1
|
Picciotto D, Macciò L, Verzola D, Baciga F, Momentè C, Russo E, Viazzi F, Battaglia Y, Esposito P. Pathophysiology of Physical Exercise in Kidney Patients: Unveiling New Players - The Role of Myokines. Kidney Blood Press Res 2024; 49:457-471. [PMID: 38815556 DOI: 10.1159/000539489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is a progressive systemic condition characterized by numerous complications. Among these, alterations in skeletal muscle physiology, such as sarcopenia, are particularly significant, as they are associated with poor outcomes and reduced quality of life. SUMMARY Various interventions, including pharmacological approaches and lifestyle modifications have been investigated to slow CKD progression and prevent or treat its complications. Physical exercise, in particular, has emerged as a promising intervention with multiple beneficial effects. These include improvements in physical functioning, increased muscle mass, modulation of metabolic abnormalities, and reduced cardiovascular risk. However, the pathophysiology of physical exercise in patients with kidney disease is complex and remains only partially understood. A crucial advancement in understanding this phenomenon has been the identification of myokines - molecules expressed and released by skeletal muscle in response to physical activity. These myokines can exert both paracrine and systemic effects, influencing not only skeletal muscle physiology but also other processes such as energy metabolism and lipid regulation. KEY MESSAGES The interplay among skeletal muscle, physical activity, and myokines may act as a pivotal regulator in various physiological processes, including aging, as well as in pathological conditions like cachexia and sarcopenia, frequently observed in CKD patients at different stages, including patients on dialysis. Despite the potential importance of this relationship, only a limited number of studies have explored the relationship between exercise and myokine, and the effect of this interaction on experimental models or individuals with kidney disease. In the following sections, we review and discuss this topic.
Collapse
Affiliation(s)
- Daniela Picciotto
- Nephrology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lucia Macciò
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genova, Genoa, Italy
| | - Daniela Verzola
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genova, Genoa, Italy
| | - Federica Baciga
- Department of Medicine, University of Verona, Verona, Italy
- Nephrology and Dialysis Unit, Pederzoli Hospital, Peschiera del Garda, Italy
| | | | - Elisa Russo
- Nephrology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genova, Genoa, Italy
| | - Francesca Viazzi
- Nephrology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genova, Genoa, Italy
| | - Yuri Battaglia
- Department of Medicine, University of Verona, Verona, Italy
- Nephrology and Dialysis Unit, Pederzoli Hospital, Peschiera del Garda, Italy
| | - Pasquale Esposito
- Nephrology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genova, Genoa, Italy
| |
Collapse
|
2
|
Esposito P, Picciotto D, Battaglia Y, Costigliolo F, Viazzi F, Verzola D. Myostatin: Basic biology to clinical application. Adv Clin Chem 2021; 106:181-234. [PMID: 35152972 DOI: 10.1016/bs.acc.2021.09.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Myostatin is a member of the transforming growth factor (TGF)-β superfamily. It is expressed by animal and human skeletal muscle cells where it limits muscle growth and promotes protein breakdown. Its effects are influenced by complex mechanisms including transcriptional and epigenetic regulation and modulation by extracellular binding proteins. Due to its actions in promoting muscle atrophy and cachexia, myostatin has been investigated as a promising therapeutic target to counteract muscle mass loss in experimental models and patients affected by different muscle-wasting conditions. Moreover, growing evidence indicates that myostatin, beyond to regulate skeletal muscle growth, may have a role in many physiologic and pathologic processes, such as obesity, insulin resistance, cardiovascular and chronic kidney disease. In this chapter, we review myostatin biology, including intracellular and extracellular regulatory pathways, and the role of myostatin in modulating physiologic processes, such as muscle growth and aging. Moreover, we discuss the most relevant experimental and clinical evidence supporting the extra-muscle effects of myostatin. Finally, we consider the main strategies developed and tested to inhibit myostatin in clinical trials and discuss the limits and future perspectives of the research on myostatin.
Collapse
Affiliation(s)
- Pasquale Esposito
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Daniela Picciotto
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Yuri Battaglia
- Nephrology and Dialysis Unit, St. Anna University Hospital, Ferrara, Italy
| | - Francesca Costigliolo
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesca Viazzi
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Daniela Verzola
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
3
|
Saby M, Gauthier A, Barial S, Egoumenides L, Jover B. Supplementation with a Bioactive Melon Concentrate in Humans and Animals: Prevention of Oxidative Damages and Fatigue in the Context of a Moderate or Eccentric Physical Activity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041142. [PMID: 32053942 PMCID: PMC7068528 DOI: 10.3390/ijerph17041142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 11/16/2022]
Abstract
Exercise is recognized to provide both physical and psychological health benefits. However, oxidative stress can occur and induce muscular damages. SOD B®; M is a melon concentrate, well known to counteract oxidative stress and prevent its side effects. The present study aimed to evaluate the potential of the melon concentrate in the context of both a strong and isolated effort associated with deleterious effects, and a moderate and regular physical activity considered as beneficial. First, a preclinical study was set up on rats to evaluate its potential on the prevention of damages induced by an eccentric exercise. Secondly, the combined effect of the melon concentrate and a regular standardized physical training was studied on the overall physical condition of healthy subjects in a randomized, double-blind, placebo-controlled trial. Repeated measures Analysis of Variance (ANOVA), student’s t test and Mann–Whitney test were used for statistical analyses. Melon concentrate helped to prevent gastrocnemius damages induced by the eccentric exercise. It allowed a reduction of fibrosis by approximately 38% and a reduction of Tumor Necrosis Factor- α (TNF-α) plasma level by 28%. This supplementation also induced a rearrangement of myosin fibers and an increase in PGC-1α plasma level. In the clinical study, melon concentrate was able to decrease oxidative stress and C-Reactive protein (CRP) plasma level. Besides, magnesium (Mg) plasma level was higher in the context of a regular training performed by healthy subjects supplemented with the melon concentrate. Therefore, the melon concentrate allowed a better adaptation to effort linked to PGC-1α activation: a regulator of energy metabolism. The antioxidant properties of the melon concentrate and its ability to mobilize magnesium also suggest that the supplementation could induce a better resistance to fatigue and recovery during regular physical activity.
Collapse
Affiliation(s)
- Marion Saby
- EA7288 UFR Pharmacie, Université de Montpellier, CEDEX 5, 34093 Montpellier, France; (M.S.); (S.B.)
| | - Audrey Gauthier
- Bionov Research, 939 rue de la croix verte, 34090 Montpellier, France; (A.G.); (L.E.)
| | - Sandy Barial
- EA7288 UFR Pharmacie, Université de Montpellier, CEDEX 5, 34093 Montpellier, France; (M.S.); (S.B.)
| | - Laure Egoumenides
- Bionov Research, 939 rue de la croix verte, 34090 Montpellier, France; (A.G.); (L.E.)
| | - Bernard Jover
- PhyMedExp, INSERM CNRS, Université de Montpellier, IURC, CEDEX 5, 34295 Montpellier, France
- Correspondence:
| |
Collapse
|
4
|
Tavoian D, Arnold WD, Mort SC, de Lacalle S. Sex differences in body composition but not neuromuscular function following long-term, doxycycline-induced reduction in circulating levels of myostatin in mice. PLoS One 2019; 14:e0225283. [PMID: 31751423 PMCID: PMC6872155 DOI: 10.1371/journal.pone.0225283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/31/2019] [Indexed: 02/05/2023] Open
Abstract
Age-related declines in muscle function result from changes in muscle structure and contractile properties, as well as from neural adaptations. Blocking myostatin to drive muscle growth is one potential therapeutic approach. While the effects of myostatin depletion on muscle characteristics are well established, we have very little understanding of its effects on the neural system. Here we assess the effects of long-term, post-developmental myostatin reduction on electrophysiological motor unit characteristics and body composition in aging mice. We used male (N = 21) and female (N = 26) mice containing a tetracycline-inducible system to delete the myostatin gene in skeletal muscle. Starting at 12 months of age, half of the mice were administered doxycycline (tetracycline) through their chow for one year. During that time we measured food intake, body composition, and hindlimb electromyographic responses. Doxycycline-induced myostatin reduction had no effect on motor unit properties for either sex, though significant age-dependent declines in motor unit number occurred in all mice. However, treatment with doxycycline induced different changes in body composition between sexes. All female mice increased in total, lean and fat mass, but doxycycline-treated female mice experienced a significantly larger increase in lean mass than controls. All male mice also increased total and lean mass, but administration of doxycycline had no effect. Additionally, doxycycline-treated male mice maintained their fat mass at baseline levels, while the control group experienced a significant increase from baseline and compared to the doxycycline treated group. Our results show that long-term administration of doxycycline results in body composition adaptations that are distinctive between male and female mice, and that the effects of myostatin reduction are most pronounced during the first three months of treatment. We also report that age-related changes in motor unit number are not offset by reduced myostatin levels, despite increased lean mass exhibited by female mice.
Collapse
Affiliation(s)
- Dallin Tavoian
- Program in Translational Biomedical Sciences, 1 Ohio University, Athens, OH, United States of America
| | - W. David Arnold
- Departments of Neurology, PM&R, and Neuroscience, and Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States of America
| | - Sophia C. Mort
- Program in Translational Biomedical Sciences, 1 Ohio University, Athens, OH, United States of America
| | - Sonsoles de Lacalle
- Sonsoles de Lacalle, Department of Biomedical Sciences,1 Ohio University, Athens, OH, United States of America
- * E-mail:
| |
Collapse
|