1
|
Qiu B, Wang Z, Yin M, Feng J, Diao P, Del Coso J, Taiar R. Effects of whole-body vibration training on muscle performance in healthy women: A systematic review and meta-analysis of randomized controlled trials. PLoS One 2025; 20:e0322010. [PMID: 40445930 PMCID: PMC12124539 DOI: 10.1371/journal.pone.0322010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 03/16/2025] [Indexed: 06/02/2025] Open
Abstract
OBJECTIVE This study aimed to perform a comprehensive meta-analysis of randomized controlled trials examining the effectiveness of whole-body vibration training (WBVT) on muscle performance in healthy women. METHODS A systematic search of studies available up to 30 May 2024 was conducted using seven databases, including PubMed, EMBASE, Web of Science, Scopus, CINAHL, PEDro, and the Cochrane Library. Studies with a randomized and controlled protocol in which the effect of WBVT on muscle performance variables was compared to that of a) a non-exercise intervention or b) exercise intervention in healthy women were assessed for eligibility. The methodological quality of the included studies was assessed using the PEDro scale. Meta-analyses were performed using random effects models, and the results were expressed as standardized mean differences (SMDs) with corresponding 95% confidence intervals (95% CIs). RESULTS A total of 21 randomized controlled trials, encompassing 748 healthy women, was included in the meta-analysis. WBVT demonstrated significantly greater effects on muscle strength and power when compared with the non-exercise control groups with regard to knee extension (SMD = 0.534, 95% CI: 0.303 to 0.766, p < 0.001), leg press (SMD = 0.794, 95% CI = 0.424 to 1.163, p < 0.001), ankle plantar flexion (SMD = 0.462, 95% CI: 0.019 to 0.904, p = 0.041), and the countermovement jump performance (SMD = 0.470, 95% CI: 0.211 to 0.729, p < 0.001). However, WBVT significantly improved only the countermovement jump performance (SMD = 0.338, 95% CI: 0.037 to 0.640, p = 0.028) when compared with the exercise control groups. Subgroup analyses revealed that longer periods (≥ 12 weeks) of WBVT resulted in greater benefits for both muscle strength and power compared to the non-exercise control group. Additionally, higher frequencies (> 30 Hz, SMD = 0.736, p < 0.001; ≤ 30 Hz, SMD = 0.284, p = 0.109) provided greater benefits for improving muscle strength. Last, post-menopausal women (post-menopausal, SMD = 0.561, p = 0.001; pre-menopausal, SMD = 0.354, p = 0.076) obtained greater benefits in muscle power with WBVT than pre-menopausal women. CONCLUSIONS WBVT is efficacious in improving lower-body muscle strength and power in healthy women. However, the potential benefits of WBVT compared to other exercise interventions were only associated with an enhancement in countermovement jump performance. Longer periods (≥ 12 weeks) of WBVT resulted in greater benefits for both muscle strength and power compared to the non-exercise control group. Additionally, higher vibration frequencies (> 30 Hz) provided greater improvements in muscle strength, while post-menopausal women reaped greater benefits in muscle power than pre-menopausal women.
Collapse
Affiliation(s)
- Bopeng Qiu
- School of Strength and Conditioning, Beijing Sport University, Beijing, China
| | - Ziyu Wang
- College of Swimming, Beijing Sport University, Beijing, China
| | - Mingyue Yin
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Jinghan Feng
- Sports Business School, Beijing Sport University, Beijing, China
| | - Penglin Diao
- College of Swimming, Beijing Sport University, Beijing, China
| | - Juan Del Coso
- Sport Sciences Research Centre, Rey Juan Carlos University, Fuenlabrada, Spain
| | - Redha Taiar
- MATériaux et Ingénierie Mécanique (MATIM), Université de Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
2
|
Ko DK, Lee H, Lee H, Kang N. Bilateral ankle dorsiflexion force control impairments in older adults. PLoS One 2025; 20:e0319578. [PMID: 40112015 PMCID: PMC11925285 DOI: 10.1371/journal.pone.0319578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/04/2025] [Indexed: 03/22/2025] Open
Abstract
Age-related impairments in ankle dorsiflexion force modulation are associated with gait and balance control deficits and greater fall risk in older adults. This study aimed to investigate age-related changes in bilateral ankle dorsiflexion force control capabilities compared with those for younger adults. The study enrolled 25 older and 25 younger adults. They performed bilateral ankle dorsiflexion force control at 10% and 40% of maximum voluntary contraction (MVC), for vision and no-vision conditions, respectively. Bilateral force control performances were evaluated by calculating force accuracy, variability, and complexity. To estimate bilateral force coordination between feet, vector coding and uncontrolled manifold variables were quantified. Additional correlation analyses were performed to determine potential relationships between age and force control variables in older adults. Older adults demonstrated significantly lower force accuracy with greater overshooting at 10% of MVC than those for younger adults. At 10% and 40% of MVC, older adults significantly showed more variable and less complex force outputs, and these patterns appeared in both vision and no-vision conditions. Moreover, older adults revealed significantly less anti-phase force coordination patterns and lower bilateral motor synergies with increased bad variability than younger adults. The correlation analyses found that lower complexity of bilateral forces was significantly related to increased age. These findings suggest that aging may impair sensorimotor control capabilities in the lower extremities. Considering the importance of ankle dorsiflexion for executing many activities of daily living, future studies may focus on developing training programs for advancing bilateral ankle dorsiflexion force control capabilities.
Collapse
Affiliation(s)
- Do-Kyung Ko
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
| | - Hanall Lee
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
| | - Hajun Lee
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
| | - Nyeonju Kang
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
- Division of Sport Science, Sport Science Institute and Health Promotion Center, Incheon National University, Incheon, South Korea
| |
Collapse
|
3
|
Shim GY, Jang HC, Kim KW, Lim JY. Impact of Sarcopenia on Falls, Mobility Limitation, and Mortality Using the Diagnostic Criteria Proposed in the Korean Working Group on Sarcopenia Guideline. Ann Geriatr Med Res 2025; 29:38-44. [PMID: 39327100 PMCID: PMC12010740 DOI: 10.4235/agmr.24.0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND The recent published Korean Working Group on Sarcopenia (KWGS) guideline includes the concept of functional sarcopenia. The study investigated the prevalence of sarcopenia and its association with health-related adverse outcomes defined by the KWGS in community-dwelling older adults. METHODS Data were sourced from the Korean Longitudinal Study on Health and Aging, focusing on Koreans 65 aged and above. The definitions of sarcopenia and functional sarcopenia followed the KWGS. The risks of falls, mobility limitation, and death were analyzed using logistic regression and Cox proportional hazard. RESULTS Of the 594 participants, 145 (24.4%) were classified as having functional sarcopenia and 129 (12.0%) with sarcopenia. Both showed an increased prevalence with age. Functional sarcopenia had higher risks of mobility limitation (odds ratio [OR]=3.461; 95% confidence interval [CI], 1.956-6.121) and mortality (hazard ratio [HR]=1.775; 95% CI, 1.229-2.564). Sarcopenia was associated with falls (OR=7.376; 95% CI, 1.500-36.272), mobility limitation (OR=2.057; 95% CI, 1.172-3.611) and mortality (HR=1.512; 95% CI, 1.054-2.169). CONCLUSION Functional sarcopenia is a prevalent condition that is associated with mobility limitation and mortality in community-dwelling older adults. This highlights the clinical relevance of functional sarcopenia and supports its inclusion in sarcopenia diagnosis.
Collapse
Affiliation(s)
- Ga Yang Shim
- Department of Physical and Rehabilitation Medicine, Kyung Hee Univsersity Hospital, Seoul, Korea
| | - Hak Chul Jang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Ki-Woong Kim
- Department of Psychiatry, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jae-Young Lim
- Department of Rehabilitation Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
4
|
Brisendine MH, Nichenko AS, Bandara AB, Willoughby OS, Amiri N, Weingrad Z, Specht KS, Bond JM, Addington A, Jones RG, Murach KA, Poelzing S, Craige SM, Grange RW, Drake JC. Neuromuscular Dysfunction Precedes Cognitive Impairment in a Mouse Model of Alzheimer's Disease. FUNCTION 2023; 5:zqad066. [PMID: 38111538 PMCID: PMC10727840 DOI: 10.1093/function/zqad066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/17/2023] [Accepted: 11/26/2023] [Indexed: 12/20/2023] Open
Abstract
Alzheimer's disease (AD) develops along a continuum that spans years prior to diagnosis. Decreased muscle function and mitochondrial respiration occur years earlier in those that develop AD; however, it is unknown what causes these peripheral phenotypes in a disease of the brain. Exercise promotes muscle, mitochondria, and cognitive health and is proposed to be a potential therapeutic for AD, but no study has investigated how skeletal muscle adapts to exercise training in an AD-like context. Utilizing 5xFAD mice, an AD model that develops ad-like pathology and cognitive impairments around 6 mo of age, we examined in vivo neuromuscular function and exercise adapations (mitochondrial respiration and RNA sequencing) before the manifestation of overt cognitive impairment. We found 5xFAD mice develop neuromuscular dysfunction beginning as early as 4 mo of age, characterized by impaired nerve-stimulated muscle torque production and compound nerve action potential of the sciatic nerve. Furthermore, skeletal muscle in 5xFAD mice had altered, sex-dependent, adaptive responses (mitochondrial respiration and gene expression) to exercise training in the absence of overt cognitive impairment. Changes in peripheral systems, specifically neural communication to skeletal muscle, may be harbingers for AD and have implications for lifestyle interventions, like exercise, in AD.
Collapse
Affiliation(s)
- Matthew H Brisendine
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24061, USA
| | - Anna S Nichenko
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24061, USA
| | - Aloka B Bandara
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24061, USA
| | - Orion S Willoughby
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24061, USA
| | - Niloufar Amiri
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24061, USA
| | - Zach Weingrad
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Kalyn S Specht
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jacob M Bond
- Translational Biology, Medicine, and Health Program, Virginia Tech, Roanoke, VA 24016, USA
| | - Adele Addington
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24061, USA
| | - Ronald G Jones
- Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR 72701, USA
| | - Kevin A Murach
- Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR 72701, USA
| | - Steven Poelzing
- Translational Biology, Medicine, and Health Program, Virginia Tech, Roanoke, VA 24016, USA
| | - Siobhan M Craige
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24061, USA
- Translational Biology, Medicine, and Health Program, Virginia Tech, Roanoke, VA 24016, USA
| | - Robert W Grange
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24061, USA
| | - Joshua C Drake
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24061, USA
- Translational Biology, Medicine, and Health Program, Virginia Tech, Roanoke, VA 24016, USA
| |
Collapse
|
5
|
The Effects of High-Speed Resistance Training on Health Outcomes in Independent Older Adults: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095390. [PMID: 35564788 PMCID: PMC9099943 DOI: 10.3390/ijerph19095390] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/14/2022]
Abstract
Human ageing involves several physiological impairments—in particular, a decrease in sensorimotor function and changes in the nervous system reduce muscle strength, power, balance, and functional capacity performance. Preventive strategies are essential to ensure the quality of life of the elderly. High-speed resistance training (HSRT) may be an effective approach to muscle power development in this population, with significant short-term effects on neural adaptations and muscle power production. Therefore, the present study intends to analyze and systematize the studies focused on HSRT interventions and their effects on health outcomes in independent older adults. Four electronic databases (PubMed, Web of Science, EBSCO, and Scielo) were used for the purposes of searching randomized controlled trials that measured at least one key outcome measure focusing on velocity-based training and health outcomes in older adults on 7 March 2022 and identified 1950 studies. At the end of the process, fourteen studies were included in this systematic review and ten studies were included in the quantitative analysis. The main results showed that HSRT interventions would improve health measures, mostly cognitive function (large effects, p = 0.001, SMD = 0.94), neuromuscular function (moderate effects, p = 0.003, SMD = 0.70), and physical function (moderate effects, p = 0.04, SMD = 0.55 and p = 0.009, SMD = −0.59). Additionally, the results suggested that interventions with ten weeks or more, performed three times a week, provide significant improvements in neuromuscular function. In this sense, HSRT is effective for improving overall health outcomes in older adults. Future studies should include proper follow-ups (e.g., minimum six months) to assess the durability of HSRT intervention effects on all health-related variables.
Collapse
|
6
|
Orssatto LBR, Borg DN, Pendrith L, Blazevich AJ, Shield AJ, Trajano GS. DO MOTONEURON DISCHARGE RATES SLOW WITH AGING? A SYSTEMATIC REVIEW AND META-ANALYSIS. Mech Ageing Dev 2022; 203:111647. [PMID: 35218849 DOI: 10.1016/j.mad.2022.111647] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/03/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
Abstract
Nervous system maladaptation is linked to the loss of maximal strength and motor control with aging. Motor unit discharge rates are a critical determinant of force production; thus, lower discharge rates could be a mechanism underpinning maximal strength and motor control losses during aging. This meta-analysis summarized the findings of studies comparing motor unit discharge rates between young and older adults, and examined the effects of the selected muscle and contraction intensity on the magnitude of discharge rates difference between these two groups. Estimates from 29 studies, across a range of muscles and contraction intensities, were combined in a multilevel meta-analysis, to investigate whether discharge rates differed between young and older adults. Motor unit discharge rates were higher in younger than older adults, with a pooled standardized mean difference (SMD) of 0.66 (95%CI= 0.29-1.04). Contraction intensity had a significant effect on the pooled SMD, with a 1% increase in intensity associated with a 0.009 (95%CI= 0.003-0.015) change in the pooled SMD. These findings suggest that reductions in motor unit discharge rates, especially at higher contraction intensities, may be an important mechanism underpinning age-related losses in maximal force production.
Collapse
Affiliation(s)
- Lucas B R Orssatto
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia.
| | - David N Borg
- Griffith University, Menzies Health Institute Queensland, The Hopkins Centre, Brisbane, Australia
| | - Linda Pendrith
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia
| | - Anthony J Blazevich
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Anthony J Shield
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia
| |
Collapse
|
7
|
Diekmann R, Hellmers S, Lau S, Heinks A, Elgert L, Bauer JM, Zieschang T, Hein A. Are vertical jumps able to predict 24-month follow-up functional geriatric assessment in a healthy community-dwelling older cohort? Aging Clin Exp Res 2022; 34:2769-2778. [PMID: 36053442 PMCID: PMC9675680 DOI: 10.1007/s40520-022-02230-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/11/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND When older adults fall below the thresholds of functional geriatric assessment (FGA), they may already be at risk of mobility impairment. A reduction in (jumping) power could be an indication of functional decline, one of the main risk factors for falls. OBJECTIVE This paper explores whether six-month delta (∆) values of muscle power can predict 24-month follow-up FGA in older adults. METHODS This observational study of independent, healthy, high-performing community-dwelling adults aged 70 + years involved FGA (mobility, balance, and endurance tests) at baseline (t0), after 6 months (t1), and after 24 months (t2); maximum jumping power (max JP) was determined at t0 and t1. A predictive linear model was developed in which the percentage change of Δmax JP0,1 was transferred to all FGA (t0) values. The results were compared with measured FGA values at t2 via sensitivity and specificity in terms of the clinically meaningful change (CMC) or the minimal detectable change (MDC). RESULTS In 176 individuals (60% female, mean age 75.3 years) the mean percentage (SD) between predicted and measured FGA ranged between 0.4 (51.3) and 18.11 (51.9). Sensitivity to identify the CMC or MDC of predicted FGA tests at t2 ranged between 17.6% (Timed up and go) and 75.0% (5-times-chair-rise) in a test-to-test comparison and increased to 97.6% considering clinically conspicuousness on global FGA. CONCLUSION The potential of jumping power to predict single tests of FGA was low regarding sensitivity and specificity of CMC (or MDC). 6 months Δmax JP seem to be suitable for predicting physical function, if the measured and predicted tests were not compared at the test level, but globally, in the target group in the long term.
Collapse
Affiliation(s)
- Rebecca Diekmann
- Assistance Systems and Medical Device Technology, Department of Health Services Research, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Ammerlaender Heerstr. 140, 26129, Oldenburg, Germany.
| | - Sandra Hellmers
- Assistance Systems and Medical Device Technology, Department of Health Services Research, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Ammerlaender Heerstr. 140, 26129, Oldenburg, Germany
| | - Sandra Lau
- Geriatric Medicine, Agaplesion Bethanien Krankenhaus Heidelberg, Ruprecht-Karls-University, Heidelberg, Germany
| | - Andrea Heinks
- Assistance Systems and Medical Device Technology, Department of Health Services Research, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Ammerlaender Heerstr. 140, 26129, Oldenburg, Germany
- Geriatric Medicine, Agaplesion Bethanien Krankenhaus Heidelberg, Ruprecht-Karls-University, Heidelberg, Germany
| | - Lena Elgert
- Assistance Systems and Medical Device Technology, Department of Health Services Research, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Ammerlaender Heerstr. 140, 26129, Oldenburg, Germany
- Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig, Hannover Medical School (MHH), Hannover, Germany
| | - Juergen M Bauer
- Geriatric Medicine, Agaplesion Bethanien Krankenhaus Heidelberg, Ruprecht-Karls-University, Heidelberg, Germany
| | - Tania Zieschang
- Geriatric Medicine, Department of Health Services Research, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Andreas Hein
- Assistance Systems and Medical Device Technology, Department of Health Services Research, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Ammerlaender Heerstr. 140, 26129, Oldenburg, Germany
| |
Collapse
|
8
|
Tsang P, Larocerie-Salgado J, MacDermid JC, Miller TA, Doherty C, Ross DC. Postoperative management and rehabilitation after the supercharged end-to-side anterior interosseous nerve to ulnar motor nerve transfer: A report of 3 cases. J Hand Ther 2021; 34:469-478. [PMID: 32571598 DOI: 10.1016/j.jht.2020.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/23/2020] [Accepted: 03/28/2020] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Compressive ulnar neuropathy at the elbow is the second most common compressive neuropathy. Nerve transfers are used for severe ulnar neuropathies as a means of facilitating recovery. Hand therapy and rehabilitation after nerve transfers have not been extensively explored. PURPOSE OF THE STUDY The aim of this repeated case study was to describe the responses, functional outcome, and neuromuscular health of three participants after the supercharged end-to-side (SETS) anterior interosseous nerve (AIN) to ulnar motor nerve transfer do describe the hand therapy and recovery of 3 cases reflecting different recovery potential mediators, trajectories, and outcomes. STUDY DESIGN Repeated case study. METHODS Three participants of similar age (76-80 years) that had severe ulnar neuropathy who underwent surgical treatment including a SETS AIN to ulnar motor nerve surgery were purposively selected from an ongoing clinical trial, based on their response to the surgical and the rehabilitation intervention (large, moderate, and small improvements). Clinical evaluations included measuring range of motion, strength testing, and clinical tests (ie, Egawa's sign) and, subjective assessment of rehabilitation adherence., Quick Disability of Arm, Shoulder and Hand and decomposition-based quantitative electromyography were performed at >23 months to evaluate patients. RESULTS All the three participants completed the surgical and hand therapy interventions, demonstrating a variable course of recovery and functional outcomes. The Quick Disability of Arm, Shoulder and Hand scores (>23 months) for participants A, B, and C were 68, 30, and 18, respectively. The person with the least improvement had idiopathic Parkinson's disease, dyslipidemia, history of depression, and gout. Comparison across cases suggested that the comorbidities, longer time from neuropathy to the surgical intervention, and psychosocial barriers to exercise and rehabilitation adherence influenced the recovery process. The participants with the best outcomes demonstrated improvements in his lower motor neurons or motor unit counts (109 and 18 motor units in the abductor digiti minimi (ADM) and first dorsal interosseous, respectively) and motor unit stability (39.5% and 37.6% near-fiber jiggle in the ADM and first dorsal interosseous, respectively). The participant with moderate response to the interventions had a motor unit count of 93 for the ADM muscle. We were unable to determine motor unit counts and measurements from the participant with the poorest outcomes due to his physical limitations. CONCLUSIONS SETS AIN to ulnar motor nerve followed by multimodal hand therapy provides measurable improvements in neurophysiology and function, although engagement in hand therapy and outcomes appear to be mediated by comorbid physical and psychosocial health.
Collapse
Affiliation(s)
- Philemon Tsang
- Department of Health and Rehabilitation Sciences, Western University, London, Ontario, Canada; Hand and Upper Limb Centre Clinical Research Lab, St. Joseph's Health Centre, London, Ontario, Canada.
| | | | - Joy C MacDermid
- Department of Health and Rehabilitation Sciences, Western University, London, Ontario, Canada; Hand and Upper Limb Centre Clinical Research Lab, St. Joseph's Health Centre, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| | - Thomas A Miller
- Department of Physical Medicine and Rehabilitation, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Christopher Doherty
- Division of Plastic Surgery, University of British Columbia, London, Ontario, Canada
| | - Douglas C Ross
- Division of Plastic Surgery, Department of Surgery, Roth-McFarlane Hand & Upper Limb Centre, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
9
|
Allen MD, Dalton BH, Gilmore KJ, McNeil CJ, Doherty TJ, Rice CL, Power GA. Neuroprotective effects of exercise on the aging human neuromuscular system. Exp Gerontol 2021; 152:111465. [PMID: 34224847 DOI: 10.1016/j.exger.2021.111465] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 05/31/2021] [Accepted: 06/30/2021] [Indexed: 12/23/2022]
Abstract
Human biological aging from maturity to senescence is associated with a gradual loss of muscle mass and neuromuscular function. It is not until very old age (>80 years) however, that these changes often manifest into functional impairments. A driving factor underlying the age-related loss of muscle mass and function is the reduction in the number and quality of motor units (MUs). A MU consists of a single motoneuron, located either in the spinal cord or the brain stem, and all of the muscle fibres it innervates via its peripheral axon. Throughout the adult lifespan, MUs are slowly, but progressively lost. The compensatory process of collateral reinnervation attempts to recapture orphaned muscle fibres following the death of a motoneuron. Whereas this process helps mitigate loss of muscle mass during the latter decades of adult aging, the neuromuscular system has fewer and larger MUs, which have lower quality connections between the axon terminal and innervated muscle fibres. Whether this process of MU death and degradation can be attenuated with habitual physical activity has been a challenging question of great interest. This review focuses on age-related alterations of the human neuromuscular system, with an emphasis on the MU, and presents findings on the potential protective effects of lifelong physical activity. Although there is some discrepancy across studies of masters athletes, if one considers all experimental limitations as well as the available literature in animals, there is compelling evidence of a protective effect of chronic physical training on human MUs. Our tenet is that high-levels of physical activity can mitigate the natural trajectory of loss of quantity and quality of MUs in old age.
Collapse
Affiliation(s)
- Matti D Allen
- Department of Physical Medicine and Rehabilitation, School of Medicine, Faculty of Health Sciences, Queen's University, Kingston, ON K7L 4X3, Canada; School of Kinesiology and Health Studies, Faculty of Arts and Sciences, Queen's University, Kingston, ON K7L 4X3, Canada
| | - Brian H Dalton
- School of Health and Exercise Science, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Kevin J Gilmore
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Chris J McNeil
- School of Health and Exercise Science, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Timothy J Doherty
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada; Department of Physical Medicine and Rehabilitation, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Charles L Rice
- School of Kinesiology, The University of Western Ontario, London, ON, Canada; Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada.
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
10
|
Characteristics of the Electrophysiological Properties of Neuromuscular Motor Units and Its Adaptive Strategy Response in Lower Extremity Muscles for Seniors with Pre-Sarcopenia: A Preliminary Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18063063. [PMID: 33809692 PMCID: PMC8002219 DOI: 10.3390/ijerph18063063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 11/16/2022]
Abstract
Older adults with sarcopenia, which is an aging-related phenomenon of muscle mass loss, usually suffer from decreases in both strength and functional performance. However, the causality between function loss and physiological changes is unclear. This study aimed to explore the motor unit characteristics of the neurological factors between normal subjects and those with sarcopenia. Five risk-sarcopenia (age: 66.20 ± 4.44), five healthy (age: 69.00 ± 2.35), and twelve young (age: 21.33 ± 1.15) participants were selected. Each participant performed knee extension exercises at a 50% level of maximal voluntary isometric contraction. Next, electromyogram (EMG) signals were collected, and information on each parameter—e.g., motor unit number, recruitment threshold, the slope of the mean firing rate to recruitment threshold, y-intercept, firing rate per unit force, and mean motor unit firing rate (MFR)—was extracted to analyze muscle fiber discrimination (MFD). Meanwhile, force variance was used to observe the stability between two muscle groups. The results suggested that there was no difference between the three groups for motor unit number, recruitment threshold, y-intercept, mean firing rate, and motor unit discrimination (p > 0.05). However, the slope of MFR and firing rate per unit force in the risk-sarcopenia group were significantly higher than in the young group (p < 0.05). Regarding muscle performance, the force variance in the non-sarcopenia group was significantly higher than the young group (p < 0.05), while the risk-sarcopenia group showed a higher trend than the young group. This study demonstrated some neuromuscular characters between sarcopenia and healthy elderly and young people when performing the same level of leg exercise tasks. This difference may provide some hints for discovering aging-related strength and function loss. Future studies should consider combining the in vivo measurement of muscle fiber type to clarify whether this EMG difference is related to the loss of muscle strength or mass before recruiting symptomatic elderly participants for further investigation.
Collapse
|
11
|
Minimizing comprehensive geriatric assessment to identify deterioration of physical performance in a healthy community-dwelling older cohort: longitudinal data of the AEQUIPA Versa study. Aging Clin Exp Res 2021; 33:563-572. [PMID: 32358730 PMCID: PMC7943517 DOI: 10.1007/s40520-020-01562-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/10/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND It is important to identify the relevant parameters of physical performance to prevent early functional decline and to prolong independent living. The aim of this study is to describe the development of physical performance in a healthy community-dwelling older cohort aged 70+ years using comprehensive assessment over two years and to subsequently identify the most relevant predictive tests for physical decline to minimize assessment. METHODS Physical performance was measured by comprehensive geriatric assessment. Predictors for the individual decline of physical performance by Principal Component and k-means Cluster Analysis were developed, and sensitivity and specificity determined accordingly. RESULTS 251 subjects (Ø 75.4 years) participated in the study. Handgrip strength was low in 21.1%. The follow-up results of tests were divergent. Handgrip strength [- 16.95 (SD 11.55)] and the stair climb power test (power) [- 9.15 (SD 16.84)] yielded the highest percentage changes. Four most relevant tests (handgrip strength, stair climb power time, timed up & go and 4-m gait speed) were identified. A predictor based on baseline data was determined (sensitivity 82%, specificity 96%) to identify subjects characterized by a high degree of physical decline within two years. DISCUSSION Although the cohort of older adults is heterogeneous, most of the individuals in the study exhibited high levels of physical performance; only a few subjects suffered a relevant decline within the 2-year follow-up. Four most relevant tests were identified to predict relevant decline of physical function. CONCLUSION In spite of ceiling effects of the geriatric assessment in high-performers, we assume that it is possible to predict an individual's risk of physical decline within 2 years with four tests of a comprehensive geriatric assessment.
Collapse
|
12
|
Blasco A, Gras S, Mòdol-Caballero G, Tarabal O, Casanovas A, Piedrafita L, Barranco A, Das T, Pereira SL, Navarro X, Rueda R, Esquerda JE, Calderó J. Motoneuron deafferentation and gliosis occur in association with neuromuscular regressive changes during ageing in mice. J Cachexia Sarcopenia Muscle 2020; 11:1628-1660. [PMID: 32691534 PMCID: PMC7749545 DOI: 10.1002/jcsm.12599] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The cellular mechanisms underlying the age-associated loss of muscle mass and function (sarcopenia) are poorly understood, hampering the development of effective treatment strategies. Here, we performed a detailed characterization of age-related pathophysiological changes in the mouse neuromuscular system. METHODS Young, adult, middle-aged, and old (1, 4, 14, and 24-30 months old, respectively) C57BL/6J mice were used. Motor behavioural and electrophysiological tests and histological and immunocytochemical procedures were carried out to simultaneously analyse structural, molecular, and functional age-related changes in distinct cellular components of the neuromuscular system. RESULTS Ageing was not accompanied by a significant loss of spinal motoneurons (MNs), although a proportion (~15%) of them in old mice exhibited an abnormally dark appearance. Dark MNs were also observed in adult (~9%) and young (~4%) animals, suggesting that during ageing, some MNs undergo early deleterious changes, which may not lead to MN death. Old MNs were depleted of cholinergic and glutamatergic inputs (~40% and ~45%, respectively, P < 0.01), suggestive of age-associated alterations in MN excitability. Prominent microgliosis and astrogliosis [~93% (P < 0.001) and ~100% (P < 0.0001) increase vs. adults, respectively] were found in old spinal cords, with increased density of pro-inflammatory M1 microglia and A1 astroglia (25-fold and 4-fold increase, respectively, P < 0.0001). Ageing resulted in significant reductions in the nerve conduction velocity and the compound muscle action potential amplitude (~30%, P < 0.05, vs. adults) in old distal plantar muscles. Compared with adult muscles, old muscles exhibited significantly higher numbers of both denervated and polyinnervated neuromuscular junctions, changes in fibre type composition, higher proportion of fibres showing central nuclei and lipofuscin aggregates, depletion of satellite cells, and augmented expression of different molecules related to development, plasticity, and maintenance of neuromuscular junctions, including calcitonin gene-related peptide, growth associated protein 43, agrin, fibroblast growth factor binding protein 1, and transforming growth factor-β1. Overall, these alterations occurred at varying degrees in all the muscles analysed, with no correlation between the age-related changes observed and myofiber type composition or muscle topography. CONCLUSIONS Our data provide a global view of age-associated neuromuscular changes in a mouse model of ageing and help to advance understanding of contributing pathways leading to development of sarcopenia.
Collapse
Affiliation(s)
- Alba Blasco
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Sílvia Gras
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Guillem Mòdol-Caballero
- Grup de Neuroplasticitat i Regeneració, Institut de Neurociències, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, CIBERNED, Bellaterra, Spain
| | - Olga Tarabal
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Anna Casanovas
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Lídia Piedrafita
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | | | - Tapas Das
- Abbott Nutrition Research and Development, Columbus, OH, USA
| | | | - Xavier Navarro
- Grup de Neuroplasticitat i Regeneració, Institut de Neurociències, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, CIBERNED, Bellaterra, Spain
| | - Ricardo Rueda
- Abbott Nutrition Research and Development, Granada, Spain
| | - Josep E Esquerda
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Jordi Calderó
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| |
Collapse
|
13
|
Assessment of age-related differences in decomposition-based quantitative EMG in the intrinsic hand muscles: A multivariate approach. Clin Neurophysiol 2020; 131:2192-2199. [DOI: 10.1016/j.clinph.2020.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/06/2020] [Accepted: 06/02/2020] [Indexed: 01/17/2023]
|
14
|
Age- and sex-specific effects in paravertebral surface electromyographic back extensor muscle fatigue in chronic low back pain. GeroScience 2019; 42:251-269. [PMID: 31773454 PMCID: PMC7031171 DOI: 10.1007/s11357-019-00134-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/04/2019] [Indexed: 01/07/2023] Open
Abstract
The impact of aging on the back muscles is not well understood, yet may hold clues to both normal aging and chronic low back pain (cLBP). This study sought to investigate whether the median frequency (MF) surface electromyographic (SEMG) back muscle fatigue method—a proxy for glycolytic muscle metabolism—would be able to detect age- and sex-specific differences in neuromuscular and muscle metabolic functions in individuals with cLBP in a reliable way, and whether it would be as sensitive as when used on healthy individuals. With participants seated on a dynamometer (20° trunk anteflexion), paraspinal SEMG activity was recorded bilaterally from the multifidus (L5), longissimus (L2), and iliolumbalis (L1) muscles during isometric, sustained back extensions loaded at 80% of maximum from 117 younger (58 females) and 112 older (56 female) cLBP individuals. Tests were repeated after 1–2 days and 6 weeks. Median frequency, the SEMG variable indicating neuromuscular fatigue, was analyzed. Maximum back extensor strength was comparable between younger and older participants. Significantly less MF-SEMG back muscle fatigue was observed in older as compared to younger, and in older female as compared to older male cLBP individuals. Relative reliability was excellent, but absolute reliability appeared large for this SEMG-fatigue measure. Findings suggest that cLBP likely does not mask the age-specific diagnostic potential of the MF-SEMG back extensor fatigue method. Thus, this method possesses a great potential to be further developed into a valuable biomarker capable of detecting back muscle function at risk of sarcopenia at very early stages.
Collapse
|
15
|
Kirk EA, Gilmore KJ, Stashuk DW, Doherty TJ, Rice CL. Human motor unit characteristics of the superior trapezius muscle with age-related comparisons. J Neurophysiol 2019; 122:823-832. [PMID: 31242057 PMCID: PMC6734412 DOI: 10.1152/jn.00138.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/06/2019] [Accepted: 06/22/2019] [Indexed: 12/13/2022] Open
Abstract
Current understanding of human motor unit (MU) control and aging is mostly derived from hand and limb muscles that have spinal motor neuron innervations. The aim here was to characterize and test whether a muscle with a shared innervation supply from brainstem and spinal MU populations would demonstrate similar age-related adaptations as those reported for other muscles. In humans, the superior trapezius (ST) muscle acts to elevate and stabilize the scapula and has primary efferent supply from the spinal accessory nerve (cranial nerve XI) located in the brainstem. We compared electrophysiological properties obtained from intramuscular and surface recordings between 10 young (22-33 yr) and 10 old (77-88 yr) men at a range of voluntary isometric contraction intensities (from 15 to 100% of maximal efforts). The old group was 41% weaker with 43% lower MU discharge frequencies compared with the young (47.2 ± 9.6 Hz young and 26.7 ± 5.8 Hz old, P < 0.05) during maximal efforts. There was no difference in MU number estimation between age groups (228 ± 105 young and 209 ± 89 old, P = 0.33). Furthermore, there were no differences in needle detected near fiber (NF) stability parameters of jitter or jiggle. The old group had lower amplitude and smaller area of the stimulated compound muscle action potential and smaller NF MU potential area with higher NF counts. Thus, despite age-related ST weakness and lower MU discharge rates, there was minimal evidence of MU loss or compensatory reinnervation.NEW & NOTEWORTHY The human superior trapezius (ST) has shared spinal and brainstem motor neuron innervation providing a unique model to explore the impact of aging on motor unit (MU) properties. Although the ST showed higher MU discharge rates compared with most spinally innervated muscles, voluntary strength and mean MU rates were lower in old compared with young at all contraction intensities. There was no age-related difference in MU number estimates with minimal electrophysiological evidence of collateral reinnervation.
Collapse
Affiliation(s)
- Eric A Kirk
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada
| | - Kevin J Gilmore
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada
| | - Daniel W Stashuk
- Department of Systems Design Engineering, University of Waterloo, Ontario, Canada
| | - Timothy J Doherty
- Department of Clinical Neurological Sciences, The University of Western Ontario, London, Ontario, Canada
- Department of Physical Medicine and Rehabilitation, The University of Western Ontario, London, Ontario, Canada
| | - Charles L Rice
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
16
|
Kang H, Tian L, Thompson WJ. Schwann cell guidance of nerve growth between synaptic sites explains changes in the pattern of muscle innervation and remodeling of synaptic sites following peripheral nerve injuries. J Comp Neurol 2019; 527:1388-1400. [PMID: 30620049 DOI: 10.1002/cne.24625] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 01/14/2023]
Abstract
Terminal Schwann cells (SCs) are nonmyelinating glia that are a prominent component of the neuromuscular junction (NMJ) where motor neurons form synapses onto muscle fibers. These cells play important roles not only in development and maintenance of the neuromuscular synapse but also restoring synaptic function after nerve damage. In response to muscle denervation, terminal SCs undergo dramatic changes in their gene expression patterns as well as in their morphology, such as extending elaborate processes into inter-junctional space. These SC processes serve as a path to guide axon terminal sprouts from nearby innervated junctions, promoting rapid reinnervation of denervated fibers. We studied the role of terminal SCs in synapse reformation by using two different fluorescent proteins to simultaneously label motor axons and SCs; we examined these junctions repeatedly in living animals using a fluorescence microscope. Here, we show that alterations in the patterns of muscle innervation following recovery from nerve injury can be explained by SC guidance of regenerating axons. In turn, this guidance leads to remodeling of the NMJ itself.
Collapse
Affiliation(s)
- Hyuno Kang
- Section of Molecular Cell and Developmental Biology, The University of Texas at Austin, Austin, Texas.,Gwangju Center, Korea Basic Science Institute, Gwangju, South Korea
| | - Le Tian
- Section of Molecular Cell and Developmental Biology, The University of Texas at Austin, Austin, Texas
| | | |
Collapse
|
17
|
Cardoso AL, Fernandes A, Aguilar-Pimentel JA, de Angelis MH, Guedes JR, Brito MA, Ortolano S, Pani G, Athanasopoulou S, Gonos ES, Schosserer M, Grillari J, Peterson P, Tuna BG, Dogan S, Meyer A, van Os R, Trendelenburg AU. Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res Rev 2018; 47:214-277. [PMID: 30071357 DOI: 10.1016/j.arr.2018.07.004] [Citation(s) in RCA: 325] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Use of the frailty index to measure an accumulation of deficits has been proven a valuable method for identifying elderly people at risk for increased vulnerability, disease, injury, and mortality. However, complementary molecular frailty biomarkers or ideally biomarker panels have not yet been identified. We conducted a systematic search to identify biomarker candidates for a frailty biomarker panel. METHODS Gene expression databases were searched (http://genomics.senescence.info/genes including GenAge, AnAge, LongevityMap, CellAge, DrugAge, Digital Aging Atlas) to identify genes regulated in aging, longevity, and age-related diseases with a focus on secreted factors or molecules detectable in body fluids as potential frailty biomarkers. Factors broadly expressed, related to several "hallmark of aging" pathways as well as used or predicted as biomarkers in other disease settings, particularly age-related pathologies, were identified. This set of biomarkers was further expanded according to the expertise and experience of the authors. In the next step, biomarkers were assigned to six "hallmark of aging" pathways, namely (1) inflammation, (2) mitochondria and apoptosis, (3) calcium homeostasis, (4) fibrosis, (5) NMJ (neuromuscular junction) and neurons, (6) cytoskeleton and hormones, or (7) other principles and an extensive literature search was performed for each candidate to explore their potential and priority as frailty biomarkers. RESULTS A total of 44 markers were evaluated in the seven categories listed above, and 19 were awarded a high priority score, 22 identified as medium priority and three were low priority. In each category high and medium priority markers were identified. CONCLUSION Biomarker panels for frailty would be of high value and better than single markers. Based on our search we would propose a core panel of frailty biomarkers consisting of (1) CXCL10 (C-X-C motif chemokine ligand 10), IL-6 (interleukin 6), CX3CL1 (C-X3-C motif chemokine ligand 1), (2) GDF15 (growth differentiation factor 15), FNDC5 (fibronectin type III domain containing 5), vimentin (VIM), (3) regucalcin (RGN/SMP30), calreticulin, (4) PLAU (plasminogen activator, urokinase), AGT (angiotensinogen), (5) BDNF (brain derived neurotrophic factor), progranulin (PGRN), (6) α-klotho (KL), FGF23 (fibroblast growth factor 23), FGF21, leptin (LEP), (7) miRNA (micro Ribonucleic acid) panel (to be further defined), AHCY (adenosylhomocysteinase) and KRT18 (keratin 18). An expanded panel would also include (1) pentraxin (PTX3), sVCAM/ICAM (soluble vascular cell adhesion molecule 1/Intercellular adhesion molecule 1), defensin α, (2) APP (amyloid beta precursor protein), LDH (lactate dehydrogenase), (3) S100B (S100 calcium binding protein B), (4) TGFβ (transforming growth factor beta), PAI-1 (plasminogen activator inhibitor 1), TGM2 (transglutaminase 2), (5) sRAGE (soluble receptor for advanced glycosylation end products), HMGB1 (high mobility group box 1), C3/C1Q (complement factor 3/1Q), ST2 (Interleukin 1 receptor like 1), agrin (AGRN), (6) IGF-1 (insulin-like growth factor 1), resistin (RETN), adiponectin (ADIPOQ), ghrelin (GHRL), growth hormone (GH), (7) microparticle panel (to be further defined), GpnmB (glycoprotein nonmetastatic melanoma protein B) and lactoferrin (LTF). We believe that these predicted panels need to be experimentally explored in animal models and frail cohorts in order to ascertain their diagnostic, prognostic and therapeutic potential.
Collapse
|
18
|
Cherup N, Roberson K, Potiaumpai M, Widdowson K, Jaghab AM, Chowdhari S, Armitage C, Seeley A, Signorile J. Improvements in cognition and associations with measures of aerobic fitness and muscular power following structured exercise. Exp Gerontol 2018; 112:76-87. [PMID: 30223046 DOI: 10.1016/j.exger.2018.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 08/30/2018] [Accepted: 09/11/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVES Cognition, along with aerobic and muscular fitness, declines with age. Although research has shown that resistance and aerobic exercise may improve cognition, no consensus exists supporting the use of one approach over the other. The purpose of this study was to compare the effects of steady-state, moderate-intensity treadmill training (TM) and high-velocity circuit resistance training (HVCRT) on cognition, and to examine its relationships to aerobic fitness and neuromuscular power. METHODS Thirty older adults were randomly assigned to one of three groups: HVCRT, TM, or control. Exercise groups attended training 3 days/wk for 12 weeks, following a 2 week adaptation period. The NIH Cognitive Toolbox was used to assess specific components of cognition and provided an overall fluid composite score (FCS). The walking response and inhibition test (WRIT) was specifically used to assess executive function (EF) and provided an accuracy (ACC), reaction time (RT) and global score (GS). Aerobic power (AP) and maximal neuromuscular power (MP) were measured pre- and post-intervention. Relationships between variables using baseline and mean change scores were assessed. RESULTS Significant increases were seen from baseline in ACC (MD = 14.0, SE = 4.3, p = .01, d = 1.49), GS (MD = 25.6, SE = 8.0, p = .01, d = 1.16), and AP (MD = 1.4, SE = 0.6, p = .046, d = 0.31) for HVCRT. RT showed a trend toward a significant decrease (MD = -0.03, SE = 0.016, p = .068, d = 0.32) for HVCRT. No significant within-group differences were detected for TM or CONT. Significant correlations were seen at baseline between AP and FCS, as well as other cognitive domains; but none were detected among change scores. Although no significant correlation was evident between MP and FCS or GS, there was a trend toward higher MP values being associated with higher FCS and GS scores. CONCLUSIONS Our results support the use of HVCRT over TM for improving cognition in older persons, although the precise mechanisms that underlie this association remain unclear.
Collapse
Affiliation(s)
- Nicholas Cherup
- Laboratory of Neuromuscular Research & Active Aging, University of Miami, Department of Kinesiology and Sport Sciences, Coral Gables, FL, USA
| | - Kirk Roberson
- Laboratory of Neuromuscular Research & Active Aging, University of Miami, Department of Kinesiology and Sport Sciences, Coral Gables, FL, USA
| | - Melanie Potiaumpai
- Laboratory of Neuromuscular Research & Active Aging, University of Miami, Department of Kinesiology and Sport Sciences, Coral Gables, FL, USA
| | - Kayla Widdowson
- Laboratory of Neuromuscular Research & Active Aging, University of Miami, Department of Kinesiology and Sport Sciences, Coral Gables, FL, USA
| | - Ann-Marie Jaghab
- Laboratory of Neuromuscular Research & Active Aging, University of Miami, Department of Kinesiology and Sport Sciences, Coral Gables, FL, USA
| | - Sean Chowdhari
- Laboratory of Neuromuscular Research & Active Aging, University of Miami, Department of Kinesiology and Sport Sciences, Coral Gables, FL, USA
| | - Catherine Armitage
- Laboratory of Neuromuscular Research & Active Aging, University of Miami, Department of Kinesiology and Sport Sciences, Coral Gables, FL, USA
| | - Afton Seeley
- Laboratory of Neuromuscular Research & Active Aging, University of Miami, Department of Kinesiology and Sport Sciences, Coral Gables, FL, USA
| | - Joseph Signorile
- Laboratory of Neuromuscular Research & Active Aging, University of Miami, Department of Kinesiology and Sport Sciences, Coral Gables, FL, USA; University of Miami Miller School of Medicine, Center on Aging, Miami, FL, USA.
| |
Collapse
|
19
|
Berg OK, Kwon OS, Hureau TJ, Clifton HL, Thurston T, Le Fur Y, Jeong EK, Amann M, Richardson RS, Trinity JD, Wang E, Layec G. Maximal strength training increases muscle force generating capacity and the anaerobic ATP synthesis flux without altering the cost of contraction in elderly. Exp Gerontol 2018; 111:154-161. [PMID: 30031838 DOI: 10.1016/j.exger.2018.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/09/2018] [Accepted: 07/18/2018] [Indexed: 01/09/2023]
Abstract
Aging is associated with a progressive decline in skeletal muscle function, then leading to impaired exercise tolerance. Maximal strength training (MST) appears to be a practical and effective intervention to increase both exercise capacity and efficiency. However, the underlying physiological mechanisms responsible for these functional improvements are still unclear. Accordingly, the purpose of this study was to examine the intramuscular and metabolic adaptations induced by 8 weeks of knee-extension MST in the quadriceps of 10 older individuals (75 ± 9 yrs) by employing a combination of molecular, magnetic resonance 1H-imaging and 31P-spectroscopy, muscle biopsies, motor nerve stimulation, and indirect calorimetry techniques. Dynamic and isometric muscle strength were both significantly increased by MST. The greater torque-time integral during sustained isometric maximal contraction post-MST (P = 0.002) was associated with increased rates of ATP synthesis from anaerobic glycolysis (PRE: 10 ± 7 mM·min-1; POST: 14 ± 7 mM·min-1, P = 0.02) and creatine kinase reaction (PRE: 31 ± 10 mM·min-1; POST: 41 ± 10 mM·min-1, P = 0.006) such that the ATP cost of contraction was not significantly altered. Expression of fast myosin heavy chain, quadriceps muscle volume, and submaximal cycling net efficiency were also increased with MST (P = 0.005; P = 0.03 and P = 0.03, respectively). Overall, MST induced a shift toward a more glycolytic muscle phenotype allowing for greater muscle force production during sustained maximal contraction. Consequently, some of the MST-induced improvements in exercise tolerance might stem from a greater anaerobic capacity to generate ATP, while the improvement in exercise efficiency appears to be independent from an alteration in the ATP cost of contraction.
Collapse
Affiliation(s)
- Ole Kristian Berg
- Faculty of Health and Social Sciences, Molde University College, Molde, Norway.
| | - Oh Sung Kwon
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA; Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA
| | - Thomas J Hureau
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA; Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA
| | - Heather L Clifton
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA; Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA
| | - Taylor Thurston
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA; Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Yann Le Fur
- CRMBM, Aix-Marseille Universite, CNRS 7339, Marseille, France
| | - Eun-Kee Jeong
- Department of Radiology, Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, UT, USA
| | - Markus Amann
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA; Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Russel S Richardson
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA; Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Joel D Trinity
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA; Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Eivind Wang
- Faculty of Health and Social Sciences, Molde University College, Molde, Norway; Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA; Department of Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Department of Research and Development, St. Olav's University Hospital, Trondheim, Norway
| | - Gwenael Layec
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA; Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
20
|
Orssatto LBDR, Wiest MJ, Diefenthaeler F. Neural and musculotendinous mechanisms underpinning age-related force reductions. Mech Ageing Dev 2018; 175:17-23. [PMID: 29997056 DOI: 10.1016/j.mad.2018.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/21/2018] [Accepted: 06/28/2018] [Indexed: 01/02/2023]
Abstract
Ageing leads to substantial force production capacity reductions, which is an indicator of frailty and disability, and a mortality predictor in elders. Understanding the age-dependent neuromuscular mechanisms underlying force reductions can optimize healthcare professionals' exercise protocol choices for patients and allows researchers to investigate new interventions to mitigate these reductions. Our primary goal was to provide an updated review about the main neural and musculotendinous mechanisms underpinning age-related reductions in force capacity. Our secondary goal was to summarize how aerobic and strength training can lessen these age-related reductions. This review suggests that several steps in the force production pathway, from cortical to muscular mechanisms, are negatively affected by ageing. However, combining aerobic and strength training can attenuate these effects. Strength training (i.e. moderate to high- intensity, progressive volume, accentuated eccentric loading and fast concentric contraction velocity) can increase overall force production capacity by producing beneficial neural and musculotendinous adaptations. Additionally, aerobic training (i.e. moderate and high intensities) plays an essential role in preserving the structure and function of the neuromuscular system.
Collapse
Affiliation(s)
- Lucas Bet da Rosa Orssatto
- Laboratório de Biomecânica, Centro de Desportos, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Matheus Joner Wiest
- Toronto Rehabilitation Institute - UHN. Neural Engineering & Therapeutic Team, Toronto, Ontario, Canada
| | - Fernando Diefenthaeler
- Laboratório de Biomecânica, Centro de Desportos, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
21
|
Kougias DG, Das T, Perez AB, Pereira SL. A role for nutritional intervention in addressing the aging neuromuscular junction. Nutr Res 2018; 53:1-14. [PMID: 29804584 DOI: 10.1016/j.nutres.2018.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 12/20/2022]
Abstract
The purpose of this review is to discuss the structural and physiological changes that underlie age-related neuromuscular dysfunction and to summarize current evidence on the potential role of nutritional interventions on neuromuscular dysfunction-associated pathways. Age-related neuromuscular deficits are known to coincide with distinct changes in the central and peripheral nervous system, in the neuromuscular system, and systemically. Although many features contribute to the age-related decline in neuromuscular function, a comprehensive understanding of their integration and temporal relationship is needed. Nonetheless, many nutrients and ingredients show promise in modulating neuromuscular output by counteracting the age-related changes that coincide with neuromuscular dysfunction. In particular, dietary supplements, such as vitamin D, omega-3 fatty acids, β-hydroxy-β-methylbutyrate, creatine, and dietary phospholipids, demonstrate potential in ameliorating age-related neuromuscular dysfunction. However, current evidence seldom directly assesses neuromuscular outcomes and is not always in the context of aging. Additional clinical research studies are needed to confirm the benefits of dietary supplements on neuromuscular function, as well as to define the appropriate population, dosage, and duration for intervention.
Collapse
Affiliation(s)
- Daniel G Kougias
- Abbott Nutrition, Strategic Research, 3300 Stelzer Road, Columbus, OH, USA; Neuroscience Program, University of Illinois, Urbana-Champaign, IL, USA.
| | - Tapas Das
- Abbott Nutrition, Strategic Research, 3300 Stelzer Road, Columbus, OH, USA.
| | | | - Suzette L Pereira
- Abbott Nutrition, Strategic Research, 3300 Stelzer Road, Columbus, OH, USA.
| |
Collapse
|
22
|
Siddiqi A, Poosapadi Arjunan S, Kumar DK. Computational model to investigate the relative contributions of different neuromuscular properties of tibialis anterior on force generated during ankle dorsiflexion. Med Biol Eng Comput 2018; 56:1413-1423. [PMID: 29335929 DOI: 10.1007/s11517-018-1788-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 01/06/2018] [Indexed: 10/18/2022]
Abstract
This study describes a new model of the force generated by tibialis anterior muscle with three new features: single-fiber action potential, twitch force, and pennation angle. This model was used to investigate the relative effects and interaction of ten age-associated neuromuscular parameters. Regression analysis (significance level of 0.05) between the neuromuscular properties and corresponding simulated force produced at the footplate was performed. Standardized slope coefficients were computed to rank the effect of the parameters. The results show that reduction in the average firing rate is the reason for the sharp decline in the force and other factors, such as number of muscle fibers, specific force, pennation angle, and innervation ratio. The fast fiber ratio affects the simulated force through two significant interactions. This study has ranked the individual contributions of the neuromuscular factors to muscle strength decline of the TA and identified firing rate decline as the biggest cause followed by decrease in muscle fiber number and specific force. The strategy for strength preservation for the elderly should focus on improving firing rate. Graphical abstract Neuromuscular properties of Tibialis Anterior on force generated during ankle dorsiflexion.
Collapse
Affiliation(s)
- Ariba Siddiqi
- Biosignals Laboratory, School of Engineering, RMIT University, GPO Box 2476, Melbourne, VIC, Australia
| | - Sridhar Poosapadi Arjunan
- Biosignals Laboratory, School of Engineering, RMIT University, GPO Box 2476, Melbourne, VIC, Australia.
| | - Dinesh Kant Kumar
- Biosignals Laboratory, School of Engineering, RMIT University, GPO Box 2476, Melbourne, VIC, Australia
| |
Collapse
|
23
|
McKinnon NB, Connelly DM, Rice CL, Hunter SW, Doherty TJ. Neuromuscular contributions to the age-related reduction in muscle power: Mechanisms and potential role of high velocity power training. Ageing Res Rev 2017; 35:147-154. [PMID: 27697547 DOI: 10.1016/j.arr.2016.09.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/15/2016] [Accepted: 09/26/2016] [Indexed: 01/21/2023]
Abstract
Although much of the literature on neuromuscular changes with aging has focused on loss of muscle mass and isometric strength, deficits in muscle power are more pronounced with aging and may be a more sensitive measure of neuromuscular degeneration. This review aims to identify the adaptations to the neuromuscular system with aging, with specific emphasis on changes that result in decreased muscle power. We discuss how these changes in neuromuscular performance can affect mobility, and ultimately contribute to an increased risk for falls in older adults. Finally, we evaluate the literature regarding high-velocity muscle power training (PT), and its potential advantages over conventional strength training for improving functional performance and mitigating fall risk in older adults.
Collapse
|
24
|
Gilmore KJ, Morat T, Doherty TJ, Rice CL. Motor unit number estimation and neuromuscular fidelity in 3 stages of sarcopenia. Muscle Nerve 2017; 55:676-684. [DOI: 10.1002/mus.25394] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 08/23/2016] [Accepted: 08/29/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Kevin J. Gilmore
- School of Kinesiology; Faculty of Health Sciences, The University of Western Ontario; London Ontario Canada
| | - Tobias Morat
- German Sport University Cologne, Institute of Movement and Sport Gerontology; Cologne Germany
| | - Timothy J. Doherty
- Department of Clinical Neurological Sciences; The University of Western Ontario; London Ontario Canada
- Department of Physical Medicine and Rehabilitation; The University of Western Ontario; London Ontario Canada
| | - Charles L. Rice
- School of Kinesiology; Faculty of Health Sciences, The University of Western Ontario; London Ontario Canada
- Department of Anatomy and Cell Biology; Schulich School of Medicine and Dentistry, The University of Western Ontario; London Ontario N6G 1H1 Canada
| |
Collapse
|
25
|
Rosado-Artalejo C, Carnicero JA, Losa-Reyna J, Castillo C, Cobos-Antoranz B, Alfaro-Acha A, Rodríguez-Mañas L, García-García FJ. Global Performance of Executive Function Is Predictor of Risk of Frailty and Disability in Older Adults. J Nutr Health Aging 2017; 21:980-987. [PMID: 29083438 DOI: 10.1007/s12603-017-0895-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
INTRODUCTION The executive function is a complex set of skills affected during the aging process and translate into subclinical cerebrovascular disease. Postural instability or motor slowness are some clinical manifestations, being consubstantial with the frailty phenotype, genuine expression of aging. Executive dysfunction is also considered a predictor of adverse health events in the elderly. AIM To study whether the executive dysfunction can be used as an early marker for frailty and the viability of use as a predictor of mortality, hospitalization and/or disability in a Mediterranean population. DESIGN A population-based cohort study using data from the Toledo Study for Healthy Aging (TSHA). METHODS 1690 Spanish elders aged ≥65 years underwent a neuropsychological evaluation in order to measure executive function. To assess whether the accumulation of dysfunctions (in severity and amplitude) could increase the predictive value of adverse health events in relation to each dimension separately an executive dysfunction cumulative index was constructed. Cox proportional hazards model was used to examine mortality and hospitalization over 5.02 and 3.1 years of follow-up, respectively. RESULTS Executive dysfunction is a powerful predictor of mortality, frailty and disability. Cumulative differences in executive function are associated with high risk of frailty and disability, thus, for each one point increment in the executive function index, the risk of death increased by 7 %, frailty by 13% and disability by 11% (P<0.05). Moreover, the executive impairment exhibits a strong positive tendency with age, comorbidity and mortality. CONCLUSIONS Cumulative differences in four executive dimensions widely used in clinical practice improves the ability to predict frailty and disability compared to each dimension separately.
Collapse
Affiliation(s)
- C Rosado-Artalejo
- Francisco José García-García. MD, Geriatric Department, Complejo Hospitalario de Toledo, Ctra de Cobisas/n, 45071 Toledo, Spain. Phone: 0034925269300. Ext 26107, Fax: 0034925269355, e-mail: ,
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Siddiqi A, Arjunan SP, Kumar DK. Difference in age-related changes in surface electromyogram of tibialis anterior and triceps surae. Biomed Phys Eng Express 2016. [DOI: 10.1088/2057-1976/2/4/045019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
27
|
Kirk EA, Copithorne DB, Dalton BH, Rice CL. Motor unit firing rates of the gastrocnemii during maximal and sub-maximal isometric contractions in young and old men. Neuroscience 2016; 330:376-85. [DOI: 10.1016/j.neuroscience.2016.05.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 11/16/2022]
|
28
|
Perkisas S, De Cock A, Verhoeven V, Vandewoude M. Physiological and architectural changes in the ageing muscle and their relation to strength and function in sarcopenia. Eur Geriatr Med 2016. [DOI: 10.1016/j.eurger.2015.12.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
29
|
Morat T, Gilmore KJ, Rice CL. Neuromuscular function in different stages of sarcopenia. Exp Gerontol 2016; 81:28-36. [PMID: 27108183 DOI: 10.1016/j.exger.2016.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 01/06/2023]
Abstract
This study applied the screening tool developed by the European Working Group on Sarcopenia in Older People (EWGSOP) on seniors aged over 65years and concurrently tested various laboratory-based indices of neuromuscular function. Twenty-four healthy and independent living older adults (9 men, 15 women) with a mean age of 79.1±5.8years participated. Based on gait speed, handgrip strength and muscle mass all subjects were categorized into one of the three conceptual sarcopenia stages (pre-sarcopenia, sarcopenia, severe sarcopenia). Maximal strength of dorsiflexors in the left leg was measured and voluntary activation was assessed by the interpolated twitch technique. In addition, isometric evoked contractile properties were recorded. Skeletal muscle mass was assessed by ultrasound from nine sites. There were roughly equal number of subjects in each sarcopenic category, and age was not different among the 3 groups. There were no differences in handgrip strength and skeletal muscle mass index among the 3 groups. Gait speed was significantly slower (p<0.01) in the severe sarcopenic subjects compared to the pre-sarcopenic group. With no differences in voluntary activation among the groups, the maximal voluntary contractions (MVCs) for severe sarcopenic subjects were 29% lower (p=0.02) and with 19% slower (p=0.02) voluntary rates of torque development (RTD) compared to sarcopenic subjects. Furthermore, the severe group was 34% lower (p=0.04) with 36% slower (p=0.02) RTD compared to pre-sarcopenic subjects. Peak twitch tension was 54% lower (p<0.01) in the severe group compared with the pre-sarcopenic group. Maximal twitch RTD were 40% (p=0.03) slower for the severe group compared to the sarcopenia group, and 51% slower (p=0.03) compared with the pre-sarcopenia group, but when normalized to peak torques there were no statistical differences. The laboratory tests found neuromuscular differences among the 3 groups which generally supported the classification scheme and helped to illustrate some key factors that could explain differences in functional capacities. These initial findings support the assumption that this categorization is relevant for identifying older adults with different neuromuscular properties. However, further studies are needed to provide more insight into the specific neuromuscular changes in the three sarcopenia stages, and how these changes relate to functional capacity. Such studies could ultimately contribute to identifying optimal interventions to improve neuromuscular functioning.
Collapse
Affiliation(s)
- Tobias Morat
- Canadian Centre for Activity and Aging, School of Kinesiology, Faculty of Health Sciences, Arthur & Sonia Labatt Health Sciences, Rm. 411D, London, ON N6A 5B9, Canada; German Sport University Cologne, Institute of Movement and Sport Gerontology, Am Sportpark Muengersdorf 6, 50933 Cologne, Germany.
| | - Kevin J Gilmore
- Canadian Centre for Activity and Aging, School of Kinesiology, Faculty of Health Sciences, Arthur & Sonia Labatt Health Sciences, Rm. 411D, London, ON N6A 5B9, Canada.
| | - Charles L Rice
- Canadian Centre for Activity and Aging, School of Kinesiology, Faculty of Health Sciences, Arthur & Sonia Labatt Health Sciences, Rm. 411D, London, ON N6A 5B9, Canada; Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|
30
|
Allen MD, Doherty TJ, Rice CL, Kimpinski K. Physiology in Medicine: neuromuscular consequences of diabetic neuropathy. J Appl Physiol (1985) 2016; 121:1-6. [PMID: 26989220 DOI: 10.1152/japplphysiol.00733.2015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 03/17/2016] [Indexed: 02/07/2023] Open
Abstract
Diabetic polyneuropathy (DPN) refers to peripheral nerve dysfunction as a complication of diabetes mellitus. This condition is relatively common and is likely a result of vascular and/or metabolic disturbances related to diabetes. In the early or less severe stages of DPN it typically results in sensory impairments but can eventually lead to major dysfunction of the neuromuscular system. Some of these impairments may include muscle atrophy and weakness, slowing of muscle contraction, and loss of power and endurance. Combined with sensory deficits these changes in the motor system can contribute to decreased functional capacity, impaired mobility, altered gait, and increased fall risk. There is no pharmacological disease-modifying therapy available for DPN and the mainstay of treatment is linked to treating the diabetes itself and revolves around strict glycemic control. Exercise therapy (including aerobic, strength, or balance training-based exercise) appears to be a promising preventative and treatment strategy for patients with DPN and those at risk. The goal of this Physiology in Medicine article is to highlight important and overlooked dysfunction of the neuromuscular system as a result of DPN with an emphasis on the physiologic basis for that dysfunction. Additionally, we sought to provide information that clinicians can use when following patients with diabetes or DPN including support for the inclusion of exercise-based therapy as an effective, accessible, and inexpensive form of treatment.
Collapse
Affiliation(s)
- Matti D Allen
- School of Medicine, Queen's University, Kingston, Ontario, Canada; School of Kinesiology and Health Studies, Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada; School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada;
| | - Timothy J Doherty
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada; Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; Department of Physical Medicine and Rehabilitation, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; and
| | - Charles L Rice
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada; Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Kurt Kimpinski
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|