1
|
He Y, Guan P, Zeng Y, Huang L, Peng C, Kong X, Zhou X. Age-Dependent Developmental Changes of Selenium Content and Selenoprotein Expression and Content in Longissimus Dorsi Muscle and Liver of Duroc Pigs. Biol Trace Elem Res 2024; 202:182-189. [PMID: 37093510 DOI: 10.1007/s12011-023-03674-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
The trace element selenium (Se) plays a key role in development and various physiological processes, mainly through its transformation into selenoproteins. To investigate the developmental patterns of Se content and expression of selenoproteins, the liver and longissimus dorsi (LD) muscle of Duroc pigs were collected at 1, 21, 80, and 185 days of age (7 pigs each age) for the determination of Se content, mRNA expression of selenoproteins, and concentrations of glutathione peroxidase (GPX), thioredoxin reductase (TrxR or TXNRD), and selenoprotein P (SELP). The results showed that age significantly affected the expression of GPX1, GPX2, GPX3, TXNRD1, TXNRD2, TXNRD3, iodothyronine deiodinases 2 (DIO2), DIO3, SELF, SELH, SELM, SELP, SELS, SELW, and selenophosphate synthetase2 (SPS2) in the liver, as well as GPX3, GPX4, TXNRD1, TXNRD2, DIO2, DIO3, SELF, SELN, SELP, SELR, SELS, and SELW in the LD muscle of Duroc pigs. The concentrations of GPX, TrxR, and SELP showed an increasing trend with age, and they were positively correlated with Se content at 1, 21, and 185 days of age and negatively correlated at 80 days of age, both in the liver and LD muscle. The Se content decreased at the age of 80 days, especially in the LD muscle. In summary, our study revealed developmental changes in Se content and expression of selenoproteins in the liver and LD muscle of Duroc pigs at different growth stages, which provided a theoretical basis for further study of Se nutrition and functions of selenoproteins.
Collapse
Affiliation(s)
- Yiwen He
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolism Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Peng Guan
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolism Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Yan Zeng
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolism Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Le Huang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolism Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Can Peng
- Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolism Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolism Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Xihong Zhou
- Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolism Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| |
Collapse
|
2
|
Swallah MS, Yang X, Li J, Korese JK, Wang S, Fan H, Yu H, Huang Q. The Pros and Cons of Soybean Bioactive Compounds: An Overview. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2062763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Mohammed Sharif Swallah
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
- Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of SciencesCAS Key, Hefei, China
| | - Xiaoqing Yang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Jiaxin Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Joseph Kudadam Korese
- Agricultural Mechanization and Irrigation Technology, Faculty of Agriculture, Food and Consumer Sciences, University for Development StudiesDepartment of, Tamale, Ghana
| | - Sainan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Hongliang Fan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Qing Huang
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
- Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of SciencesCAS Key, Hefei, China
| |
Collapse
|
3
|
Gonzalez-Diaz A, Pataquiva-Mateus A, García-Núñez JA. Recovery of palm phytonutrients as a potential market for the by-products generated by palm oil mills and refineries‒A review. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
4
|
Sun Z, Zhao L, Bo Q, Mao Z, He Y, Jiang T, Li Y, Wang C, Li R. Brain-Specific Oxysterols and Risk of Schizophrenia in Clinical High-Risk Subjects and Patients With Schizophrenia. Front Psychiatry 2021; 12:711734. [PMID: 34408685 PMCID: PMC8367079 DOI: 10.3389/fpsyt.2021.711734] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/05/2021] [Indexed: 01/19/2023] Open
Abstract
Accumulating evidence from clinical, genetic, and epidemiologic studies suggest that schizophrenia might be a neuronal development disorder. While oxysterols are important factors in neurodevelopment, it is unknown whether oxysterols might be involved in development of schizophrenia. The present study investigated the relationship between tissue-specifically originated oxysterols and risk of schizophrenia. A total of 216 individuals were recruited in this study, including 76 schizophrenia patients, 39 clinical high-risk (CHR) subjects, and 101 healthy controls (HC). We investigated the circulating levels of brain-specific oxysterol 24(S)-hydroxycholesterol (24OHC) and peripheral oxysterol 27-hydroxycholesterol (27OHC) in all participants and analyzed the potential links between the oxysterols and specific clinical symptoms in schizophrenic patients and CHR. Our data showed an elevation of 24OHC in both schizophrenia patients and CHR than that in HC, while a lower level of 27OHC in the schizophrenia group only. The ratio of 24OHC to 27OHC was only increased in the schizophrenic group compared with CHR and HC. For the schizophrenic patients, the circulating 24OHC levels are significantly associated with disease duration, positively correlated with the positive and negative syndrome total scores, while the 27OHC levels were inversely correlated with the positive symptom scores. Together, our data demonstrated the disruption of tissue-specifically originated cholesterol metabolism in schizophrenia and CHR, suggesting the circulating 24OHC or 24OHC/27OHC ratio might not only be a potential indicator for risk for schizophrenia but also be biomarkers for functional abnormalities in neuropathology of schizophrenia.
Collapse
Affiliation(s)
- Zuoli Sun
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Lei Zhao
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Qijing Bo
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Zhen Mao
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yi He
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Tao Jiang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yuhong Li
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Chuanyue Wang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Rena Li
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Šošić-Jurjević B, Ajdžanović V, Filipović B, Severs W, Milošević V. Thyroid Mediation of the Isoflavone Effects on Osteoporotic Bone: The Endocrine Interference With a Beneficial Outcome. Front Endocrinol (Lausanne) 2019; 10:688. [PMID: 31681166 PMCID: PMC6798150 DOI: 10.3389/fendo.2019.00688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/23/2019] [Indexed: 01/11/2023] Open
Affiliation(s)
- Branka Šošić-Jurjević
- Department of Cytology, Institute for Biological Research “Siniša Stanković”, University of Belgrade, Belgrade, Serbia
| | - Vladimir Ajdžanović
- Department of Cytology, Institute for Biological Research “Siniša Stanković”, University of Belgrade, Belgrade, Serbia
| | - Branko Filipović
- Department of Cytology, Institute for Biological Research “Siniša Stanković”, University of Belgrade, Belgrade, Serbia
| | - Walter Severs
- College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Verica Milošević
- Department of Cytology, Institute for Biological Research “Siniša Stanković”, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
6
|
Šošić-Jurjević B, Lütjohann D, Renko K, Filipović B, Radulović N, Ajdžanović V, Trifunović S, Nestorović N, Živanović J, Manojlović Stojanoski M, Kӧhrle J, Milošević V. The isoflavones genistein and daidzein increase hepatic concentration of thyroid hormones and affect cholesterol metabolism in middle-aged male rats. J Steroid Biochem Mol Biol 2019; 190:1-10. [PMID: 30885834 DOI: 10.1016/j.jsbmb.2019.03.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/06/2019] [Accepted: 03/13/2019] [Indexed: 01/05/2023]
Abstract
We examined whether isoflavones interfere with thyroid homeostasis, increase hepatic thyroid hormone concentrations and affect cholesterol metabolism in middle-aged (MA) male rats. Thirteen-month-old Wistar rats were injected subcutaneously with 35 mg/kg b.w./day of genistein, daidzein or vehicle (controls) for four weeks. Hepatic Dio1 gene expression was up-regulated by 70% (p < 0.001 for both) and Dio1 enzyme activity increased by 64% after genistein (p < 0.001) and 73% after daidzein treatment (p < 0.0001). Hepatic T3 was 75% higher (p < 0.05 for both), while T4 increased only after genistein treatment. Serum T4 concentrations were 31% lower in genistein- and 49% lower in dadzein-treated rats (p < 0.001 for both) compared with controls. Hepatic Cyp7a1 gene expression was up-regulated by 40% after genistein and 32% after daidzein treatment (p < 0.05 for both), in agreement with a 7α-hydroxycholesterol increase of 50% (p < 0.01) and 88% (p < 0.001), respectively. Serum 24- and 27-hydroxycholesterol were 30% lower (p < 0.05 for both), while only 24-hydroxycholesterol was decreased in the liver by 45% after genistein (p < 0.05) and 39% (p < 0.01) after dadzein treatment. Serum concentration of the cholesterol precursor desmosterol was 32% (p < 0.05) lower only after dadzein treatment alone, while both isoflavones elevated this parameter in the liver by 45% (p < 0.01). In conclusion, isoflavones increased T3 availability in the liver of MA males, despite decreasing serum T4. Hepatic increase of T3 possibly contributes to activation of the neutral pathway of cholesterol degradation into bile acids in the liver. While isoflavones obviously have the potential to trigger multiple mechanisms involved in cholesterol metabolism and oxysterol production, they failed to induce any hypocholesterolemic effect.
Collapse
Affiliation(s)
- B Šošić-Jurjević
- Institute for Biological Research, "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia.
| | - D Lütjohann
- Institut für Klinische Chemie und Klinische Pharmakologie, Universitätsklinikum Bonn, Sigmund-Freud-Str. 25, D-53127 Bonn, Germany
| | - K Renko
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - B Filipović
- Institute for Biological Research, "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - N Radulović
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
| | - V Ajdžanović
- Institute for Biological Research, "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - S Trifunović
- Institut für Klinische Chemie und Klinische Pharmakologie, Universitätsklinikum Bonn, Sigmund-Freud-Str. 25, D-53127 Bonn, Germany
| | - N Nestorović
- Institute for Biological Research, "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - J Živanović
- Institute for Biological Research, "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - M Manojlović Stojanoski
- Institute for Biological Research, "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - J Kӧhrle
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - V Milošević
- Institute for Biological Research, "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| |
Collapse
|
7
|
Wang T, Liu Y, Liu H, Li C, Wang Y. Auriculasin from Flemingia philippinensis roots shows good therapeutic indexes on hyperactive behavior in zebrafish. Biochem Biophys Res Commun 2018; 503:1254-1259. [DOI: 10.1016/j.bbrc.2018.07.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/07/2018] [Indexed: 11/28/2022]
|
8
|
Sandini TM, Reis-Silva TM, Moreira N, Bernardi MM, Lebrun I, Spinosa HDS. Effects of isoflavones on behavior, estradiol, glutamate, and GABA levels in intact middle-aged female rats. Nutr Neurosci 2018. [DOI: 10.1080/1028415x.2018.1447296] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Thaísa Meira Sandini
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thiago Marinho Reis-Silva
- Department of Neuroscience and Behavior, Psychology Institute, University of São Paulo, São Paulo, Brazil
| | - Natalia Moreira
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Maria Martha Bernardi
- Post-Graduate Program of Environmental and Experimental Pathology and Post-Graduate Program of Dentistry, Paulista University, São Paulo, Brazil
| | - Ivo Lebrun
- Laboratory of Biochemistry and Biophysics, Institute Butantan, São Paulo, Brazil
| | | |
Collapse
|
9
|
Bustamante-Rangel M, Delgado-Zamarreño MM, Pérez-Martín L, Rodríguez-Gonzalo E, Domínguez-Álvarez J. Analysis of Isoflavones in Foods. Compr Rev Food Sci Food Saf 2018; 17:391-411. [DOI: 10.1111/1541-4337.12325] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Myriam Bustamante-Rangel
- Dept. of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemical Sciences; Univ. of Salamanca; Plaza de los Caídos s/n 37008 Salamanca Spain
| | - María Milagros Delgado-Zamarreño
- Dept. of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemical Sciences; Univ. of Salamanca; Plaza de los Caídos s/n 37008 Salamanca Spain
| | - Lara Pérez-Martín
- Dept. of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemical Sciences; Univ. of Salamanca; Plaza de los Caídos s/n 37008 Salamanca Spain
| | - Encarnación Rodríguez-Gonzalo
- Dept. of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemical Sciences; Univ. of Salamanca; Plaza de los Caídos s/n 37008 Salamanca Spain
| | - Javier Domínguez-Álvarez
- Dept. of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemical Sciences; Univ. of Salamanca; Plaza de los Caídos s/n 37008 Salamanca Spain
| |
Collapse
|
10
|
Jarić I, Živanović J, Miler M, Ajdžanović V, Blagojević D, Ristić N, Milošević V, Nestorović N. Genistein and daidzein treatments differently affect uterine homeostasis in the ovary-intact middle-aged rats. Toxicol Appl Pharmacol 2018; 339:73-84. [DOI: 10.1016/j.taap.2017.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/07/2017] [Accepted: 12/02/2017] [Indexed: 01/16/2023]
|
11
|
Sathyapalan T, Köhrle J, Rijntjes E, Rigby AS, Dargham SR, Kilpatrick ES, Atkin SL. The Effect of High Dose Isoflavone Supplementation on Serum Reverse T 3 in Euthyroid Men With Type 2 Diabetes and Post-menopausal Women. Front Endocrinol (Lausanne) 2018; 9:698. [PMID: 30524380 PMCID: PMC6262038 DOI: 10.3389/fendo.2018.00698] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 11/06/2018] [Indexed: 11/21/2022] Open
Abstract
Background: The health benefits of soy are widely reported but there are queries on the effect of soy isoflavones on thyroid function and the underlying mechanism of action. Materials and Methods: We examined the effect of soy isoflavones on reverse tri-iodothyronine (or 3,3',5'-tri-iodothyronine; rT3) in two studies comprising 400 patients: 200 men (study 1; 3 months) and 200 post-menopausal women (study 2; 6 months) who were randomized to consume 15 g soy protein with 66 mg of isoflavones (SPI) daily, or 15 g soy protein alone without isoflavones (SP) daily. Results: SPI supplementation increased rT3 serum concentration in both men 0.41 (0.12) vs. 0.45 (0.14) nmol/L and women 0.33 (0.12) vs. 0.37 (0.09) nmol/L at 3 months compared to SP that was not seen at 6 months. Thyroid stimulating hormone (TSH) serum concentrations increased while free thyroxine (fT4) concentrations decreased with 3 months of SPI compared to SP supplementation for both men and women. rT3 correlated with TSH in both studies (p = 0.03) but not with either fT3 or fT4. fT3 levels did not differ between the SPI and SP preparations. Conclusion: Soy isoflavones transiently increased rT3 levels within 3 months though reverted to baseline at 6 months. The mechanism for this would be either rT3 degrading deiodinase 1 and/or deiodinase 2 activities are transiently inhibited at 3 months, or inhibition of deiodinase 3, which generates rT3 from T4 is induced at 6 months. These changes were mirrored in the TSH concentrations, suggesting that short-term high dose isoflavone transiently impairs thyroid function in the first 3 months and may impact on general health during this period. ISRCTN Registry: ISRCTN 90604927; ISRCTN34051237.
Collapse
Affiliation(s)
- Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin Institute of Health, CVK, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Eddy Rijntjes
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin Institute of Health, CVK, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alan S. Rigby
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, United Kingdom
| | | | - Eric S. Kilpatrick
- Department of Clinical Chemistry, Sidra Medical and Research Center, Doha, Qatar
| | - Stephen L. Atkin
- Weill Cornell Medical College Qatar, Doha, Qatar
- *Correspondence: Stephen L. Atkin
| |
Collapse
|