk muscle activation compensates for spinal systems impairments. The purpose of this study was to determine if two populations (older adults and those recovered from a lower back injury (rLBI)) with spinal system impairments have similar muscle activation patterns to each other, but differ from controls. Trunk electromyograms collected from 12 older adults, 16 rLBI, and 19 controls during two dynamic tasks showed that older adults and rLBI had higher activation amplitudes, sustained temporal and more synergistic activation relative to controls. However, differences found between older adults and rLBI suggest that spinal system impairments differed between groups or that recent pain (rLBI) uniquely influenced muscle activation. This sheds light on our understanding of the relationship between spinal system impairments and muscle activation.
Collapse
Affiliation(s)
- D Adam Quirk
- a School of Biomedical Engineering, Dalhousie University , Halifax , NS , Canada
| | - Cheryl L Hubley-Kozey
- a School of Biomedical Engineering, Dalhousie University , Halifax , NS , Canada.,b School of Physiotherapy, Dalhousie University , Halifax , NS , Canada
| |
Collapse
|
10
|
Stimulating the Healthy Brain to Investigate Neural Correlates of Motor Preparation: A Systematic Review. Neural Plast 2018; 2018:5846096. [PMID: 29670648 PMCID: PMC5835236 DOI: 10.1155/2018/5846096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/08/2017] [Accepted: 11/22/2017] [Indexed: 12/30/2022] Open
Abstract
Objective Noninvasive brain stimulation techniques can be used to selectively increase or decrease the excitability of a cortical region, providing a unique opportunity to assess the causal contribution of that region to the process being assessed. The objective of this paper is to systematically examine studies investigating changes in reaction time induced by noninvasive brain stimulation in healthy participants during movement preparation. Methods A systematic review of the literature was performed in the PubMed, MEDLINE, EMBASE, PsycINFO, and Web of science databases. A combination of keywords related to motor preparation, associated behavioral outcomes, and noninvasive brain stimulation methods was used. Results Twenty-seven studies were included, and systematic data extraction and quality assessment were performed. Reaction time results were transformed in standardised mean difference and graphically pooled in forest plots depending on the targeted cortical area and the type of stimulation. Conclusions Despite methodological heterogeneity among studies, results support a functional implication of five cortical regions (dorsolateral prefrontal cortex, posterior parietal cortex, supplementary motor area, dorsal premotor cortex, and primary motor cortex), integrated into a frontoparietal network, in various components of motor preparation ranging from attentional to motor aspects.
Collapse
|
11
|
Palomo P, Borrego A, Cebolla A, Llorens R, Demarzo M, Baños RM. Subjective, behavioral, and physiological responses to the rubber hand illusion do not vary with age in the adult phase. Conscious Cogn 2018; 58:90-96. [DOI: 10.1016/j.concog.2017.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 10/18/2017] [Accepted: 10/18/2017] [Indexed: 01/26/2023]
|
12
|
Wermelinger S, Gampe A, Behr J, Daum MM. Interference of action perception on action production increases across the adult life span. Exp Brain Res 2017; 236:577-586. [PMID: 29249051 DOI: 10.1007/s00221-017-5157-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 12/14/2017] [Indexed: 10/18/2022]
Abstract
Action perception and action production are assumed to be based on an internal simulation process that involves the sensorimotor system. This system undergoes changes across the life span and is assumed to become less precise with age. In the current study, we investigated how increasing age affects the magnitude of interference in action production during simultaneous action perception. In a task adapted from Brass et al. (Brain Cogn 44(2):124-143, 2000), we asked participants (aged 20-80 years) to respond to a visually presented finger movement and/or symbolic cue by executing a previously defined finger movement. Action production was assessed via participants' reaction times. Results show that participants were slower in trials in which they were asked to ignore an incongruent finger movement compared to trials in which they had to ignore an incongruent symbolic cue. Moreover, advancing age was shown to accentuate this effect. We suggest that the internal simulation of the action becomes less precise with age making the sensorimotor system more susceptible to perturbations such as the interference of a concurrent action perception.
Collapse
Affiliation(s)
- Stephanie Wermelinger
- Department of Psychology, University of Zurich, Binzmuehlestrasse 14, 8050, Zurich, Switzerland.
| | - Anja Gampe
- Department of Psychology, University of Zurich, Binzmuehlestrasse 14, 8050, Zurich, Switzerland
| | - Jannis Behr
- Department of Psychology, University of Zurich, Binzmuehlestrasse 14, 8050, Zurich, Switzerland
| | - Moritz M Daum
- Department of Psychology, University of Zurich, Binzmuehlestrasse 14, 8050, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Wermelinger S, Gampe A, Daum MM. Higher levels of motor competence are associated with reduced interference in action perception across the lifespan. PSYCHOLOGICAL RESEARCH 2017; 83:432-444. [PMID: 29116436 DOI: 10.1007/s00426-017-0941-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 10/27/2017] [Indexed: 11/29/2022]
Abstract
Action perception and action production are tightly linked and elicit bi-directional influences on each other when performed simultaneously. In this study, we investigated whether age-related differences in manual fine-motor competence and/or age affect the (interfering) influence of action production on simultaneous action perception. In a cross-sectional eye-tracking study, participants of a broad age range (N = 181, 20-80 years) observed a manual grasp-and-transport action while performing an additional motor or cognitive distractor task. Action perception was measured via participants' frequency of anticipatory gaze shifts towards the action goal. Manual fine-motor competence was assessed with the Motor Performance Series. The interference effect in action perception was greater in the motor than the cognitive distractor task. Furthermore, manual fine-motor competence and age in years were both associated with this interference. The better the participants' manual fine-motor competence and the younger they were, the smaller the interference effect. However, when both influencing factors (age and fine-motor competence) were taken into account, a model including only age-related differences in manual fine-motor competence best fit with our data. These results add to the existing literature that motor competence and its age-related differences influence the interference effects between action perception and production.
Collapse
Affiliation(s)
- Stephanie Wermelinger
- Department of Psychology, University of Zurich, Binzmuehlestrasse 14, 8050, Zurich, Switzerland.
| | - Anja Gampe
- Department of Psychology, University of Zurich, Binzmuehlestrasse 14, 8050, Zurich, Switzerland
| | - Moritz M Daum
- Department of Psychology, University of Zurich, Binzmuehlestrasse 14, 8050, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Niu YN, Zhu X, Li J. The Age Effects on the Cognitive Processes of Intention-Based and Stimulus-Based Actions: An ERP Study. Front Psychol 2017; 8:803. [PMID: 28611699 PMCID: PMC5447090 DOI: 10.3389/fpsyg.2017.00803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 05/02/2017] [Indexed: 11/30/2022] Open
Abstract
The functional decline in action among older adults is caused not only by physical weakness but also by cognitive decline. In this study, we aimed to compare the cognitive effects of age between intention-based and stimulus-based action modes electrophysiologically. Because age-related declines in cognitive function might proceed distinctly according to specific action modes and processes, four specific cognitive processes, action-effect binding, stimulus-response linkage, action-effect feedback control, and effect-action retrieval, were investigated. We recorded event-related potentials (ERPs) during a modified acquisition-test paradigm in young (mean age = 21, SD = 2) and old (mean age = 69, SD = 5) groups. A temporal bisection task and a movement pre-cuing task were used during the acquisition and test phases, respectively. Using ERP indices including readiness potential (RP), P3, N2 and contingent negative variation (CNV) to identify these four specific processes for the two action modes, we revealed the effects of age on each ERP index. The results showed similar patterns of waveforms but consistently decreasing amplitudes of all four ERP indices in the old age group compared with the young age group, which indicates not only generally declining functions of action preparation in older adults but also age effects specific to the action modes and processes that might otherwise be mixed together under confounding experimental conditions. Particularly, an interference effect indexed by the differences in the amplitudes of CNV between congruent and incongruent tasks was observed in the young age group, which is consistent with previous behavioral reports. However, this effect was absent in the old age group, indicating a specific age-related deficit in the effect-action retrieval process of intention-based action, which might be caused by an age-related deficit in associative memory. In sum, this study investigated the cognitive processes of two action modes from a developmental perspective and suggests the importance of adding associative memory training to interventions for older adults with the aim of improving intention-based action.
Collapse
Affiliation(s)
- Ya-Nan Niu
- Center on Aging Psychology, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of SciencesBeijing, China
| | - Xinyi Zhu
- Center on Aging Psychology, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of SciencesBeijing, China.,Department of Psychology, University of Chinese Academy of SciencesBeijing, China
| | - Juan Li
- Center on Aging Psychology, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of SciencesBeijing, China.,Department of Psychology, University of Chinese Academy of SciencesBeijing, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
15
|
Tremblay P, Sato M, Deschamps I. Age differences in the motor control of speech: An fMRI study of healthy aging. Hum Brain Mapp 2017; 38:2751-2771. [PMID: 28263012 PMCID: PMC6866863 DOI: 10.1002/hbm.23558] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 01/27/2017] [Accepted: 02/23/2017] [Indexed: 01/08/2023] Open
Abstract
Healthy aging is associated with a decline in cognitive, executive, and motor processes that are concomitant with changes in brain activation patterns, particularly at high complexity levels. While speech production relies on all these processes, and is known to decline with age, the mechanisms that underlie these changes remain poorly understood, despite the importance of communication on everyday life. In this cross-sectional group study, we investigated age differences in the neuromotor control of speech production by combining behavioral and functional magnetic resonance imaging (fMRI) data. Twenty-seven healthy adults underwent fMRI while performing a speech production task consisting in the articulation of nonwords of different sequential and motor complexity. Results demonstrate strong age differences in movement time (MT), with longer and more variable MT in older adults. The fMRI results revealed extensive age differences in the relationship between BOLD signal and MT, within and outside the sensorimotor system. Moreover, age differences were also found in relation to sequential complexity within the motor and attentional systems, reflecting both compensatory and de-differentiation mechanisms. At very high complexity level (high motor complexity and high sequence complexity), age differences were found in both MT data and BOLD response, which increased in several sensorimotor and executive control areas. Together, these results suggest that aging of motor and executive control mechanisms may contribute to age differences in speech production. These findings highlight the importance of studying functionally relevant behavior such as speech to understand the mechanisms of human brain aging. Hum Brain Mapp 38:2751-2771, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Pascale Tremblay
- Université Laval, Departement de ReadaptationFaculté de MedecineQuebec CityQuebecCanada
- Centre de Recherche de l'Institut Universitaire en Sante Mentale de QuébecQuebec CityQuebecCanada
| | - Marc Sato
- Laboratoire Parole & LangageUniversité Aix‐Marseille, CNRSAix‐en‐ProvenceFrance
| | - Isabelle Deschamps
- Université Laval, Departement de ReadaptationFaculté de MedecineQuebec CityQuebecCanada
- Centre de Recherche de l'Institut Universitaire en Sante Mentale de QuébecQuebec CityQuebecCanada
| |
Collapse
|
16
|
Reuter EM, Voelcker-Rehage C, Vieluf S, Parianen Lesemann F, Godde B. The P3 Parietal-To-Frontal Shift Relates to Age-Related Slowing in a Selective Attention Task. J PSYCHOPHYSIOL 2017. [DOI: 10.1027/0269-8803/a000167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Abstract. Older adults recruit relatively more frontal as compared to parietal resources in a variety of cognitive and perceptual tasks. It is not yet clear whether this parietal-to-frontal shift is a compensatory mechanism, or simply reflects a reduction in processing efficiency. In this study we aimed to investigate how the parietal-to-frontal shift with aging relates to selective attention. Fourteen young and 26 older healthy adults performed a color Flanker task under three conditions (incongruent, congruent, neutral) and event-related potentials (ERPs) were measured. The P3 was analyzed for the electrode positions Pz, Cz, and Fz as an indicator of the parietal-to-frontal shift. Further, behavioral performance and other ERP components (P1 and N1 at electrodes O1 and O2; N2 at electrodes Fz and Cz) were investigated. First young and older adults were compared. Older adults had longer response times, reduced accuracy, longer P3 latencies, and a more frontal distribution of P3 than young adults. These results confirm the parietal-to-frontal shift in the P3 with age for the selective attention task. Second, based on the differences between frontal and parietal P3 activity the group of older adults was subdivided into those showing a rather equal distribution of the P3 and older participants showing a strong frontal focus of the P3. Older adults with a more frontally distributed P3 had longer response times than participants with a more equally distributed P3. These results suggest that the frontally distributed P3 observed in older adults has no compensatory function in selective attention but rather indicates less efficient processing and slowing with age.
Collapse
Affiliation(s)
- Eva-Maria Reuter
- Jacobs Center on Lifelong Learning and Institutional Development, Jacobs University Bremen, Germany
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, St. Lucia, Brisbane, QLD, Australia
| | - Claudia Voelcker-Rehage
- Jacobs Center on Lifelong Learning and Institutional Development, Jacobs University Bremen, Germany
- Institute of Human Movement Science and Health, Technical University Chemnitz, Germany
| | - Solveig Vieluf
- Jacobs Center on Lifelong Learning and Institutional Development, Jacobs University Bremen, Germany
- CNRS, Institut des Sciences du Mouvement UMR 7287, Aix-Marseille Université, Marseille cedex, France
| | - Franca Parianen Lesemann
- Jacobs Center on Lifelong Learning and Institutional Development, Jacobs University Bremen, Germany
- Department of Social Neuroscience, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Ben Godde
- Jacobs Center on Lifelong Learning and Institutional Development, Jacobs University Bremen, Germany
- Department of Psychology & Methods, Focus Area Diversity, Jacobs University Bremen, Germany
| |
Collapse
|
17
|
Costello MC, Bloesch EK. Are Older Adults Less Embodied? A Review of Age Effects through the Lens of Embodied Cognition. Front Psychol 2017; 8:267. [PMID: 28289397 PMCID: PMC5326803 DOI: 10.3389/fpsyg.2017.00267] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 02/10/2017] [Indexed: 11/13/2022] Open
Abstract
Embodied cognition is a theoretical framework which posits that cognitive function is intimately intertwined with the body and physical actions. Although the field of psychology is increasingly accepting embodied cognition as a viable theory, it has rarely been employed in the gerontological literature. However, embodied cognition would appear to have explanatory power for aging research given that older adults typically manifest concurrent physical and mental changes, and that research has indicated a correlative relationship between such changes. The current paper reviews age-related changes in sensory processing, mental representation, and the action-perception relationship, exploring how each can be understood through the lens of embodied cognition. Compared to younger adults, older adults exhibit across all three domains an increased tendency to favor visual processing over bodily factors, leading to the conclusion that older adults are less embodied than young adults. We explore the significance of this finding in light of existing theoretical models of aging and argue that embodied cognition can benefit gerontological research by identifying further factors that can explain the cause of age-related declines.
Collapse
Affiliation(s)
| | - Emily K Bloesch
- Department of Psychology, Central Michigan University, Mount Pleasant MI, USA
| |
Collapse
|
18
|
Behrendt F, de Lussanet MHE, Zentgraf K, Zschorlich VR. Motor-Evoked Potentials in the Lower Back Are Modulated by Visual Perception of Lifted Weight. PLoS One 2016; 11:e0157811. [PMID: 27336751 PMCID: PMC4919087 DOI: 10.1371/journal.pone.0157811] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/06/2016] [Indexed: 12/04/2022] Open
Abstract
Facilitation of the primary motor cortex (M1) during the mere observation of an action is highly congruent with the observed action itself. This congruency comprises several features of the executed action such as somatotopy and temporal coding. Studies using reach-grasp-lift paradigms showed that the muscle-specific facilitation of the observer’s motor system reflects the degree of grip force exerted in an observed hand action. The weight judgment of a lifted object during action observation is an easy task which is the case for hand actions as well as for lifting boxes from the ground. Here we investigated whether the cortical representation in M1 for lumbar back muscles is modulated due to the observation of a whole-body lifting movement as it was shown for hand action. We used transcranial magnetic stimulation (TMS) to measure the corticospinal excitability of the m. erector spinae (ES) while subjects visually observed the recorded sequences of a person lifting boxes of different weights from the floor. Consistent with the results regarding hand action the present study reveals a differential modulation of corticospinal excitability despite the relatively small M1 representation of the back also for lifting actions that mainly involve the lower back musculature.
Collapse
Affiliation(s)
- Frank Behrendt
- University Children’s Hospital Basle, Basle, Switzerland
- Research Department, Reha Rheinfelden, Rheinfelden, Switzerland
- * E-mail: (FB); (KZ)
| | | | - Karen Zentgraf
- Institute of Sport and Exercise Sciences, University of Münster, Münster, Germany
- * E-mail: (FB); (KZ)
| | - Volker R. Zschorlich
- Institute of Sport Science, Department of Kinesiology, University of Rostock, Rostock, Germany
| |
Collapse
|