1
|
Mota B, Brás AR, Araújo-Andrade L, Silva A, Pereira PA, Madeira MD, Cardoso A. High-Caloric Diets in Adolescence Impair Specific GABAergic Subpopulations, Neurogenesis, and Alter Astrocyte Morphology. Int J Mol Sci 2024; 25:5524. [PMID: 38791562 PMCID: PMC11122083 DOI: 10.3390/ijms25105524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
We compared the effects of two different high-caloric diets administered to 4-week-old rats for 12 weeks: a diet rich in sugar (30% sucrose) and a cafeteria diet rich in sugar and high-fat foods. We focused on the hippocampus, particularly on the gamma-aminobutyric acid (GABA)ergic system, including the Ca2+-binding proteins parvalbumin (PV), calretinin (CR), calbindin (CB), and the neuropeptides somatostatin (SST) and neuropeptide Y (NPY). We also analyzed the density of cholinergic varicosities, brain-derived neurotrophic factor (BDNF), reelin (RELN), and cyclin-dependent kinase-5 (CDK-5) mRNA levels, and glial fibrillary acidic protein (GFAP) expression. The cafeteria diet reduced PV-positive neurons in the granular layer, hilus, and CA1, as well as NPY-positive neurons in the hilus, without altering other GABAergic populations or overall GABA levels. The high-sugar diet induced a decrease in the number of PV-positive cells in CA3 and an increase in CB-positive cells in the hilus and CA1. No alterations were observed in the cholinergic varicosities. The cafeteria diet also reduced the relative mRNA expression of RELN without significant changes in BDNF and CDK5 levels. The cafeteria diet increased the number but reduced the length of the astrocyte processes. These data highlight the significance of determining the mechanisms mediating the observed effects of these diets and imply that the cognitive impairments previously found might be related to both the neuroinflammation process and the reduction in PV, NPY, and RELN expression in the hippocampal formation.
Collapse
Affiliation(s)
- Bárbara Mota
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (B.M.)
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Ana Rita Brás
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (B.M.)
| | - Leonardo Araújo-Andrade
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (B.M.)
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Ana Silva
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (B.M.)
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Pedro A. Pereira
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (B.M.)
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - M. Dulce Madeira
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (B.M.)
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Armando Cardoso
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (B.M.)
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
2
|
Pereira PA, Tavares M, Laires M, Mota B, Madeira MD, Paula-Barbosa MM, Cardoso A. Effects of Aging and Nerve Growth Factor on Neuropeptide Expression and Cholinergic Innervation of the Rat Basolateral Amygdala. BIOLOGY 2024; 13:155. [PMID: 38534426 DOI: 10.3390/biology13030155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024]
Abstract
The basolateral amygdala (BLA) contains interneurons that express neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP), both of which are involved in the regulation of functions and behaviors that undergo deterioration with aging. There is considerable evidence that, in some brain areas, the expression of NPY and VIP might be modulated by acetylcholine. Importantly, the BLA is one of the brain regions that has one of the densest cholinergic innervations, which arise mainly from the basal forebrain cholinergic neurons. These cholinergic neurons depend on nerve growth factor (NGF) for their survival, connectivity, and function. Thus, in this study, we sought to determine if aging alters the densities of NPY- and VIP-positive neurons and cholinergic varicosities in the BLA and, in the affirmative, if those changes might rely on insufficient trophic support provided by NGF. The number of NPY-positive neurons was significantly reduced in aged rats, whereas the number of VIP-immunoreactive neurons was unaltered. The decreased NPY expression was fully reversed by the infusion of NGF in the lateral ventricle. The density of cholinergic varicosities was similar in adult and old rats. On the other hand, the density of cholinergic varicosities is significantly higher in old rats treated with NGF than in adult and old rats. Our results indicate a dissimilar resistance of different populations of BLA interneurons to aging. Furthermore, the present data also show that the BLA cholinergic innervation is particularly resistant to aging effects. Finally, our results also show that the reduced NPY expression in the BLA of aged rats can be related to changes in the NGF neurotrophic support.
Collapse
Affiliation(s)
- Pedro A Pereira
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Marta Tavares
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Miguel Laires
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Bárbara Mota
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Maria Dulce Madeira
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Manuel M Paula-Barbosa
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Armando Cardoso
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
3
|
Dong W, Lu Y, Zhai Y, Bi Y, Peng Y, Ju Z, Xu T, Zhong X, Zhang Y, Zhong C. Plasma neuropeptide Y and cognitive impairment after acute ischemic stroke. J Affect Disord 2022; 317:221-227. [PMID: 36029875 DOI: 10.1016/j.jad.2022.08.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/03/2022] [Accepted: 08/20/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND AND PURPOSE Neuropeptide Y (NPY) has a modulatory role in learning and memory, and is involved in the pathophysiology of neurodegenerative diseases. However, there was no population-based evidence on the relationship between NPY and post-stroke cognitive impairment (PSCI). We aimed to prospectively examine the association between plasma NPY and cognitive impairment among patients with acute ischemic stroke. METHODS On the basis of samples from the China Antihypertensive Trial in Acute Ischemic Stroke, 593 patients with baseline plasma NPY levels were finally included in this study. The study outcome was cognitive impairment (Montreal Cognitive Assessment score < 26) at 3 months after ischemic stroke. Logistic regression models were used to estimate the risk of cognitive impairment. RESULTS After 3 months of follow-up, 422 participants (71.2 %) experienced cognitive impairment. Multivariable-adjusted odds ratio (95 % confidence interval) for the highest tertile of NPY was 0.58 (0.36-0.92) compared with the lowest tertile. Each 1-SD higher log-NPY was associated with a decreased risk of 20 % (95 % confidence interval 2 %-34 %) for PSCI. The addition of plasma NPY to the basic model with conventional risk factors improved the risk reclassification (continuous net reclassification index was 22.8 %, p = 0.01; integrated discrimination improvement was 0.9 %, p = 0.02) for PSCI. LIMITATIONS We measured plasma NPY only once at baseline and failed to explore the association between NPY changes and PSCI. CONCLUSIONS Elevated plasma NPY levels were associated with a decreased risk of cognitive impairment, suggesting plasma NPY may serve as a predictive factor and potential therapeutic target for PSCI.
Collapse
Affiliation(s)
- Wenjing Dong
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Yaling Lu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Yujia Zhai
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Yucong Bi
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Yanbo Peng
- Department of Neurology, Affiliated Hospital of North China University of Science and Technology, Hebei, China
| | - Zhong Ju
- Department of Neurology, Kerqin District First People's Hospital of Tongliao City, Inner Mongolia, China
| | - Tan Xu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Xiaoyan Zhong
- School of Public Health, Medical College of Soochow University, Suzhou, China.
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Chongke Zhong
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Effects of aging on the cholinergic innervation of the rat ventral tegmental area: A stereological study. Exp Gerontol 2021; 148:111298. [PMID: 33652122 DOI: 10.1016/j.exger.2021.111298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 02/12/2021] [Accepted: 02/22/2021] [Indexed: 11/21/2022]
Abstract
Dopamine neurons in the ventral tegmental area (VTA) play a main role in processing both rewarding and aversive stimuli, and their response to salient stimuli is significantly shaped by afferents originating in the brainstem cholinergic nuclei. Aging is associated with a decline in dopaminergic activity and reduced response to positive reinforcement. We have used stereological techniques to examine, in adult and aged rats, the dopaminergic neurons and the cholinergic innervation of the VTA, and the cholinergic populations of the pedunculopontine tegmental (PPT) and laterodorsal tegmental (LDT) nuclei, which are the only source of cholinergic inputs to the VTA. In the VTA, there were no age-related variations in the number and size of tyrosine hydroxylase (TH)-immunoreactive neurons, but the density of cholinergic varicosities was reduced in aged rats. The total number of choline acetyltransferase (ChAT)-immunoreactive neurons in the PPT and LDT was unchanged, but their somas were hypertrophied in aged rats. Our results suggest that dysfunction of the cholinergic system might contribute for the age-associated deterioration of the brain reward system.
Collapse
|
5
|
Zhong W, Huang Q, Zeng L, Hu Z, Tang X. Caveolin-1 and MLRs: A potential target for neuronal growth and neuroplasticity after ischemic stroke. Int J Med Sci 2019; 16:1492-1503. [PMID: 31673241 PMCID: PMC6818210 DOI: 10.7150/ijms.35158] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 09/03/2019] [Indexed: 12/22/2022] Open
Abstract
Ischemic stroke is a leading cause of morbidity and mortality worldwide. Thrombolytic therapy, the only established treatment to reduce the neurological deficits caused by ischemic stroke, is limited by time window and potential complications. Therefore, it is necessary to develop new therapeutic strategies to improve neuronal growth and neurological function following ischemic stroke. Membrane lipid rafts (MLRs) are crucial structures for neuron survival and growth signaling pathways. Caveolin-1 (Cav-1), the main scaffold protein present in MLRs, targets many neural growth proteins and promotes growth of neurons and dendrites. Targeting Cav-1 may be a promising therapeutic strategy to enhance neuroplasticity after cerebral ischemia. This review addresses the role of Cav-1 and MLRs in neuronal growth after ischemic stroke, with an emphasis on the mechanisms by which Cav-1/MLRs modulate neuroplasticity via related receptors, signaling pathways, and gene expression. We further discuss how Cav-1/MLRs may be exploited as a potential therapeutic target to restore neuroplasticity after ischemic stroke. Finally, several representative pharmacological agents known to enhance neuroplasticity are discussed in this review.
Collapse
Affiliation(s)
- Wei Zhong
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Qianyi Huang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Liuwang Zeng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
6
|
Kulikov AV, Arkhipova LV, Kulikova PA, Glazkov AA, Kulikov DA. Possible Approaches to Increase the Longevity of Experimental Animals. ADVANCES IN GERONTOLOGY 2018. [DOI: 10.1134/s2079057018040100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Noorafshan A, Hashemi M, Karbalay-Doust S, Karimi F. High dose Allura Red, rather than the ADI dose, induces structural and behavioral changes in the medial prefrontal cortex of rats and taurine can protect it. Acta Histochem 2018; 120:586-594. [PMID: 30031538 DOI: 10.1016/j.acthis.2018.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/11/2018] [Accepted: 07/11/2018] [Indexed: 02/07/2023]
Abstract
Allura Red is a food color that can lead to neurotoxicity. Taurine is an organic compound that can act as a neuroprotectant. This study aimed to assess the effects of Allura Red with or without taurine consumption on rats' medial Prefrontal Cortex (mPFC). The subjects were divided into six groups as follows: distilled water, taurine (200 mg/kg/day), and low (7 mg/kg/day = acceptable daily dose), and high (70 mg/kg/day) doses of Allura Red with or without taurine consumption for six weeks. The results of novel objects recognition and eight-arm radial maze tests indicated impairment of memory in the Allura Red groups. Subsequently, their brains were analyzed using stereological methods. Both doses of Allura Red caused an increase in working and reference memory errors during the acquisition and retention phases in comparison to the distilled water group (p < 0.01). Additionally, the high dose of Allura Red led to a reduction in the volume of mPFC (35%) and its subdivisions, number of neurons (59%) and glial cells (46%), length of dendrites, and number of spines (mushroom and thin) per dendritic length in comparison to the distilled water group (p < 0.05). The low dose group only showed a reduction in the number of glial cells. However, simultaneous treatment of rats with taurine plus Allura Red prevented the above-mentioned changes. The acceptable daily dose of Allura Red could bring about impairment in spatial learning and memory as well as in the number of glial cells. On the other hand, the high dose of Allura Red could impair learning, memory, and mPFC structure. Thus, taurine could act as a neuroprotectant.
Collapse
|