1
|
Wang X, Liu Y, Wang J, Lu X, Guo Z, Lv S, Sun Z, Gao T, Gao F, Yuan J. Mitochondrial Quality Control in Ovarian Function: From Mechanisms to Therapeutic Strategies. Reprod Sci 2025; 32:1399-1413. [PMID: 38981995 DOI: 10.1007/s43032-024-01634-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
Mitochondrial quality control plays a critical role in cytogenetic development by regulating various cell-death pathways and modulating the release of reactive oxygen species (ROS). Dysregulated mitochondrial quality control can lead to a broad spectrum of diseases, including reproductive disorders, particularly female infertility. Ovarian insufficiency is a significant contributor to female infertility, given its high prevalence, complex pathogenesis, and profound impact on women's health. Understanding the pathogenesis of ovarian insufficiency and devising treatment strategies based on this understanding are crucial. Oocytes and granulosa cells (GCs) are the primary ovarian cell types, with GCs regulated by oocytes, fulfilling their specific energy requirements prior to ovulation. Dysregulation of mitochondrial quality control through gene knockout or external stimuli can precipitate apoptosis, inflammatory responses, or ferroptosis in both oocytes and GCs, exacerbating ovarian insufficiency. This review aimed to delineate the regulatory mechanisms of mitochondrial quality control in GCs and oocytes during ovarian development. This study highlights the adverse consequences of dysregulated mitochondrial quality control on GCs and oocyte development and proposes therapeutic interventions for ovarian insufficiency based on mitochondrial quality control. These insights provide a foundation for future clinical approaches for treating ovarian insufficiency.
Collapse
Affiliation(s)
- Xiaomei Wang
- College of Basic Medical, Jining Medical University, Jining, China
| | - Yuxin Liu
- College of Second Clinical Medicine, Jining Medical University, Jining, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Jinzheng Wang
- College of Second Clinical Medicine, Jining Medical University, Jining, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Xueyi Lu
- College of Clinical Medicine, Jining Medical University, Jining, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Zhipeng Guo
- College of Second Clinical Medicine, Jining Medical University, Jining, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Shenmin Lv
- College of Second Clinical Medicine, Jining Medical University, Jining, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Zhenyu Sun
- College of Clinical Medicine, Jining Medical University, Jining, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Tan Gao
- College of Second Clinical Medicine, Jining Medical University, Jining, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Fei Gao
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Jinxiang Yuan
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China.
| |
Collapse
|
2
|
Cheng Y, Huang CR, Cheng YH, Chang YC, Weng PL, Lan KC. The Potential Protective Role of Mitochondrial Haplogroup R in Ovarian Response: An Exploratory Study. Int J Mol Sci 2025; 26:2513. [PMID: 40141157 PMCID: PMC11941838 DOI: 10.3390/ijms26062513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/01/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
An investigation of the mtDNA haplogroup in 96 Taiwanese women with diminished ovarian response (DOR) and normal ovarian response (NOR) showed that only the haplogroup R is less likely to experience DOR than other mtDNA haplogroups. When analyzing the relationship between age and mitochondria-related markers (mtDNA copy number, ROS levels, and telomere length), it was observed that ROS levels and telomere length exhibited age-dependent changes, and the number of retrieved oocytes decreased with age. However, in the R haplogroup, these mitochondria-related markers remained stable and did not show significant changes with age. Additionally, in the R haplogroup, the number of oocytes did not decline with age, suggesting a unique protective effect associated with this haplogroup. Our study supports the notion that the mtDNA haplogroup may serve as a biomarker for infertility in Taiwanese women.
Collapse
Affiliation(s)
- Yun Cheng
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| | - Cheng-Rung Huang
- Center for Menopause and Reproductive Medicine Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (C.-R.H.); (Y.-H.C.); (Y.-C.C.); (P.-L.W.)
| | - Yin-Hua Cheng
- Center for Menopause and Reproductive Medicine Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (C.-R.H.); (Y.-H.C.); (Y.-C.C.); (P.-L.W.)
| | - Yung-Chiao Chang
- Center for Menopause and Reproductive Medicine Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (C.-R.H.); (Y.-H.C.); (Y.-C.C.); (P.-L.W.)
| | - Pei-Ling Weng
- Center for Menopause and Reproductive Medicine Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (C.-R.H.); (Y.-H.C.); (Y.-C.C.); (P.-L.W.)
| | - Kuo-Chung Lan
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
- Center for Menopause and Reproductive Medicine Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (C.-R.H.); (Y.-H.C.); (Y.-C.C.); (P.-L.W.)
- Department of Obstetrics and Gynecology, Jen-Ai Hospital, Taichung 412, Taiwan
| |
Collapse
|
3
|
Tang W, Wang K, Feng Y, Tsui KH, Singh KK, Stout MB, Wang S, Wu M. Exploration of the mechanism and therapy of ovarian aging by targeting cellular senescence. LIFE MEDICINE 2025; 4:lnaf004. [PMID: 40110109 PMCID: PMC11916902 DOI: 10.1093/lifemedi/lnaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/22/2025] [Indexed: 03/22/2025]
Abstract
The ovary is a crucial gonadal organ that supports female reproductive and endocrine functions. Ovarian aging can result in decreased fertility and dysfunction across multiple organs. Research has demonstrated that cellular senescence in various cell types within the ovary can trigger a decline in ovarian function through distinct stress responses, resulting in ovarian aging. This review explores how cellular senescence may contribute to ovarian aging and reproductive failure. Additionally, we discuss the factors that cause ovarian cellular senescence, including the accumulation of advanced glycation end products, oxidative stress, mitochondrial dysfunction, DNA damage, telomere shortening, and exposure to chemotherapy. Furthermore, we discuss senescence in six distinct cell types, including oocytes, granulosa cells, ovarian theca cells, immune cells, ovarian surface epithelium, and ovarian endothelial cells, inside the ovary and explore their contribution to the accelerated ovarian aging. Lastly, we describe potential senotherapeutics for the treatment of ovarian aging and offer novel strategies for ovarian longevity.
Collapse
Affiliation(s)
- Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan 430030, China
| | - Kaichen Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yourong Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan 430030, China
| | - Kuan-Hao Tsui
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813779, Taiwan, China
- Department of Obstetrics and Gynecology, Yang-Ming University, Taipei 112304, Taiwan, China
- Department of Pharmacy and Graduate Institute of Pharmaceutical Technology, Tajen University, Pingtung 900391, Taiwan, China
| | - Keshav K Singh
- Department of Genetics, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michael B Stout
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan 430030, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan 430030, China
| |
Collapse
|
4
|
Kılıç NÖ, Kütük D, Öner Ç, Öztürk SA, Selam B, Çolak E. Molecular Markers in Embryo Non-Development: Analysis of Gene Expressions ( Ki-67, hTERT, HIF-1α) in Spent Embryo Culture Medium. Cells 2024; 13:2093. [PMID: 39768184 PMCID: PMC11674905 DOI: 10.3390/cells13242093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
An embryo culture medium is a specialized set of ambient conditions, technological equipment, and nutrients that embryos require to grow properly. We aimed to investigate the Ki-67, hTERT, and HIF-1α gene expression differences between developing and non-developing embryos in spent embryo culture medium. Ki-67, hTERT, and HIF-1α gene expressions were determined from the spent embryo culture medium containing developing and non-developing embryos of 20 normoresponder patients admitted to the Bahçeci Umut IVF Center. An increase in hTERT gene expression (p < 0.05) and a decrease in HIF-1α gene expression (p < 0.001) were observed in mediums of developing compared to the non-developing embryos. No difference was observed in Ki-67 gene expression (p > 0.05). While there was a correlation between Ki-67 and HIF-1α genes in the non-growing group (r < 0.01); no correlation was observed in the developing group (r > 0.05). Both normoresponder groups will be similar in terms of proliferation rate. The low HIF-1α expression that observed high telomerase activity in embryo development maintains continuity and avoids mechanisms that result in cell death. A molecular study of the embryo development in patients with similar characteristics may help to understand the pathogenesis of the disease and establish a diagnosis and specific treatment.
Collapse
Affiliation(s)
- Nergis Özlem Kılıç
- Department of Histology and Embryology, Medical Faculty, Maltepe University, 34844 İstanbul, Turkey; (N.Ö.K.); (D.K.); (S.A.Ö.)
| | - Duygu Kütük
- Department of Histology and Embryology, Medical Faculty, Maltepe University, 34844 İstanbul, Turkey; (N.Ö.K.); (D.K.); (S.A.Ö.)
- IVF Laboratory, Bahçeci Umut Assisted Reproduction Center, 34662 İstanbul, Turkey
| | - Çağrı Öner
- Department of Medical Biology, Medical Faculty, Kırklareli University, 39100 Kırklareli, Turkey;
| | - Senem Aslan Öztürk
- Department of Histology and Embryology, Medical Faculty, Maltepe University, 34844 İstanbul, Turkey; (N.Ö.K.); (D.K.); (S.A.Ö.)
- Department of Medical Laboratory Techniques, Vocational School, İstanbul Atlas University, 34408 İstanbul, Turkey
| | - Belgin Selam
- Department of Obstetrics and Gynecology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
| | - Ertuğrul Çolak
- Department of Biostatistics, Medical Faculty, Eskişehir Osmangazi University, 26040 Eskişehir, Turkey;
| |
Collapse
|
5
|
Talibova G, Bilmez Y, Tire B, Ozturk S. The DNA double-strand break repair proteins γH2AX, RAD51, BRCA1, RPA70, KU80, and XRCC4 exhibit follicle-specific expression differences in the postnatal mouse ovaries from early to older ages. J Assist Reprod Genet 2024; 41:2419-2439. [PMID: 39023827 PMCID: PMC11405603 DOI: 10.1007/s10815-024-03189-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024] Open
Abstract
PURPOSE Ovarian aging is closely related to a decrease in follicular reserve and oocyte quality. The precise molecular mechanisms underlying these reductions have yet to be fully elucidated. Herein, we examine spatiotemporal distribution of key proteins responsible for DNA double-strand break (DSB) repair in ovaries from early to older ages. Functional studies have shown that the γH2AX, RAD51, BRCA1, and RPA70 proteins play indispensable roles in HR-based repair pathway, while the KU80 and XRCC4 proteins are essential for successfully operating cNHEJ pathway. METHODS Female Balb/C mice were divided into five groups as follows: Prepuberty (3 weeks old; n = 6), puberty (7 weeks old; n = 7), postpuberty (18 weeks old; n = 7), early aged (52 weeks old; n = 7), and late aged (60 weeks old; n = 7). The expression of DSB repair proteins, cellular senescence (β-GAL) and apoptosis (cCASP3) markers was evaluated in the ovaries using immunohistochemistry. RESULT β-GAL and cCASP3 levels progressively increased from prepuberty to aged groups (P < 0.05). Notably, γH2AX levels varied in preantral and antral follicles among the groups (P < 0.05). In aged groups, RAD51, BRCA1, KU80, and XRCC4 levels increased (P < 0.05), while RPA70 levels decreased (P < 0.05) compared to the other groups. CONCLUSIONS The observed alterations were primarily attributed to altered expression in oocytes and granulosa cells of the follicles and other ovarian cells. As a result, the findings indicate that these DSB repair proteins may play a role in the repair processes and even other related cellular events in ovarian cells from early to older ages.
Collapse
Affiliation(s)
- Gunel Talibova
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Yesim Bilmez
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Betul Tire
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
6
|
Ozturk S. The close relationship between oocyte aging and telomere shortening, and possible interventions for telomere protection. Mech Ageing Dev 2024; 218:111913. [PMID: 38307343 DOI: 10.1016/j.mad.2024.111913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024]
Abstract
As women delay childbearing due to socioeconomic reasons, understanding molecular mechanisms decreasing oocyte quantity and quality during ovarian aging becomes increasingly important. The ovary undergoes biological aging at a higher pace when compared to other organs. As is known, telomeres play crucial roles in maintaining genomic integrity, and their shortening owing to increased reactive oxygen species, consecutive cellular divisions, genetic and epigenetic alterations is associated with loss of developmental competence of oocytes. Novel interventions such as antioxidant treatments and regulation of gene expression are being investigated to prevent or rescue telomere attrition and thereby oocyte aging. Herein, potential factors and molecular mechanisms causing telomere shortening in aging oocytes were comprehensively reviewed. For the purpose of extending reproductive lifespan, possible therapeutic interventions to protect telomere length were also discussed.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey.
| |
Collapse
|
7
|
Ferreira AF, Soares M, Almeida-Santos T, Ramalho-Santos J, Sousa AP. Aging and oocyte competence: A molecular cell perspective. WIREs Mech Dis 2023; 15:e1613. [PMID: 37248206 DOI: 10.1002/wsbm.1613] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 12/30/2022] [Accepted: 04/19/2023] [Indexed: 05/31/2023]
Abstract
Follicular microenvironment is paramount in the acquisition of oocyte competence, which is dependent on two interconnected and interdependent processes: nuclear and cytoplasmic maturation. Extensive research conducted in human and model systems has provided evidence that those processes are disturbed with female aging. In fact, advanced maternal age (AMA) is associated with a lower chance of pregnancy and live birth, explained by the age-related decline in oocyte quality/competence. This decline has largely been attributed to mitochondria, essential for oocyte maturation, fertilization, and embryo development; with mitochondrial dysfunction leading to oxidative stress, responsible for nuclear and mitochondrial damage, suboptimal intracellular energy levels, calcium disturbance, and meiotic spindle alterations, that may result in oocyte aneuploidy. Nuclear-related mechanisms that justify increased oocyte aneuploidy include deoxyribonucleic acid (DNA) damage, loss of chromosomal cohesion, spindle assembly checkpoint dysfunction, meiotic recombination errors, and telomere attrition. On the other hand, age-dependent cytoplasmic maturation failure is related to mitochondrial dysfunction, altered mitochondrial biogenesis, altered mitochondrial morphology, distribution, activity, and dynamics, dysmorphic smooth endoplasmic reticulum and calcium disturbance, and alterations in the cytoskeleton. Furthermore, reproductive somatic cells also experience the effects of aging, including mitochondrial dysfunction and DNA damage, compromising the crosstalk between granulosa/cumulus cells and oocytes, also affected by a loss of gap junctions. Old oocytes seem therefore to mature in an altered microenvironment, with changes in metabolites, ribonucleic acid (RNA), proteins, and lipids. Overall, understanding the mechanisms implicated in the loss of oocyte quality will allow the establishment of emerging biomarkers and potential therapeutic anti-aging strategies. This article is categorized under: Reproductive System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Ana Filipa Ferreira
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, Azinhaga de Santa Comba, University of Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Coimbra, Portugal
| | - Maria Soares
- CNC-Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Teresa Almeida-Santos
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, Azinhaga de Santa Comba, University of Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Coimbra, Portugal
| | - João Ramalho-Santos
- CNC-Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, Coimbra, Portugal
| | - Ana Paula Sousa
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
8
|
Wang X, Wang L, Xiang W. Mechanisms of ovarian aging in women: a review. J Ovarian Res 2023; 16:67. [PMID: 37024976 PMCID: PMC10080932 DOI: 10.1186/s13048-023-01151-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Ovarian aging is a natural and physiological aging process characterized by loss of quantity and quality of oocyte or follicular pool. As it is generally accepted that women are born with a finite follicle pool that will go through constant decline without renewing, which, together with decreased oocyte quality, makes a severe situation for women who is of advanced age but desperate for a healthy baby. The aim of our review was to investigate mechanisms leading to ovarian aging by discussing both extra- and intra- ovarian factors and to identify genetic characteristics of ovarian aging. The mechanisms were identified as both extra-ovarian alternation of hypothalamic-pituitary-ovarian axis and intra-ovarian alternation of ovary itself, including telomere, mitochondria, oxidative stress, DNA damage, protein homeostasis, aneuploidy, apoptosis and autophagy. Moreover, here we reviewed related Genome-wide association studies (GWAS studies) from 2009 to 2021 and next generation sequencing (NGS) studies of primary ovarian insufficiency (POI) in order to describe genetic characteristics of ovarian aging. It is reasonable to wish more reliable anti-aging interventions for ovarian aging as the exploration of mechanisms and genetics being progressing.
Collapse
Affiliation(s)
- Xiangfei Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lingjuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenpei Xiang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
9
|
Zhu Z, Xu W, Liu L. Ovarian aging: mechanisms and intervention strategies. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:590-610. [PMID: 37724254 PMCID: PMC10471094 DOI: 10.1515/mr-2022-0031] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/25/2022] [Indexed: 09/20/2023]
Abstract
Ovarian reserve is essential for fertility and influences healthy aging in women. Advanced maternal age correlates with the progressive loss of both the quantity and quality of oocytes. The molecular mechanisms and various contributing factors underlying ovarian aging have been uncovered. In this review, we highlight some of critical factors that impact oocyte quantity and quality during aging. Germ cell and follicle reserve at birth determines reproductive lifespan and timing the menopause in female mammals. Accelerated diminishing ovarian reserve leads to premature ovarian aging or insufficiency. Poor oocyte quality with increasing age could result from chromosomal cohesion deterioration and misaligned chromosomes, telomere shortening, DNA damage and associated genetic mutations, oxidative stress, mitochondrial dysfunction and epigenetic alteration. We also discuss the intervention strategies to delay ovarian aging. Both the efficacy of senotherapies by antioxidants against reproductive aging and mitochondrial therapy are discussed. Functional oocytes and ovarioids could be rejuvenated from pluripotent stem cells or somatic cells. We propose directions for future interventions. As couples increasingly begin delaying parenthood in life worldwide, understanding the molecular mechanisms during female reproductive aging and potential intervention strategies could benefit women in making earlier choices about their reproductive health.
Collapse
Affiliation(s)
- Zhengmao Zhu
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, China
| | - Wanxue Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Lin Liu
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Tianjin Union Medical Center, Institute of Translational Medicine, Nankai University, Tianjin, China
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Women's fertility decay starts at the mid 30 s. However, the current delay of childbearing leads to ovarian aging and the need of assisted reproduction technologies (ART). Telomere biology is one of the main pathways involved in organismal aging. Thus, this review will focus on the knowledge acquired during the last 2 years about the telomere pathway and its influence on female fertility and the consequences for the newborn. RECENT FINDINGS New research on telomere biology reaffirms the relationship of telomere attrition and female infertility. Shorter maternal telomeres, which could be aggravated by external factors, underly premature ovarian aging and other complications including preeclampsia, preterm birth and idiopathic pregnancy loss. Finally, the telomere length of the fetus or the newborn is also affected by external factors, such as stress and nutrition. SUMMARY Recent evidence shows that telomeres are implicated in most processes related to female fertility, embryo development and the newborn's health. Thus, telomere length and telomerase activity may be good biomarkers for early detection of ovarian and pregnancy failures, opening the possibility to use telomere therapies to try to solve the infertility situation.
Collapse
|
11
|
Bilmez Y, Talibova G, Ozturk S. Expression of the histone lysine methyltransferases SETD1B, SETDB1, SETD2, and CFP1 exhibits significant changes in the oocytes and granulosa cells of aged mouse ovaries. Histochem Cell Biol 2022; 158:79-95. [PMID: 35445296 DOI: 10.1007/s00418-022-02102-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 02/07/2023]
Abstract
Histone methylation is one of the main epigenetic mechanisms by which methyl groups are dynamically added to the lysine and arginine residues of histone tails in nucleosomes. This process is catalyzed by specific histone methyltransferase enzymes. Methylation of these residues promotes gene expression regulation through chromatin remodeling. Functional analysis and knockout studies have revealed that the histone lysine methyltransferases SETD1B, SETDB1, SETD2, and CFP1 play key roles in establishing the methylation marks required for proper oocyte maturation and follicle development. As oocyte quality and follicle numbers progressively decrease with advancing maternal age, investigating their expression patterns in the ovaries at different reproductive periods may elucidate the fertility loss occurring during ovarian aging. The aim of our study was to determine the spatiotemporal distributions and relative expression levels of the Setd1b, Setdb1, Setd2, and Cxxc1 (encoding the CFP1 protein) genes in the postnatal mouse ovaries from prepuberty to late aged periods. For this purpose, five groups based on their reproductive periods and histological structures were created: prepuberty (3 weeks old; n = 6), puberty (7 weeks old; n = 7), postpuberty (18 weeks old; n = 7), early aged (52 weeks old; n = 7), and late aged (60 weeks old; n = 7). We found that Setd1b, Setdb1, Setd2, and Cxxc1 mRNA levels showed significant changes among postnatal ovary groups (P < 0.05). Furthermore, SETD1B, SETDB1, SETD2, and CFP1 proteins exhibited different subcellular localizations in the ovarian cells, including oocytes, granulosa cells, stromal and germinal epithelial cells. In general, their levels in the follicles, oocytes, and granulosa cells as well as in the germinal epithelial and stromal cells significantly decreased in the aged groups when compared the other groups (P < 0.05). These decreases were concordant with the reduced numbers of the follicles at different stages and the luteal structures in the aged groups (P < 0.05). In conclusion, these findings suggest that altered expression of the histone methyltransferase genes in the ovarian cells may be associated with female fertility loss in advancing maternal age.
Collapse
Affiliation(s)
- Yesim Bilmez
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Gunel Talibova
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
12
|
Secomandi L, Borghesan M, Velarde M, Demaria M. The role of cellular senescence in female reproductive aging and the potential for senotherapeutic interventions. Hum Reprod Update 2022; 28:172-189. [PMID: 34918084 PMCID: PMC8888999 DOI: 10.1093/humupd/dmab038] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 10/28/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Advanced maternal age is associated with decreased oocyte quantity and quality as well as uterine and placental dysfunctions. These changes lead to infertility, pregnancy complications and birth defects in the offspring. As the mean age of giving birth is increasing worldwide, prevention of age-associated infertility and pregnancy complications, along with the more frequent use of ART, become extremely important. Currently, significant research is being conducted to unravel the mechanisms underlying female reproductive aging. Among the potential mechanisms involved, recent evidence has suggested a contributing role for cellular senescence, a cellular state of irreversible growth arrest characterized by a hypersecretory and pro-inflammatory phenotype. Elucidating the role of senescence in female reproductive aging holds the potential for developing novel and less invasive therapeutic measures to prevent or even reverse female reproductive aging and increase offspring wellbeing. OBJECTIVE AND RATIONALE The review will summarize the positive and negative implications of cellular senescence in the pathophysiology of the female reproductive organs during aging and critically explore the use of novel senotherapeutics aiming to reverse and/or eliminate their detrimental effects. The focus will be on major senescence mechanisms of the ovaries, the uterus, and the placenta, as well as the potential and risks of using senotherapies that have been discovered in recent years. SEARCH METHODS Data for this review were identified by searches of MEDLINE, PubMed and Google Scholar. References from relevant articles using the search terms 'Cellular Senescence', 'Aging', 'Gestational age', 'Maternal Age', 'Anti-aging', 'Uterus', 'Pregnancy', 'Fertility', 'Infertility', 'Reproduction', 'Implant', 'Senolytic', 'Senostatic', 'Senotherapy' and 'Senotherapeutic' where selected. A total of 182 articles published in English between 2005 and 2020 were included, 27 of which focus on potential senotherapies for reproductive aging. Exclusion criteria were inclusion of the terms 'male' and 'plants'. OUTCOMES Aging is a major determinant of reproductive wellbeing. Cellular senescence is a basic aging mechanism, which can be exploited for therapeutic interventions. Within the last decade, several new strategies for the development and repurposing of drugs targeting senescent cells have emerged, such as modulators of the anti-inflammatory response, oxidative stress, DNA damage, and mitochondria and protein dysfunctions. Several studies of female reproductive aging and senotherapies have been discussed that show promising results for future interventions. WIDER IMPLICATIONS In most countries of the Organization for Economic Co-operation and Development, the average age at which women give birth is above 30 years. Currently, in countries such as the Netherlands, Australia, Spain, Finland, Germany and the UK, birth rates among 30- to 34-year-olds are now higher than in any other age groups. This review will provide new knowledge and scientific advancement on the senescence mechanisms during female reproductive aging, and benefit fundamental and clinical scientists and professionals in the areas of reproduction, cancer, immunobiology and fibrosis.
Collapse
Affiliation(s)
- Laura Secomandi
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), 9713AV Groningen, The Netherlands
| | - Michela Borghesan
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), 9713AV Groningen, The Netherlands
| | - Michael Velarde
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, PH 1101, Philippines
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), 9713AV Groningen, The Netherlands
| |
Collapse
|
13
|
Telomere associated gene expression as well as TERT protein level and telomerase activity are altered in the ovarian follicles of aged mice. Sci Rep 2021; 11:15569. [PMID: 34330985 PMCID: PMC8324818 DOI: 10.1038/s41598-021-95239-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/05/2021] [Indexed: 01/23/2023] Open
Abstract
Telomeres cap the ends of eukaryotic chromosomes to maintain genomic stability and integrity during an organism’s lifespan. The length of telomeres inevitably shortens due to DNA replication, genotoxic agents, and biological aging. A limited number of cell types, e.g., stem cells, germline cells, and early embryos can elongate shortened telomeres via the enzymatic action of telomerase, which is composed of telomerase reverse transcriptase (TERT) and telomerase RNA component (Terc). Additionally, telomere-associated proteins including telomeric repeat binding factor 1 (TRF1) and 2 (TRF2), as well as protection of telomeres 1a (POT1a), bind to telomeres to maintain their structural integrity and length. During ovarian aging in mammals, telomeres progressively shorten, accompanied by fertility loss; however, the molecular mechanism underlying this attrition during follicle development remains unclear. In this study, the primary, secondary, preantral, and antral follicles were obtained either from 6-week-old adult (n = 19) or 52-week-old aged (n = 12) mice. We revealed that the Tert, Terc, Trf1, Trf2, and Pot1a gene expression (P < 0.001) and TERT protein (P < 0.01) levels significantly decreased in certain ovarian follicles of the aged group when compared to those of the adult group. Also, telomerase activity exhibited remarkable changes in the follicles of both groups. Consequently, altered telomere-associated gene expression and reduced TERT protein levels in the follicles of aged mice may be a determinant of telomere shortening during ovarian aging, and infertility appearing in the later decades of reproductive lifespan. Further investigations are required to determine the molecular mechanisms underlying these alterations in the follicles during ovarian aging.
Collapse
|
14
|
Ovarian Telomerase and Female Fertility. Biomedicines 2021; 9:biomedicines9070842. [PMID: 34356906 PMCID: PMC8301802 DOI: 10.3390/biomedicines9070842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022] Open
Abstract
Women's fertility is characterized both quantitatively and qualitatively mainly by the pool of ovarian follicles. Monthly, gonadotropins cause an intense multiplication of granulosa cells surrounding the oocyte. This step of follicular development requires a high proliferation ability for these cells. Telomere length plays a crucial role in the mitotic index of human cells. Hence, disrupting telomere homeostasis could directly affect women's fertility. Strongly expressed in ovaries, telomerase is the most effective factor to limit telomeric attrition and preserve ovarian reserve. Considering these facts, two situations of infertility could be correlated with the length of telomeres and ovarian telomerase activity: PolyCystic Ovary Syndrome (PCOS), which is associated with a high density of small antral follicles, and Premature Ovarian Failure (POF), which is associated with a premature decrease in ovarian reserve. Several authors have studied this topic, expecting to find long telomeres and strong telomerase activity in PCOS and short telomeres and low telomerase activity in POF patients. Although the results of these studies are contradictory, telomere length and the ovarian telomerase impact in women's fertility disorders appear obvious. In this context, our research perspectives aimed to explore the stimulation of ovarian telomerase to limit the decrease in the follicular pool while avoiding an increase in cancer risk.
Collapse
|
15
|
Kosebent EG, Ozturk S. The spatiotemporal expression of TERT and telomere repeat binding proteins in the postnatal mouse testes. Andrologia 2021; 53:e13976. [PMID: 33544428 DOI: 10.1111/and.13976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/06/2020] [Accepted: 01/01/2021] [Indexed: 12/31/2022] Open
Abstract
Telomeres consist of repetitive DNA sequences and telomere-associated proteins. Telomeres located at the ends of eukaryotic chromosomes undergo shortening due to DNA replication, genotoxic factors and reactive oxygen species. The short telomeres are elongated by the enzyme telomerase expressed in the germ line, embryonic and stem cells. Telomerase is in the structure of ribonucleoprotein composed of telomerase reverse transcriptase (TERT), telomerase RNA component (Terc) and other components. Among telomere-associated proteins, telomeric repeat binding factor 1 (TRF1) and 2 (TRF2) exclusively bind to the double-stranded telomeric DNA to regulate its length. However, protection of telomeres 1 (POT1) interacts with the single-stranded telomeric DNA to protect from DNA damage response. Herein, we characterised the spatial and temporal expression of the TERT, TRF1, TRF2 and POT1 proteins in the postnatal mouse testes at the ages of 6, 8, 16, 20, 29, 32 and 88 days by using immunohistochemistry. Significant differences in the spatiotemporal expression patterns and levels of these proteins were determined in the postnatal testes (p < .05). These findings indicate that TERT and telomere repeat binding proteins seem to be required for maintaining the length and structural integrity of telomeres in the spermatogenic cells from newborn to adult terms.
Collapse
Affiliation(s)
- Esra G Kosebent
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
16
|
Uysal F, Kosebent EG, Toru HS, Ozturk S. Decreased expression of TERT and telomeric proteins as human ovaries age may cause telomere shortening. J Assist Reprod Genet 2021; 38:429-441. [PMID: 32856217 PMCID: PMC7884544 DOI: 10.1007/s10815-020-01932-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Telomeres are repetitive sequences localized at the ends of eukaryotic chromosomes comprising noncoding DNA and telomere-binding proteins. TRF1 and TRF2 both bind to the double-stranded telomeric DNA to regulate its length throughout the lifespan of eukaryotic cells. POT1 interacts with single-stranded telomeric DNA and contributes to protecting genomic integrity. Previous studies have shown that telomeres gradually shorten as ovaries age, coinciding with fertility loss. However, the molecular background of telomere shortening with ovarian aging is not fully understood. METHODS The present study aimed to determine the spatial and temporal expression levels of the TERT, TRF1, TRF2, and POT1 proteins in different groups of human ovaries: fetal (n = 11), early postnatal (n = 10), premenopausal (n = 12), and postmenopausal (n = 14). Also, the relative telomere signal intensity of each group was measured using the Q-FISH method. RESULTS We found that the telomere signal intensities decreased evenly and significantly from fetal to postmenopausal groups (P < 0.05). The TERT, TRF1, TRF2, and POT1 proteins were localized in the cytoplasmic and nuclear regions of the oocytes, granulosa and stromal cells. Furthermore, the expression levels of these proteins reduced significantly from fetal to postmenopausal groups (P < 0.05). CONCLUSION These findings suggest that decreased TERT and telomere-binding protein expression may underlie the telomere shortening of ovaries with age, which may be associated with female fertility loss. Further investigations are required to elicit the molecular mechanisms regulating the gradual decrease in the expression of TERT and telomere-binding proteins in human oocytes and granulosa cells during ovarian aging.
Collapse
Affiliation(s)
- Fatma Uysal
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
- Department of Histology and Embryology, Ankara University School of Medicine, Ankara, Turkey
| | - Esra Gozde Kosebent
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Havva Serap Toru
- Department of Pathology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|