1
|
Liu Y, Wu Z, Li Y, Chen Y, Zhao X, Wu M, Xia Y. Metabolic reprogramming and interventions in angiogenesis. J Adv Res 2025; 70:323-338. [PMID: 38704087 PMCID: PMC11976431 DOI: 10.1016/j.jare.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Endothelial cell (EC) metabolism plays a crucial role in the process of angiogenesis. Intrinsic metabolic events such as glycolysis, fatty acid oxidation, and glutamine metabolism, support secure vascular migration and proliferation, energy and biomass production, as well as redox homeostasis maintenance during vessel formation. Nevertheless, perturbation of EC metabolism instigates vascular dysregulation-associated diseases, especially cancer. AIM OF REVIEW In this review, we aim to discuss the metabolic regulation of angiogenesis by EC metabolites and metabolic enzymes, as well as prospect the possible therapeutic opportunities and strategies targeting EC metabolism. KEY SCIENTIFIC CONCEPTS OF REVIEW In this work, we discuss various aspects of EC metabolism considering normal and diseased vasculature. Of relevance, we highlight that the implications of EC metabolism-targeted intervention (chiefly by metabolic enzymes or metabolites) could be harnessed in orchestrating a spectrum of pathological angiogenesis-associated diseases.
Collapse
Affiliation(s)
- Yun Liu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zifang Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yikun Li
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yating Chen
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Xuan Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Miaomiao Wu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Yaoyao Xia
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Citrin KM, Chaube B, Fernández-Hernando C, Suárez Y. Intracellular endothelial cell metabolism in vascular function and dysfunction. Trends Endocrinol Metab 2024:S1043-2760(24)00296-0. [PMID: 39672762 DOI: 10.1016/j.tem.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 12/15/2024]
Abstract
Endothelial cells (ECs) form the inner lining of blood vessels that is crucial for vascular function and homeostasis. They regulate vascular tone, oxidative stress, and permeability. Dysfunction leads to increased permeability, leukocyte adhesion, and thrombosis. ECs undergo metabolic changes in conditions such as wound healing, cancer, atherosclerosis, and diabetes, and can influence disease progression. We discuss recent research that has revealed diverse intracellular metabolic pathways in ECs that are tailored to their functional needs, including lipid handling, glycolysis, and fatty acid oxidation (FAO). Understanding EC metabolic signatures in health and disease will be crucial not only for basic biology but can also be exploited when designing new therapies to target EC-related functions in different vascular diseases.
Collapse
Affiliation(s)
- Kathryn M Citrin
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Balkrishna Chaube
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA; Indian Institute of Technology Dharwad, Karnataka, India
| | - Carlos Fernández-Hernando
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Yajaira Suárez
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Cappuccio E, Holzknecht M, Petit M, Heberle A, Rytchenko Y, Seretis A, Pierri CL, Gstach H, Jansen-Dürr P, Weiss AKH. FAHD1 and mitochondrial metabolism: a decade of pioneering discoveries. FEBS J 2024. [PMID: 39642098 DOI: 10.1111/febs.17345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/24/2024] [Accepted: 11/25/2024] [Indexed: 12/08/2024]
Abstract
This review consolidates a decade of research on fumarylacetoacetate hydrolase domain containing protein 1 (FAHD1), a mitochondrial oxaloacetate tautomerase and decarboxylase with profound implications in cellular metabolism. Despite its critical role as a regulator in mitochondrial metabolism, FAHD1 has remained an often-overlooked enzyme in broader discussions of mitochondrial function. After more than 12 years of research, it is increasingly clear that FAHD1's contributions to cellular metabolism, oxidative stress regulation, and disease processes such as cancer and aging warrant recognition in both textbooks and comprehensive reviews. The review delves into the broader implications of FAHD1 in mitochondrial function, emphasizing its roles in mitigating reactive oxygen species (ROS) levels and regulating complex II activity, particularly in cancer cells. This enzyme's significance is further highlighted in the context of aging, where FAHD1's activity has been shown to influence cellular senescence, mitochondrial quality control, and the aging process. Moreover, FAHD1's involvement in glutamine metabolism and its impact on cancer cell proliferation, particularly in aggressive breast cancer subtypes, underscores its potential as a therapeutic target. In addition to providing a comprehensive account of FAHD1's biochemical properties and structural insights, the review integrates emerging hypotheses regarding its role in metabolic reprogramming, immune regulation, and mitochondrial dynamics. By establishing a detailed understanding of FAHD1's physiological roles and therapeutic potential, this work advocates for FAHD1's recognition in foundational texts and resources, marking a pivotal step in its integration into mainstream metabolic research and clinical applications in treating metabolic disorders, cancer, and age-related diseases.
Collapse
Affiliation(s)
- Elia Cappuccio
- Faculty of Biology, Institute for Biomedical Aging Research, Universität Innsbruck, Austria
| | - Max Holzknecht
- Faculty of Biology, Institute for Biomedical Aging Research, Universität Innsbruck, Austria
| | - Michèle Petit
- Faculty of Biology, Institute for Biomedical Aging Research, Universität Innsbruck, Austria
| | - Anne Heberle
- Faculty of Biology, Institute for Biomedical Aging Research, Universität Innsbruck, Austria
| | - Yana Rytchenko
- Faculty of Biology, Institute for Biomedical Aging Research, Universität Innsbruck, Austria
| | - Athanasios Seretis
- Faculty of Biology, Institute for Biomedical Aging Research, Universität Innsbruck, Austria
| | - Ciro L Pierri
- Department of Pharmacy-Pharmaceutical Sciences, Università di Bari, Italy
| | - Hubert Gstach
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Austria
| | - Pidder Jansen-Dürr
- Faculty of Biology, Institute for Biomedical Aging Research, Universität Innsbruck, Austria
| | - Alexander K H Weiss
- Faculty of Biology, Institute for Biomedical Aging Research, Universität Innsbruck, Austria
| |
Collapse
|
4
|
Heberle A, Cappuccio E, Andric A, Kuen T, Simonini A, Weiss AKH. Mitochondrial enzyme FAHD1 reduces ROS in osteosarcoma. Sci Rep 2024; 14:9231. [PMID: 38649439 PMCID: PMC11035622 DOI: 10.1038/s41598-024-60012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
This study investigated the impact of overexpressing the mitochondrial enzyme Fumarylacetoacetate hydrolase domain-containing protein 1 (FAHD1) in human osteosarcoma epithelial cells (U2OS) in vitro. While the downregulation or knockdown of FAHD1 has been extensively researched in various cell types, this study aimed to pioneer the exploration of how increased catalytic activity of human FAHD1 isoform 1 (hFAHD1.1) affects human cell metabolism. Our hypothesis posited that elevation in FAHD1 activity would lead to depletion of mitochondrial oxaloacetate levels. This depletion could potentially result in a decrease in the flux of the tricarboxylic acid (TCA) cycle, thereby accompanied by reduced ROS production. In addition to hFAHD1.1 overexpression, stable U2OS cell lines were established overexpressing a catalytically enhanced variant (T192S) and a loss-of-function variant (K123A) of hFAHD1. It is noteworthy that homologs of the T192S variant are present in animals exhibiting increased resistance to oxidative stress and cancer. Our findings demonstrate that heightened activity of the mitochondrial enzyme FAHD1 decreases cellular ROS levels in U2OS cells. However, these results also prompt a series of intriguing questions regarding the potential role of FAHD1 in mitochondrial metabolism and cellular development.
Collapse
Affiliation(s)
- Anne Heberle
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Elia Cappuccio
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Andreas Andric
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Tatjana Kuen
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Anna Simonini
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Alexander K H Weiss
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
5
|
Zmuda AJ, Kang X, Wissbroecker KB, Freund Saxhaug K, Costa KC, Hegeman AD, Niehaus TD. A universal metabolite repair enzyme removes a strong inhibitor of the TCA cycle. Nat Commun 2024; 15:846. [PMID: 38287013 PMCID: PMC10825186 DOI: 10.1038/s41467-024-45134-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024] Open
Abstract
A prevalent side-reaction of succinate dehydrogenase oxidizes malate to enol-oxaloacetate (OAA), a metabolically inactive form of OAA that is a strong inhibitor of succinate dehydrogenase. We purified from cow heart mitochondria an enzyme (OAT1) with OAA tautomerase (OAT) activity that converts enol-OAA to the physiological keto-OAA form, and determined that it belongs to the highly conserved and previously uncharacterized Fumarylacetoacetate_hydrolase_domain-containing protein family. From all three domains of life, heterologously expressed proteins were shown to have strong OAT activity, and ablating the OAT1 homolog caused significant growth defects. In Escherichia coli, expression of succinate dehydrogenase was necessary for OAT1-associated growth defects to occur, and ablating OAT1 caused a significant increase in acetate and other metabolites associated with anaerobic respiration. OAT1 increased the succinate dehydrogenase reaction rate by 35% in in vitro assays with physiological concentrations of both succinate and malate. Our results suggest that OAT1 is a universal metabolite repair enzyme that is required to maximize aerobic respiration efficiency by preventing succinate dehydrogenase inhibition.
Collapse
Affiliation(s)
- Anthony J Zmuda
- Department of Plant and Microbial Biology, University of Minnesota, Twin Cities, Saint Paul, MN, 55108, USA
| | - Xiaojun Kang
- Department of Plant and Microbial Biology, University of Minnesota, Twin Cities, Saint Paul, MN, 55108, USA
| | - Katie B Wissbroecker
- Department of Plant and Microbial Biology, University of Minnesota, Twin Cities, Saint Paul, MN, 55108, USA
| | - Katrina Freund Saxhaug
- Department of Horticultural Science, University of Minnesota, Twin Cities, Saint Paul, MN, 55108, USA
| | - Kyle C Costa
- Department of Plant and Microbial Biology, University of Minnesota, Twin Cities, Saint Paul, MN, 55108, USA
| | - Adrian D Hegeman
- Department of Plant and Microbial Biology, University of Minnesota, Twin Cities, Saint Paul, MN, 55108, USA
- Department of Horticultural Science, University of Minnesota, Twin Cities, Saint Paul, MN, 55108, USA
| | - Thomas D Niehaus
- Department of Plant and Microbial Biology, University of Minnesota, Twin Cities, Saint Paul, MN, 55108, USA.
| |
Collapse
|
6
|
Guo T, Sperber AM, Krieger IV, Duan Y, Chemelewski VR, Sacchettini JC, Herman JK. Bacillus subtilis YisK possesses oxaloacetate decarboxylase activity and exhibits Mbl-dependent localization. J Bacteriol 2024; 206:e0020223. [PMID: 38047707 PMCID: PMC10810218 DOI: 10.1128/jb.00202-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023] Open
Abstract
YisK is an uncharacterized protein in Bacillus subtilis previously shown to interact genetically with the elongasome protein Mbl. YisK overexpression leads to cell widening and lysis, phenotypes that are dependent on mbl and suppressed by mbl mutations. In the present work, we characterize YisK's localization, structure, and enzymatic activity. We show that YisK localizes as puncta that depend on Mbl. YisK belongs to the fumarylacetoacetate hydrolase (FAH) superfamily, and crystal structures revealed close structural similarity to two oxaloacetate (OAA) decarboxylases: human mitochondrial FAHD1 and Corynebacterium glutamicum Cg1458. We demonstrate that YisK can also catalyze the decarboxylation of OAA (K m = 134 µM, K cat = 31 min-1). A catalytic dead variant (YisK E148A, E150A) retains wild-type localization and still widens cells following overexpression, indicating these activities are not dependent on YisK catalysis. Conversely, a non-localizing variant (YisK E30A) retains wild-type enzymatic activity in vitro but localizes diffusely and no longer widens cells following overexpression. Together, these results suggest that YisK may be subject to spatial regulation that depends on the cell envelope synthesis machinery. IMPORTANCE The elongasome is a multiprotein complex that guides lengthwise growth in some bacteria. We previously showed that, in B. subtilis, overexpression of an uncharacterized putative enzyme (YisK) perturbed function of the actin-like elongasome protein Mbl. Here, we show that YisK exhibits Mbl-dependent localization. Through biochemical and structural characterization, we demonstrate that, like its mitochondrial homolog FAHD1, YisK can catalyze the decarboxylation of the oxaloacetate to pyruvate and CO2. YisK is the first example of an enzyme implicated in central carbon metabolism with subcellular localization that depends on Mbl.
Collapse
Affiliation(s)
- Tingfeng Guo
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Anthony M. Sperber
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Inna V. Krieger
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Yi Duan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Veronica R. Chemelewski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - James C. Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Jennifer K. Herman
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
7
|
Martini H, Passos JF. Cellular senescence: all roads lead to mitochondria. FEBS J 2023; 290:1186-1202. [PMID: 35048548 PMCID: PMC9296701 DOI: 10.1111/febs.16361] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 01/10/2023]
Abstract
Senescence is a multi-functional cell fate, characterized by an irreversible cell-cycle arrest and a pro-inflammatory phenotype, commonly known as the senescence-associated secretory phenotype (SASP). Emerging evidence indicates that accumulation of senescent cells in multiple tissues drives tissue dysfunction and several age-related conditions. This has spurred the academic community and industry to identify new therapeutic interventions targeting this process. Mitochondrial dysfunction is an often-unappreciated hallmark of cellular senescence which plays important roles not only in the senescence growth arrest but also in the development of the SASP and resistance to cell-death. Here, we review the evidence that supports a role for mitochondria in the development of senescence and describe the underlying mechanisms. Finally, we propose that a detailed road map of mitochondrial biology in senescence will be crucial to guide the future development of senotherapies.
Collapse
Affiliation(s)
- Hélène Martini
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905 USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905 USA
| | - João F. Passos
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905 USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905 USA
| |
Collapse
|
8
|
Holzknecht M, Guerrero‐Navarro L, Petit M, Albertini E, Damisch E, Simonini A, Schmitt F, Parson W, Fiegl H, Weiss A, Jansen‐Duerr P. The mitochondrial enzyme
FAHD1
regulates complex
II
activity in breast cancer cells and is indispensable for basal
BT
‐20 cells
in vitro. FEBS Lett 2022; 596:2781-2794. [DOI: 10.1002/1873-3468.14462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Max Holzknecht
- Leopold‐Franzens University of Innsbruck Institute for Biomedical Aging Research Rennweg 10 6020 Innsbruck Austria
| | - Lena Guerrero‐Navarro
- Leopold‐Franzens University of Innsbruck Institute for Biomedical Aging Research Rennweg 10 6020 Innsbruck Austria
| | - Michele Petit
- Leopold‐Franzens University of Innsbruck Institute for Biomedical Aging Research Rennweg 10 6020 Innsbruck Austria
| | - Eva Albertini
- Leopold‐Franzens University of Innsbruck Institute for Biomedical Aging Research Rennweg 10 6020 Innsbruck Austria
| | - Elisabeth Damisch
- Leopold‐Franzens University of Innsbruck Institute for Biomedical Aging Research Rennweg 10 6020 Innsbruck Austria
| | - Anna Simonini
- Leopold‐Franzens University of Innsbruck Institute for Biomedical Aging Research Rennweg 10 6020 Innsbruck Austria
| | - Fernando Schmitt
- Medical Faculty of University of Porto CINTESIS@RISE (Health Research Network), Alameda Prof. Hernâni Monteiro 4200‐319 Porto Portugal
| | - Walther Parson
- Institute of Legal Medicine Medical University of Innsbruck 6020 Innsbruck Austria
- Forensic Science Program, The Pennsylvania State University University Park PA 16801 USA
| | - Heidelinde Fiegl
- Medical University of Innsbruck, Department of Obstetrics and Gynaecology Anichstraße 35 6020 Innsbruck Austria
| | - Alexander Weiss
- Leopold‐Franzens University of Innsbruck Institute for Biomedical Aging Research Rennweg 10 6020 Innsbruck Austria
| | - Pidder Jansen‐Duerr
- Leopold‐Franzens University of Innsbruck Institute for Biomedical Aging Research Rennweg 10 6020 Innsbruck Austria
| |
Collapse
|
9
|
Liu H, Zhang X, Liu Y, Xin N, Deng Y, Li Y. Semen Ziziphi Spinosae attenuates blood-brain barrier dysfunction induced by lipopolysaccharide by targeting the FAK-DOCK180-Rac1-WAVE2-Arp3 signaling pathway. NPJ Sci Food 2022; 6:27. [PMID: 35655066 PMCID: PMC9163036 DOI: 10.1038/s41538-022-00142-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/05/2022] [Indexed: 11/19/2022] Open
Abstract
Semen Ziziphi Spinosae (SZS) has been extensively used in the daily diet as a functional food for neuroprotective health-benefit in China for many years. However, the neuroprotective mechanism of SZS associated with blood–brain barrier (BBB) integrity remains unexplored. The present study suggests SZS could protect against lipopolysaccharide (LPS)-induced BBB dysfunction. Proteomics indicate that 135 proteins in rat brain are significantly altered by SZS. These differentially expressed proteins are mainly clustered into cell–cell adhesion and adherens junctions, which are closely related with BBB integrity. SZS reversed LPS-induces BBB breakdown by activating the FAK-DOCK180-Rac1-WAVE2-Arp3 pathway. Molecular docking between signaling pathway proteins and identified SZS components in rat plasma reveals that 6”‘-feruloylspinosin, spinosin, and swertisin strongly binds to signaling proteins at multiple amino acid sites. These novel findings suggest a health benefit of SZS in prevention of cerebral diseases and contributes to the further application of SZS as a functional food.
Collapse
Affiliation(s)
- Huayan Liu
- School of Life Science, Beijing Institute of Technology, 100081, Beijing, China
| | - Xin Zhang
- School of Life Science, Beijing Institute of Technology, 100081, Beijing, China
| | - Yujiao Liu
- School of Life Science, Beijing Institute of Technology, 100081, Beijing, China
| | - Nian Xin
- BIT&GS Technologies Co. Ltd, 100074, Beijing, China
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, 100081, Beijing, China.
| | - Yujuan Li
- School of Life Science, Beijing Institute of Technology, 100081, Beijing, China.
| |
Collapse
|
10
|
Fujimoto M, Higashiyama R, Yasui H, Yamashita K, Inanami O. Preclinical studies for improving radiosensitivity of non-small cell lung cancer cell lines by combining glutaminase inhibition and senolysis. Transl Oncol 2022; 21:101431. [PMID: 35452996 PMCID: PMC9043980 DOI: 10.1016/j.tranon.2022.101431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/18/2022] [Accepted: 04/11/2022] [Indexed: 01/07/2023] Open
Abstract
Abnormal glutaminolysis is common in cancer cells with mutations. The glutaminase inhibitor CB839 enhanced radiosensitivity in A549 and H460 cells. Glutaminolysis inhibition led to an increase in cell senescence. The Bcl-2 family inhibitor ABT-263 induced transition from senescence to apoptosis. Combined glutaminolysis and senolysis may improve radiosensitivity in cancer cells.
Glutamine metabolism, known as glutaminolysis, is abnormally activated in many cancer cells with KRAS or BRAF mutations or active c-MYC. Glutaminolysis plays an important role in the proliferation of cancer cells with oncogenic mutations. In this study, we characterized radiation-induced cell death, which was enhanced by glutaminolysis inhibition in non-small cell lung cancer A549 and H460 cell lines with KRAS mutation. A clonogenic survival assay revealed that treatment with a glutaminase inhibitor, CB839, enhanced radiosensitivity. X-irradiation increased glutamate production, mitochondrial oxygen consumption, and ATP production, whereas CB839 treatment suppressed these effects. The data suggest that the enhancement of glutaminolysis-dependent energy metabolism for ATP production is important for survival after X-irradiation. Evaluation of the cell death phenotype revealed that glutaminolysis inhibitory treatment with CB839 or a low-glutamine medium significantly promoted the proliferation of β-galactosidase-positive and IL-6/IL-8 secretory cells among X-irradiated tumor cells, corresponding to an increase in the senescent cell population. Furthermore, treatment with ABT263, a Bcl-2 family inhibitor, transformed senescent cells into apoptotic cells. The findings suggest that combination treatment with a glutaminolysis inhibitor and a senolytic drug is useful for efficient radiotherapy.
Collapse
Affiliation(s)
- Masaki Fujimoto
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.
| | - Ritsuko Higashiyama
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.
| | - Hironobu Yasui
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.
| | - Koya Yamashita
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.
| | - Osamu Inanami
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.
| |
Collapse
|
11
|
Fink BD, Rauckhorst AJ, Taylor EB, Yu L, Sivitz WI. Membrane potential-dependent regulation of mitochondrial complex II by oxaloacetate in interscapular brown adipose tissue. FASEB Bioadv 2022; 4:197-210. [PMID: 35392250 PMCID: PMC8973305 DOI: 10.1096/fba.2021-00137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 11/11/2022] Open
Abstract
Classically, mitochondrial respiration responds to decreased membrane potential (ΔΨ) by increasing respiration. However, we found that for succinate-energized complex II respiration in skeletal muscle mitochondria (unencumbered by rotenone), low ΔΨ impairs respiration by a mechanism culminating in oxaloacetate (OAA) inhibition of succinate dehydrogenase (SDH). Here, we investigated whether this phenomenon extends to far different mitochondria of a tissue wherein ΔΨ is intrinsically low, i.e., interscapular brown adipose tissue (IBAT). Also, to advance our knowledge of the mechanism, we performed isotopomer studies of metabolite flux not done in our previous muscle studies. In additional novel work, we addressed possible ways ADP might affect the mechanism in IBAT mitochondria. UCP1 activity, and consequently ΔΨ, were perturbed both by GDP, a well-recognized potent inhibitor of UCP1 and by the chemical uncoupler carbonyl cyanide m-chlorophenyl hydrazone (FCCP). In succinate-energized mitochondria, GDP increased ΔΨ but also increased rather than decreased (as classically predicted under low ΔΨ) O2 flux. In GDP-treated mitochondria, FCCP reduced potential but also decreased respiration. Metabolite studies by NMR and flux analyses by LC-MS support a mechanism, wherein ΔΨ effects on the production of reactive oxygen alters the NADH/NAD+ ratio affecting OAA accumulation and, hence, OAA inhibition of SDH. We also found that ADP-altered complex II respiration in complex fashion probably involving decreased ΔΨ due to ATP synthesis, a GDP-like nucleotide inhibition of UCP1, and allosteric enzyme action. In summary, complex II respiration in IBAT mitochondria is regulated by UCP1-dependent ΔΨ altering substrate flow through OAA and OAA inhibition of SDH.
Collapse
Affiliation(s)
- Brian D. Fink
- Department of Internal Medicine/Endocrinology and MetabolismUniversity of Iowa and the Iowa City Veterans Affairs Medical CenterIowa CityIowaUSA
| | - Adam J. Rauckhorst
- Department of Molecular Physiology and BiophysicsUniversity of IowaIowa CityIowaUSA
| | - Eric B. Taylor
- Department of Molecular Physiology and BiophysicsUniversity of IowaIowa CityIowaUSA
| | - Liping Yu
- Department of Biochemistry and Molecular BiologyUniversity of IowaIowa CityIowaUSA
- NMR Core FacilityUniversity of IowaIowa CityIowaUSA
| | - William I. Sivitz
- Department of Internal Medicine/Endocrinology and MetabolismUniversity of Iowa and the Iowa City Veterans Affairs Medical CenterIowa CityIowaUSA
| |
Collapse
|
12
|
High Glycolytic Activity Enhances Stem Cell Reprogramming of Fahd1-KO Mouse Embryonic Fibroblasts. Cells 2021; 10:cells10082040. [PMID: 34440809 PMCID: PMC8392800 DOI: 10.3390/cells10082040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria play a key role in metabolic transitions involved in the reprogramming of somatic cells into induced pluripotent stem cells (iPSCs), but the underlying molecular mechanisms remain largely unexplored. To obtain new insight into the mechanisms of cellular reprogramming, we studied the role of FAH domain-containing protein 1 (FAHD1) in the reprogramming of murine embryonic fibroblasts (MEFs) into iPSCs and their subsequent differentiation into neuronal cells. MEFs from wild type (WT) and Fahd1-knock-out (KO) mice were reprogrammed into iPSCs and characterized for alterations in metabolic parameters and the expression of marker genes indicating mitochondrial biogenesis. Fahd1-KO MEFs showed a higher reprogramming efficiency accompanied by a significant increase in glycolytic activity as compared to WT. We also observed a strong increase of mitochondrial DNA copy number and expression of biogenesis marker genes in Fahd1-KO iPSCs relative to WT. Neuronal differentiation of iPSCs was accompanied by increased expression of mitochondrial biogenesis genes in both WT and Fahd1-KO neurons with higher expression in Fahd1-KO neurons. Together these observations establish a role of FAHD1 as a potential negative regulator of reprogramming and add additional insight into mechanisms by which FAHD1 modulates mitochondrial functions.
Collapse
|
13
|
Structural and functional comparison of fumarylacetoacetate domain containing protein 1 in human and mouse. Biosci Rep 2021; 40:222164. [PMID: 32068790 PMCID: PMC7056447 DOI: 10.1042/bsr20194431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
FAH domain containing protein 1 (FAHD1) is a mammalian mitochondrial protein, displaying bifunctionality as acylpyruvate hydrolase (ApH) and oxaloacetate decarboxylase (ODx) activity. We report the crystal structure of mouse FAHD1 and structural mapping of the active site of mouse FAHD1. Despite high structural similarity with human FAHD1, a rabbit monoclonal antibody (RabMab) could be produced that is able to recognize mouse FAHD1, but not the human form, whereas a polyclonal antibody recognized both proteins. Epitope mapping in combination with our deposited crystal structures revealed that the epitope overlaps with a reported SIRT3 deacetylation site in mouse FAHD1.
Collapse
|
14
|
Gerna D, Arc E, Holzknecht M, Roach T, Jansen-Dürr P, Weiss AK, Kranner I. AtFAHD1a: A New Player Influencing Seed Longevity and Dormancy in Arabidopsis? Int J Mol Sci 2021; 22:2997. [PMID: 33804275 PMCID: PMC8001395 DOI: 10.3390/ijms22062997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022] Open
Abstract
Fumarylacetoacetate hydrolase (FAH) proteins form a superfamily found in Archaea, Bacteria, and Eukaryota. However, few fumarylacetoacetate hydrolase domain (FAHD)-containing proteins have been studied in Metazoa and their role in plants remains elusive. Sequence alignments revealed high homology between two Arabidopsis thaliana FAHD-containing proteins and human FAHD1 (hFAHD1) implicated in mitochondrial dysfunction-associated senescence. Transcripts of the closest hFAHD1 orthologue in Arabidopsis (AtFAHD1a) peak during seed maturation drying, which influences seed longevity and dormancy. Here, a homology study was conducted to assess if AtFAHD1a contributes to seed longevity and vigour. We found that an A. thaliana T-DNA insertional line (Atfahd1a-1) had extended seed longevity and shallower thermo-dormancy. Compared to the wild type, metabolite profiling of dry Atfahd1a-1 seeds showed that the concentrations of several amino acids, some reducing monosaccharides, and δ-tocopherol dropped, whereas the concentrations of dehydroascorbate, its catabolic intermediate threonic acid, and ascorbate accumulated. Furthermore, the redox state of the glutathione disulphide/glutathione couple shifted towards a more reducing state in dry mature Atfahd1a-1 seeds, suggesting that AtFAHD1a affects antioxidant redox poise during seed development. In summary, AtFAHD1a appears to be involved in seed redox regulation and to affect seed quality traits such as seed thermo-dormancy and longevity.
Collapse
Affiliation(s)
- Davide Gerna
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria; (E.A.); (T.R.); (I.K.)
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria; (M.H.); (P.J.-D.)
| | - Erwann Arc
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria; (E.A.); (T.R.); (I.K.)
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria; (M.H.); (P.J.-D.)
| | - Max Holzknecht
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria; (M.H.); (P.J.-D.)
- Research Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, 6020 Innsbruck, Austria
| | - Thomas Roach
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria; (E.A.); (T.R.); (I.K.)
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria; (M.H.); (P.J.-D.)
| | - Pidder Jansen-Dürr
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria; (M.H.); (P.J.-D.)
- Research Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, 6020 Innsbruck, Austria
| | - Alexander K.H. Weiss
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria; (M.H.); (P.J.-D.)
- Research Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, 6020 Innsbruck, Austria
| | - Ilse Kranner
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria; (E.A.); (T.R.); (I.K.)
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria; (M.H.); (P.J.-D.)
| |
Collapse
|
15
|
Cavinato M, Madreiter-Sokolowski CT, Büttner S, Schosserer M, Zwerschke W, Wedel S, Grillari J, Graier WF, Jansen-Dürr P. Targeting cellular senescence based on interorganelle communication, multilevel proteostasis, and metabolic control. FEBS J 2020; 288:3834-3854. [PMID: 33200494 PMCID: PMC7611050 DOI: 10.1111/febs.15631] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/02/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
Cellular senescence, a stable cell division arrest caused by severe damage and stress, is a hallmark of aging in vertebrates including humans. With progressing age, senescent cells accumulate in a variety of mammalian tissues, where they contribute to tissue aging, identifying cellular senescence as a major target to delay or prevent aging. There is an increasing demand for the discovery of new classes of small molecules that would either avoid or postpone cellular senescence by selectively eliminating senescent cells from the body (i.e., ‘senolytics’) or inactivating/switching damage‐inducing properties of senescent cells (i.e., ‘senostatics/senomorphics’), such as the senescence‐associated secretory phenotype. Whereas compounds with senolytic or senostatic activity have already been described, their efficacy and specificity has not been fully established for clinical use yet. Here, we review mechanisms of senescence that are related to mitochondria and their interorganelle communication, and the involvement of proteostasis networks and metabolic control in the senescent phenotype. These cellular functions are associated with cellular senescence in in vitro and in vivo models but have not been fully exploited for the search of new compounds to counteract senescence yet. Therefore, we explore possibilities to target these mechanisms as new opportunities to selectively eliminate and/or disable senescent cells with the aim of tissue rejuvenation. We assume that this research will provide new compounds from the chemical space which act as mimetics of caloric restriction, modulators of calcium signaling and mitochondrial physiology, or as proteostasis optimizers, bearing the potential to counteract cellular senescence, thereby allowing healthy aging.
Collapse
Affiliation(s)
- Maria Cavinato
- Institute for Biomedical Aging Research, Leopold-Franzens Universität Innsbruck, Austria.,Center for Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens Universität Innsbruck, Austria
| | - Corina T Madreiter-Sokolowski
- Department of Health Sciences and Technology, Institute of Translational Medicine, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.,Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Sabrina Büttner
- Institute of Molecular Biosciences, University of Graz, Austria.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Markus Schosserer
- Christian Doppler Laboratory for Skin Multimodal Analytical Imaging of Aging and Senescence, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Medical University of Vienna, Austria
| | - Werner Zwerschke
- Institute for Biomedical Aging Research, Leopold-Franzens Universität Innsbruck, Austria.,Center for Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens Universität Innsbruck, Austria
| | - Sophia Wedel
- Institute for Biomedical Aging Research, Leopold-Franzens Universität Innsbruck, Austria.,Center for Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens Universität Innsbruck, Austria
| | - Johannes Grillari
- Christian Doppler Laboratory for Skin Multimodal Analytical Imaging of Aging and Senescence, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Medical University of Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Wolfgang F Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Austria.,BioTechMed Graz, Austria
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, Leopold-Franzens Universität Innsbruck, Austria.,Center for Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens Universität Innsbruck, Austria
| |
Collapse
|
16
|
Chinopoulos C. From Glucose to Lactate and Transiting Intermediates Through Mitochondria, Bypassing Pyruvate Kinase: Considerations for Cells Exhibiting Dimeric PKM2 or Otherwise Inhibited Kinase Activity. Front Physiol 2020; 11:543564. [PMID: 33335484 PMCID: PMC7736077 DOI: 10.3389/fphys.2020.543564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
A metabolic hallmark of many cancers is the increase in glucose consumption coupled to excessive lactate production. Mindful that L-lactate originates only from pyruvate, the question arises as to how can this be sustained in those tissues where pyruvate kinase activity is reduced due to dimerization of PKM2 isoform or inhibited by oxidative/nitrosative stress, posttranslational modifications or mutations, all widely reported findings in the very same cells. Hereby 17 pathways connecting glucose to lactate bypassing pyruvate kinase are reviewed, some of which transit through the mitochondrial matrix. An additional 69 converging pathways leading to pyruvate and lactate, but not commencing from glucose, are also examined. The minor production of pyruvate and lactate by glutaminolysis is scrutinized separately. The present review aims to highlight the ways through which L-lactate can still be produced from pyruvate using carbon atoms originating from glucose or other substrates in cells with kinetically impaired pyruvate kinase and underscore the importance of mitochondria in cancer metabolism irrespective of oxidative phosphorylation.
Collapse
|
17
|
Weiss AKH, Albertini E, Holzknecht M, Cappuccio E, Dorigatti I, Krahbichler A, Damisch E, Gstach H, Jansen-Dürr P. Regulation of cellular senescence by eukaryotic members of the FAH superfamily - A role in calcium homeostasis? Mech Ageing Dev 2020; 190:111284. [PMID: 32574647 PMCID: PMC7116474 DOI: 10.1016/j.mad.2020.111284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 01/04/2023]
Abstract
Fumarylacetoacetate hydrolase (FAH) superfamily members are commonly expressed in the prokaryotic kingdom, where they take part in the committing steps of degradation pathways of complex carbon sources. Besides FAH itself, the only described FAH superfamily members in the eukaryotic kingdom are fumarylacetoacetate hydrolase domain containing proteins (FAHD) 1 and 2, that have been a focus of recent work in aging research. Here, we provide a review of current knowledge on FAHD proteins. Of those, FAHD1 has recently been described as a regulator of mitochondrial function and senescence, in the context of mitochondrial dysfunction associated senescence (MiDAS). This work further describes data based on bioinformatics analysis, 3D structure comparison and sequence alignment, that suggests a putative role of FAHD proteins as calcium binding proteins.
Collapse
Affiliation(s)
- Alexander K H Weiss
- University of Innsbruck, Research Institute for Biomedical Aging Research, Rennweg 10, A-6020, Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Austria.
| | - Eva Albertini
- University of Innsbruck, Research Institute for Biomedical Aging Research, Rennweg 10, A-6020, Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Austria
| | - Max Holzknecht
- University of Innsbruck, Research Institute for Biomedical Aging Research, Rennweg 10, A-6020, Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Austria
| | - Elia Cappuccio
- University of Innsbruck, Research Institute for Biomedical Aging Research, Rennweg 10, A-6020, Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Austria
| | - Ilaria Dorigatti
- University of Innsbruck, Research Institute for Biomedical Aging Research, Rennweg 10, A-6020, Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Austria
| | - Anna Krahbichler
- University of Innsbruck, Research Institute for Biomedical Aging Research, Rennweg 10, A-6020, Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Austria
| | - Elisabeth Damisch
- University of Innsbruck, Research Institute for Biomedical Aging Research, Rennweg 10, A-6020, Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Austria
| | - Hubert Gstach
- University of Vienna, UZ2 E349, Department of Pharmaceutical Chemistry, Faculty of Life Sciences, Althanstrasse 14, 1090, Vienna, Austria
| | - Pidder Jansen-Dürr
- University of Innsbruck, Research Institute for Biomedical Aging Research, Rennweg 10, A-6020, Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Austria
| |
Collapse
|
18
|
Abstract
All organisms growing beyond the oxygen diffusion limit critically depend on a functional vasculature for survival. Yet blood vessels are far more than passive, uniform conduits for oxygen and nutrient supply. A remarkable organotypic heterogeneity is brought about by tissue-specific differentiated endothelial cells (lining the blood vessels' lumen) and allows blood vessels to deal with organ-specific demands for homeostasis. On the flip side, when blood vessels go awry, they promote life-threatening diseases characterized by endothelial cells inappropriately adopting an angiogenic state (eg, tumor vascularization) or becoming dysfunctional (eg, diabetic microvasculopathies), calling respectively for antiangiogenic therapies and proangiogenic/vascular regenerative strategies. In solid tumors, despite initial enthusiasm, growth factor-based (mostly anti-VEGF [vascular endothelial growth factor]) antiangiogenic therapies do not sufficiently live up to the expectations in terms of efficiency and patient survival, in part, due to intrinsic and acquired therapy resistance. Tumors cunningly deploy alternative growth factors than the ones targeted by the antiangiogenic therapies to reinstigate angiogenesis or revert to other ways of securing blood flow, independently of the targeted growth factors. In trying to alleviate tissue ischemia and to repair dysfunctional or damaged endothelium, local in-tissue administration of (genes encoding) proangiogenic factors or endothelial (stem) cells harnessing regenerative potential have been explored. Notwithstanding evaluation in clinical trials, these approaches are often hampered by dosing issues and limited half-life or local retention of the administered agents. Here, without intending to provide an all-encompassing historical overview, we focus on some recent advances in understanding endothelial cell behavior in health and disease and identify novel molecular players and concepts that could eventually be considered for therapeutic targeting.
Collapse
Affiliation(s)
- Guy Eelen
- From the Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, Leuven Cancer Institute, KU Leuven, Belgium (G.E., L.T., P.C.)
| | - Lucas Treps
- From the Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, Leuven Cancer Institute, KU Leuven, Belgium (G.E., L.T., P.C.)
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China (X.L., P.C.)
| | - Peter Carmeliet
- From the Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, Leuven Cancer Institute, KU Leuven, Belgium (G.E., L.T., P.C.).,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China (X.L., P.C.)
| |
Collapse
|
19
|
Falkenberg KD, Rohlenova K, Luo Y, Carmeliet P. The metabolic engine of endothelial cells. Nat Metab 2019; 1:937-946. [PMID: 32694836 DOI: 10.1038/s42255-019-0117-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023]
Abstract
Endothelial cells (ECs) line the quiescent vasculature but can form new blood vessels (a process termed angiogenesis) in disease. Strategies targeting angiogenic growth factors have been clinically developed for the treatment of malignant and ocular diseases. Studies over the past decade have documented that several pathways of central carbon metabolism are necessary for EC homeostasis and growth, and that strategies that stimulate or block EC metabolism can be used to promote or inhibit vessel growth, respectively. In this Review, we provide an updated overview of the growing understanding of central carbon metabolic pathways in ECs and the therapeutic opportunities for targeting EC metabolism.
Collapse
Affiliation(s)
- Kim D Falkenberg
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Katerina Rohlenova
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Yonglun Luo
- Lars Bolund Institute of Regenerative Medicine, BGI-Qindao, Qindao, China
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium.
| |
Collapse
|
20
|
Li X, Sun X, Carmeliet P. Hallmarks of Endothelial Cell Metabolism in Health and Disease. Cell Metab 2019; 30:414-433. [PMID: 31484054 DOI: 10.1016/j.cmet.2019.08.011] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 01/13/2023]
Abstract
In 2009, it was postulated that endothelial cells (ECs) would only be able to execute the orders of growth factors if these cells would accordingly adapt their metabolism. Ten years later, it has become clear that ECs, often differently from other cell types, rely on distinct metabolic pathways to survive and form new blood vessels; that manipulation of EC metabolic pathways alone (even without changing angiogenic signaling) suffices to alter vessel sprouting; and that perturbations of these metabolic pathways can underlie excess formation of new blood vessels (angiogenesis) in cancer and ocular diseases. Initial proof of evidence has been provided that targeting (normalizing) these metabolic perturbations in diseased ECs and delivery of metabolites deserve increasing attention as novel therapeutic approaches for inhibiting or stimulating vessel growth in multiple disorders.
Collapse
Affiliation(s)
- Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, Guangdong, P.R. China.
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Peter Carmeliet
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, Guangdong, P.R. China; Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven B-3000, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, VIB, Leuven B-3000, Belgium.
| |
Collapse
|
21
|
Tammaro A, Scantlebery AML, Rampanelli E, Borrelli C, Claessen N, Butter LM, Soriani A, Colonna M, Leemans JC, Dessing MC, Florquin S. TREM1/3 Deficiency Impairs Tissue Repair After Acute Kidney Injury and Mitochondrial Metabolic Flexibility in Tubular Epithelial Cells. Front Immunol 2019; 10:1469. [PMID: 31354698 PMCID: PMC6629955 DOI: 10.3389/fimmu.2019.01469] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/12/2019] [Indexed: 12/17/2022] Open
Abstract
Long-term sequelae of acute kidney injury (AKI) are associated with incomplete recovery of renal function and the development of chronic kidney disease (CKD), which can be mediated by aberrant innate immune activation, mitochondrial pathology, and accumulation of senescent tubular epithelial cells (TECs). Herein, we show that the innate immune receptor Triggering receptor expressed on myeloid cells-1 (TREM-1) links mitochondrial metabolism to tubular epithelial senescence. TREM-1 is expressed by inflammatory and epithelial cells, both players in renal repair after ischemia/reperfusion (IR)-induced AKI. Hence, we subjected WT and TREM1/3 KO mice to different models of renal IR. TREM1/3 KO mice displayed no major differences during the acute phase of injury, but increased mortality was observed in the recovery phase. This detrimental effect was associated with maladaptive repair, characterized by persistent tubular damage, inflammation, fibrosis, and TEC senescence. In vitro, we observed an altered mitochondrial homeostasis and cellular metabolism in TREM1/3 KO primary TECs. This was associated with G2/M arrest and increased ROS accumulation. Further exposure of cells to ROS-generating triggers drove the cells into a stress-induced senescent state, resulting in decreased wound healing capacity. Treatment with a mitochondria anti-oxidant partly prevented the senescent phenotype, suggesting a role for mitochondria herein. In summary, we have unraveled a novel (metabolic) mechanism by which TREM1/3 deficiency drives senescence in TECs. This involves redox imbalance, mitochondrial dysfunction and a decline in cellular metabolic activities. These finding suggest a novel role for TREM-1 in maintaining tubular homeostasis through regulation of mitochondrial metabolic flexibility.
Collapse
Affiliation(s)
| | | | | | - Cristiana Borrelli
- Laboratory Affiliated With Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Nike Claessen
- Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Loes M Butter
- Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Alessandra Soriani
- Laboratory Affiliated With Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MI, United States
| | | | - Mark C Dessing
- Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | | |
Collapse
|
22
|
Weiss AKH, Holzknecht M, Cappuccio E, Dorigatti I, Kreidl K, Naschberger A, Rupp B, Gstach H, Jansen-Dürr P. Expression, Purification, Crystallization, and Enzyme Assays of Fumarylacetoacetate Hydrolase Domain-Containing Proteins. J Vis Exp 2019:10.3791/59729. [PMID: 31282888 PMCID: PMC7115867 DOI: 10.3791/59729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Fumarylacetoacetate hydrolase (FAH) domain-containing proteins (FAHD) are identified members of the FAH superfamily in eukaryotes. Enzymes of this superfamily generally display multi-functionality, involving mainly hydrolase and decarboxylase mechanisms. This article presents a series of consecutive methods for the expression and purification of FAHD proteins, mainly FAHD protein 1 (FAHD1) orthologues among species (human, mouse, nematodes, plants, etc.). Covered methods are protein expression in E. coli, affinity chromatography, ion exchange chromatography, preparative and analytical gel filtration, crystallization, X-ray diffraction, and photometric assays. Concentrated protein of high levels of purity (>98%) may be employed for crystallization or antibody production. Proteins of similar or lower quality may be employed in enzyme assays or used as antigens in detection systems (Western-Blot, ELISA). In the discussion of this work, the identified enzymatic mechanisms of FAHD1 are outlined to describe its hydrolase and decarboxylase bi-functionality in more detail.
Collapse
Affiliation(s)
- Alexander K H Weiss
- Research Institute for Biomedical Aging Research, University of Innsbruck Austria; Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck Austria;
| | - Max Holzknecht
- Research Institute for Biomedical Aging Research, University of Innsbruck Austria; Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck Austria
| | - Elia Cappuccio
- Research Institute for Biomedical Aging Research, University of Innsbruck Austria; Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck Austria
| | - Ilaria Dorigatti
- Research Institute for Biomedical Aging Research, University of Innsbruck Austria
| | - Karin Kreidl
- Research Institute for Biomedical Aging Research, University of Innsbruck Austria
| | | | - Bernhard Rupp
- Division of Genetic Epidemiology, Medical University of Innsbruck Austria
| | - Hubert Gstach
- Faculty of Chemistry, Department of Organic Chemistry, University of Vienna Austria
| | - Pidder Jansen-Dürr
- Research Institute for Biomedical Aging Research, University of Innsbruck Austria; Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck Austria
| |
Collapse
|
23
|
Structural basis for the bi-functionality of human oxaloacetate decarboxylase FAHD1. Biochem J 2018; 475:3561-3576. [PMID: 30348641 DOI: 10.1042/bcj20180750] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/15/2018] [Accepted: 10/22/2018] [Indexed: 11/17/2022]
Abstract
Whereas enzymes in the fumarylacetoacetate hydrolase (FAH) superfamily catalyze several distinct chemical reactions, the structural basis for their multi-functionality remains elusive. As a well-studied example, human FAH domain-containing protein 1 (FAHD1) is a mitochondrial protein displaying both acylpyruvate hydrolase (ApH) and oxaloacetate decarboxylase (ODx) activity. As mitochondrial ODx, FAHD1 acts antagonistically to pyruvate carboxylase, a key metabolic enzyme. Despite its importance for mitochondrial function, very little is known about the catalytic mechanisms underlying FAHD1 enzymatic activities, and the architecture of its ligated active site is currently ill defined. We present crystallographic data of human FAHD1 that provide new insights into the structure of the catalytic center at high resolution, featuring a flexible 'lid'-like helical region which folds into a helical structure upon binding of the ODx inhibitor oxalate. The oxalate-driven structural transition results in the generation of a potential catalytic triad consisting of E33, H30 and an associated water molecule. In silico docking studies indicate that the substrate is further stabilized by a complex hydrogen-bond network, involving amino acids Q109 and K123, identified herein as potential key residues for FAHD1 catalytic activity. Mutation of amino acids H30, E33 and K123 each had discernible influence on the ApH and/or ODx activity of FAHD1, suggesting distinct catalytic mechanisms for both activities. The structural analysis presented here provides a defined structural map of the active site of FAHD1 and contributes to a better understanding of the FAH superfamily of enzymes.
Collapse
|
24
|
Etemad S, Petit M, Weiss AKH, Schrattenholz A, Baraldo G, Jansen-Dürr P. Oxaloacetate decarboxylase FAHD1 - a new regulator of mitochondrial function and senescence. Mech Ageing Dev 2018; 177:22-29. [PMID: 30055189 DOI: 10.1016/j.mad.2018.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/02/2018] [Accepted: 07/25/2018] [Indexed: 12/16/2022]
Abstract
FAHD1, a member of the FAH superfamily of enzymes, was identified in a proteomic screen for mitochondrial proteins with differential expression in young versus senescent human endothelial cells. FAHD1 acts as oxaloacetate decarboxylase, and recent observations suggest that FAHD1 plays an important role in regulating mitochondrial function. Thus, mutation of the nematode homolog, fahd-1, impairs mitochondrial function in Caenorhabditis elegans. When FAHD1 gene expression was silenced in human cells, activity of the mitochondrial electron transport (ETC) system was reduced and the cells entered premature senescence-like growth arrest. These findings suggest a model where FAHD1 regulates mitochondrial function and in consequence senescence. These findings are discussed here in the context of a new concept where senescence is divided into deep senescence and less severe forms of senescence. We propose that genetic inactivation of FAHD1 in human cells induces a specific form of cellular senescence, which we term senescence light and discuss it in the context of mitochondrial dysfunction associated senescence (MiDAS) described by others. Together these findings suggest the existence of a continuum of cellular senescence phenotypes, which may be at least in part reversible.
Collapse
Affiliation(s)
- Solmaz Etemad
- University of Innsbruck, Research Institute for Biomedical Ageing Research, Rennweg 10, A-6020 Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Innrain 80-82, A-6020 Innsbruck, Austria
| | - Michèle Petit
- University of Innsbruck, Research Institute for Biomedical Ageing Research, Rennweg 10, A-6020 Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Innrain 80-82, A-6020 Innsbruck, Austria
| | - Alexander K H Weiss
- University of Innsbruck, Research Institute for Biomedical Ageing Research, Rennweg 10, A-6020 Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Innrain 80-82, A-6020 Innsbruck, Austria
| | | | - Giorgia Baraldo
- University of Innsbruck, Research Institute for Biomedical Ageing Research, Rennweg 10, A-6020 Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Innrain 80-82, A-6020 Innsbruck, Austria
| | - Pidder Jansen-Dürr
- University of Innsbruck, Research Institute for Biomedical Ageing Research, Rennweg 10, A-6020 Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Innrain 80-82, A-6020 Innsbruck, Austria.
| |
Collapse
|
25
|
The fumarylacetoacetate hydrolase (FAH) superfamily of enzymes: multifunctional enzymes from microbes to mitochondria. Biochem Soc Trans 2018; 46:295-309. [PMID: 29487229 DOI: 10.1042/bst20170518] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/23/2017] [Accepted: 01/02/2018] [Indexed: 11/17/2022]
Abstract
Prokaryotic and eukaryotic fumarylacetoacetate hydrolase (FAH) superfamily members, sharing conserved regions that form the so-called FAH-domain, catalyze a remarkable variety of reactions. These enzymes are essential in the metabolic pathways to degrade aromatic compounds in prokaryotes and eukaryotes. It appears that prokaryotic FAH superfamily members evolved mainly to allow microbes to generate energy and useful metabolites from complex carbon sources. We review recent findings, indicating that both prokaryotic and eukaryotic members of the FAH superfamily also display oxaloacetate decarboxylase (ODx) activity. The identification of human FAH domain-containing protein 1 as mitochondrial ODx regulating mitochondrial function supports the new concept that, during evolution, eukaryotic FAH superfamily members have acquired important regulatory functions beyond catabolism of complex carbon sources. Molecular studies on the evolution and function of FAH superfamily members are expected to provide new mechanistic insights in their physiological roles.
Collapse
|