1
|
Wang J, Wang Z, Li Y, Hou Y, Yin C, Yang E, Liao Z, Fan C, Martin LL, Sun D. Blood brain barrier-targeted delivery of double selenium nanospheres ameliorates neural ferroptosis in Alzheimer's disease. Biomaterials 2023; 302:122359. [PMID: 39491374 DOI: 10.1016/j.biomaterials.2023.122359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 09/28/2023] [Accepted: 10/17/2023] [Indexed: 11/05/2024]
Abstract
Alzheimer's disease (AD) as a common neurodegenerative disease showed progressive cognitive dysfunction and behavioral impairment. Currently, the deposition of amyloid β-protein (Aβ) remains the main pathomechanism. However, preventing neuronal death induced by Aβ remains elusive, and no effective strategy in clinic was found to combat AD. Herein, a multifunctional double selenium nanosphere (CLNDSe) was designed and prepared, and A2AAR agonist (CGS) modification endowed CLNDSe NPs with A2AAR-targeted blood brain barrier (BBB) delivery in vitro and in vivo. CLNDSe NPs after modification of LPFFD short peptide effectively inhibited Aβ42 aggregation and attenuated Aβ42-induced neural toxicity by inhibiting oxidative damage and mitochondrial dysfunctions. Nerve growth factor (NGF) linked to large Se sphere significantly attenuated Tau phosphorylation and gliocytes activation in APP/PS1 mice. CLNDSe NPs administration in vivo also effectively restored GPX1/4 antioxidant ability, alleviated neural loss and neurofibrillary tangles, prevented neural ferroptosis, and eventually ameliorated cognitive deficits of APP/PS1 mice. Importantly, CLNDSe NPs showed good safety and biocompatibility. Taken together, our finding validated the rational design that BBB-targeted delivery of double selenium nanosphere may be a novel strategy to ameliorate Alzheimer's disease by inhibiting neural ferroptosis.
Collapse
Affiliation(s)
- Jingyuan Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Zekun Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Yuqing Li
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Yajun Hou
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Chenyang Yin
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Endong Yang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Ziyu Liao
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Cundong Fan
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China.
| | - Lisandra L Martin
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia.
| | - Dongdong Sun
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China.
| |
Collapse
|
2
|
Uberti AF, Callai-Silva N, Grahl MVC, Piovesan AR, Nachtigall EG, Furini CRG, Carlini CR. Helicobacter pylori Urease: Potential Contributions to Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms23063091. [PMID: 35328512 PMCID: PMC8949269 DOI: 10.3390/ijms23063091] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/24/2022] Open
Abstract
Alzheimer’s disease (AD) causes dementia and memory loss in the elderly. Deposits of beta-amyloid peptide and hyperphosphorylated tau protein are present in a brain with AD. A filtrate of Helicobacter pylori’s culture was previously found to induce hyperphosphorylation of tau in vivo, suggesting that bacterial exotoxins could permeate the blood–brain barrier and directly induce tau’s phosphorylation. H. pylori, which infects ~60% of the world population and causes gastritis and gastric cancer, produces a pro-inflammatory urease (HPU). Here, the neurotoxic potential of HPU was investigated in cultured cells and in rats. SH-SY5Y neuroblastoma cells exposed to HPU (50–300 nM) produced reactive oxygen species (ROS) and had an increased [Ca2+]i. HPU-treated BV-2 microglial cells produced ROS, cytokines IL-1β and TNF-α, and showed reduced viability. Rats received daily i.p., HPU (5 µg) for 7 days. Hyperphosphorylation of tau at Ser199, Thr205 and Ser396 sites, with no alterations in total tau or GSK-3β levels, and overexpression of Iba1, a marker of microglial activation, were seen in hippocampal homogenates. HPU was not detected in the brain homogenates. Behavioral tests were performed to assess cognitive impairments. Our findings support previous data suggesting an association between infection by H. pylori and tauopathies such as AD, possibly mediated by its urease.
Collapse
Affiliation(s)
- Augusto F. Uberti
- Laboratory of Neurotoxins, Brain Institute of Rio Grande do Sul (BRAINS) and Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre CEP 90610-000, RS, Brazil; (A.F.U.); (N.C.-S.); (M.V.C.G.)
| | - Natalia Callai-Silva
- Laboratory of Neurotoxins, Brain Institute of Rio Grande do Sul (BRAINS) and Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre CEP 90610-000, RS, Brazil; (A.F.U.); (N.C.-S.); (M.V.C.G.)
| | - Matheus V. C. Grahl
- Laboratory of Neurotoxins, Brain Institute of Rio Grande do Sul (BRAINS) and Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre CEP 90610-000, RS, Brazil; (A.F.U.); (N.C.-S.); (M.V.C.G.)
| | - Angela R. Piovesan
- Center of Biotechnology, Graduate Program in Cellular and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre CEP 91501-970, RS, Brazil;
| | - Eduarda G. Nachtigall
- Laboratory of Cognition and Memory Neurobiology, Brain Institute of Rio Grande do Sul (BRAINS) and Graduate Program in Biomedical Gerontology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre CEP 90610-000, RS, Brazil; (E.G.N.); (C.R.G.F.)
| | - Cristiane R. G. Furini
- Laboratory of Cognition and Memory Neurobiology, Brain Institute of Rio Grande do Sul (BRAINS) and Graduate Program in Biomedical Gerontology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre CEP 90610-000, RS, Brazil; (E.G.N.); (C.R.G.F.)
| | - Celia Regina Carlini
- Laboratory of Neurotoxins, Brain Institute of Rio Grande do Sul (BRAINS) and Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre CEP 90610-000, RS, Brazil; (A.F.U.); (N.C.-S.); (M.V.C.G.)
- Correspondence: ; Tel.: +55-51-3320-5986
| |
Collapse
|
3
|
Pérez-Mejías G, Velázquez-Cruz A, Guerra-Castellano A, Baños-Jaime B, Díaz-Quintana A, González-Arzola K, Ángel De la Rosa M, Díaz-Moreno I. Exploring protein phosphorylation by combining computational approaches and biochemical methods. Comput Struct Biotechnol J 2020; 18:1852-1863. [PMID: 32728408 PMCID: PMC7369424 DOI: 10.1016/j.csbj.2020.06.043] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022] Open
Abstract
Post-translational modifications of proteins expand their functional diversity, regulating the response of cells to a variety of stimuli. Among these modifications, phosphorylation is the most ubiquitous and plays a prominent role in cell signaling. The addition of a phosphate often affects the function of a protein by altering its structure and dynamics. However, these alterations are often difficult to study and the functional and structural implications remain unresolved. New approaches are emerging to overcome common obstacles related to the production and manipulation of these samples. Here, we summarize the available methods for phosphoprotein purification and phosphomimetic engineering, highlighting the advantages and disadvantages of each. We propose a general workflow for protein phosphorylation analysis combining computational and biochemical approaches, building on recent advances that enable user-friendly and easy-to-access Molecular Dynamics simulations. We hope this innovative workflow will inform the best experimental approach to explore such post-translational modifications. We have applied this workflow to two different human protein models: the hemeprotein cytochrome c and the RNA binding protein HuR. Our results illustrate the usefulness of Molecular Dynamics as a decision-making tool to design the most appropriate phosphomimetic variant.
Collapse
Affiliation(s)
- Gonzalo Pérez-Mejías
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda., Américo Vespucio 49, Sevilla 41092, Spain
| | - Alejandro Velázquez-Cruz
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda., Américo Vespucio 49, Sevilla 41092, Spain
| | - Alejandra Guerra-Castellano
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda., Américo Vespucio 49, Sevilla 41092, Spain
| | - Blanca Baños-Jaime
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda., Américo Vespucio 49, Sevilla 41092, Spain
| | - Antonio Díaz-Quintana
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda., Américo Vespucio 49, Sevilla 41092, Spain
| | - Katiuska González-Arzola
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda., Américo Vespucio 49, Sevilla 41092, Spain
| | - Miguel Ángel De la Rosa
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda., Américo Vespucio 49, Sevilla 41092, Spain
| | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda., Américo Vespucio 49, Sevilla 41092, Spain
| |
Collapse
|
4
|
Foidl BM, Humpel C. Differential Hyperphosphorylation of Tau-S199, -T231 and -S396 in Organotypic Brain Slices of Alzheimer Mice. A Model to Study Early Tau Hyperphosphorylation Using Okadaic Acid. Front Aging Neurosci 2018; 10:113. [PMID: 29725295 PMCID: PMC5917035 DOI: 10.3389/fnagi.2018.00113] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 04/03/2018] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder of the brain, characterized by extracellular aggregation of beta-amyloid (Aβ) and hyperphosphorylation of tau causing intraneuronal neurofibrillary tangles (NFTs). There is urgent need to study the interactions between Aβ and tau, especially to solve the question of the pathological cascade. In the present study, we aim to develop a model of organotypic brain slices in which both plaque and tau pathology can be examined. Organotypic brain slices (150 μm thick, coronal, at the hippocampal level) from adult (9 month) wildtype (WT, C57BL/6N) and transgenic AD mice (TG, APP_SweDI) were cultured for 2 weeks. To induce tau hyperphosphorylation 100 nM okadaic acid (OA), 10 μM wortmannin (WM) or both were added to the slices. Hyperphosphorylation of tau was tested at tau-S199, tau-T231 and tau-S396 using Western blot. Our data show that in TG mice with plaques a 50 kDa fragment of tau-S396 was hyperphosphorylated and that OA induced hyperphosphorylation of tau-S199. In WT mice (without plaques) OA caused hyperphosphorylation of a 50 kDa and a 38 kDa tau-T231 form and a 25 kDa sdftau-S396 fragment. The N-methyl-D-aspartate (NMDA) antagonist MK801 (1 μM) did not block these effects. Immunohistochemistry showed diffuse increased tau-S396 and tau-T231-like immunoreactivities at the hippocampal level but no formation of NFTs. Confocal microscopy indicated, that pTau-T231 was preferentially located in cytoplasma surrounding nuclei whereas pTau-S396 was found mainly in nerve fibers and strongly associated with plaques. In conclusion we provide a novel in vitro model to study both plaque and tau hyperphosphorylation but not NFTs, which could be useful to study pathological processes in AD and to screen for drugs.
Collapse
Affiliation(s)
- Bettina M Foidl
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
5
|
Klaver AC, Coffey MP, Bennett DA, Loeffler DA. Specific serum antibody binding to phosphorylated and non-phosphorylated tau in non-cognitively impaired, mildly cognitively impaired, and Alzheimer's disease subjects: an exploratory study. Transl Neurodegener 2017; 6:32. [PMID: 29204273 PMCID: PMC5701435 DOI: 10.1186/s40035-017-0100-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/30/2017] [Indexed: 11/28/2022] Open
Abstract
Background Tau vaccination and administration of anti-tau antibodies can prevent pathology and cognitive impairment in transgenic mouse models of tauopathy, suggesting that therapies which increase anti-tau antibodies might slow the development and/or progression of Alzheimer’s disease (AD). The extent to which individuals with no cognitive impairment (NCI) possess serum anti-tau antibodies, and whether their concentrations of these antibodies differ from anti-tau antibody levels in persons with mild cognitive impairment (MCI) or AD, are unclear. Previous studies measuring these antibodies did not account for antibody polyvalent binding, which can be extensive, nor that antibody binding to phosphorylated tau peptides could be due to binding to non-phosphorylated epitopes on those peptides. Methods An ELISA controlling for these factors was used to measure the specific binding of serum IgG and IgM to phosphorylated (“pTau;” phosphorylated at Serine-199 and Serine-202) and non-phosphorylated (“non-pTau”) tau 196-207 in subjects with NCI, MCI, or AD (n = 10/group). Between-group differences in these antibody levels were evaluated for statistical significance, and correlations were examined in pooled data from all subjects between these antibody levels and subject age, global cognitive functioning, and NFT counts. Results Specific IgG binding to pTau and non-pTau was detected in all subjects except for one NCI control. Specific IgM binding was detected to pTau in all subjects except for two AD patients, and to non-pTau in all subjects. Mean pTau IgG was increased in MCI subjects by 53% and 70% vs. AD and NCI subjects respectively (both p < 0.05), while no significant differences were found between groups for non-pTau IgG (p = 0.052), pTau IgM, or non-pTau IgM. Non-pTau IgG was negatively associated with global cognition (Spearman rho = −0.50). Conclusions Specific binding of serum IgG and IgM to phosphorylated and non-phosphorylated tau may be present in older persons regardless of their cognitive status. Serum IgG to phosphorylated tau may be increased in individuals with MCI, but this unexpected finding requires confirmation. The approach used in this study to measure specific serum antibodies to phosphorylated tau should be useful for measuring antibodies to other post-translationally-modified proteins that are of relevance to neurodegenerative disorders.
Collapse
Affiliation(s)
- Andrea C Klaver
- Department of Neurology, Beaumont Research Institute, Beaumont Health, Royal Oak, MI USA
| | - Mary P Coffey
- Department of Biostatistics, Beaumont Research Institute, Beaumont Health, Royal Oak, MI USA
| | | | - David A Loeffler
- Department of Neurology, Beaumont Research Institute, Beaumont Health, Royal Oak, MI USA
| |
Collapse
|
6
|
Esteves-Villanueva JO, Martic-Milne S. Electrochemical detection of anti-tau antibodies binding to tau protein and inhibition of GSK-3β-catalyzed phosphorylation. Anal Biochem 2016; 496:55-62. [DOI: 10.1016/j.ab.2015.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/18/2015] [Accepted: 12/02/2015] [Indexed: 01/22/2023]
|
7
|
Loeffler DA, Klaver AC, Coffey MP. ELISA measurement of specific antibodies to phosphorylated tau in intravenous immunoglobulin products. Int Immunopharmacol 2015; 28:1108-12. [PMID: 26330100 DOI: 10.1016/j.intimp.2015.08.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/17/2015] [Indexed: 11/27/2022]
Abstract
The therapeutic effects of intravenous immunoglobulin (IVIG) products were recently studied in Alzheimer's disease (AD) patients. Pilot studies produced encouraging results but phase II and III trials gave disappointing results; a further study is in progress. IVIG products contain antibodies to tau protein, the main component of neurofibrillary tangles (NFTs). The tau used to detect IVIG's anti-tau antibodies in previous studies was non-phosphorylated recombinant human tau-441, but NFT-associated tau is extensively phosphorylated. The objective of this study was to determine if various IVIG products contain specific antibodies to phosphorylated tau (anti-pTau antibodies). ELISAs were used to evaluate binding of six IVIG products to a 12 amino acid peptide, tau 196-207, which was phosphorylated ("pTau peptide") or non-phosphorylated ("non-pTau peptide") at Serine-199 and Serine-202. Both amino acid residues are phosphorylated in AD NFTs. Each IVIG's "anti-pTau antibody ratio" was calculated by dividing its binding to the pTau peptide by its binding to the non-pTau peptide. Seven experiments were performed and data were pooled, with each experiment contributing one data point from each IVIG product. Mean anti-pTau antibody ratios greater than 1.0, suggesting specific antibodies to phosphorylated tau, were found for three IVIG products. Because administration of antibodies to phosphorylated tau has been found to reduce tau-associated pathology in transgenic mouse models of tauopathy, increasing the levels of anti-pTau antibodies, together with other selected antibodies such as anti-Aβ, in IVIG might increase its ability to slow AD's progression.
Collapse
Affiliation(s)
- David A Loeffler
- Department of Neurology, Beaumont Research Institute, Beaumont Health System, 3811 West Thirteen Mile Road, Royal Oak, MI 48073, USA.
| | - Andrea C Klaver
- Department of Neurology, Beaumont Research Institute, Beaumont Health System, 3811 West Thirteen Mile Road, Royal Oak, MI 48073, USA
| | - Mary P Coffey
- Department of Biostatistics, Beaumont Research Institute, Beaumont Health System, 3811 West Thirteen Mile Road, Royal Oak, MI 48073, USA
| |
Collapse
|