1
|
Zheng T, Huang KY, Tang XD, Wang FY, Lv L. Endoplasmic reticulum stress in gut inflammation: Implications for ulcerative colitis and Crohn's disease. World J Gastroenterol 2025; 31:104671. [PMID: 40248056 PMCID: PMC12001174 DOI: 10.3748/wjg.v31.i13.104671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/20/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025] Open
Abstract
Eukaryotic cells contain the endoplasmic reticulum (ER), a prevalent and intricate membranous structural system. During the development of inflammatory bowel disease (IBD), the stress on the ER and the start of the unfolded protein response are very important. Some chemicals, including 4μ8C, small molecule agonists of X-box binding protein 1, and ISRIB, work on the inositol-requiring enzyme 1, turn on transcription factor 6, and activate protein kinase RNA-like ER kinase pathways. This may help ease the symptoms of IBD. Researchers investigating the gut microbiota have discovered a correlation between ER stress and it. This suggests that changing the gut microbiota could help make new medicines for IBD. This study looks at how ER stress works and how it contributes to the emergence of IBD. It also talks about its possible clinical importance as a therapeutic target and looks into new ways to treat this condition.
Collapse
Affiliation(s)
- Ting Zheng
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Kai-Yue Huang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xu-Dong Tang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Feng-Yun Wang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Lin Lv
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
2
|
Lv T, Liu C, Ye M, Li G, Liu Z. Ketone therapy improves cardiac function and structure in rodents with heart failure: A systematic review and meta-analysis. Nutr Res 2025; 137:56-70. [PMID: 40252394 DOI: 10.1016/j.nutres.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 04/21/2025]
Abstract
This meta-analysis aimed to quantitatively assess the effects of ketone intervention on cardiac function and structure in rodents with heart failure (HF). We hypothesized that ketone intervention could enhance the cardiac function and structure in HF. We systematically searched PubMed, Cochrane Library, and Embase databases for relevant studies up to April 13, 2024. Ketone therapy encompassed a ketogenic diet, ketone esters, medium-chain triglycerides, and β-hydroxybutyrate. The effect measures are mainly expressed as standardized mean difference (SMD) and 95% confidence interval (CI). Our meta-analysis included 24 animal studies. Ketone therapy significantly improved left ventricular ejection fraction (SMD: 1.31, 95% CI: 0.79-1.82, I2 = 77%), cardiac output (SMD: 0.70, 95% CI: 0.28-1.11, I2 = 0%), and ameliorated myocardial hypertrophy (SMD: -1.95, 95% CI: -2.76 to -1.13, I2 = 76%), myocardial fibrosis (SMD: -0.87, 95% CI: -1.60 to -0.15, I2 = 68%), and ventricular remodeling in HF rodents. Subgroup analysis indicated that ketone intervention worsened myocardial fibrosis in non-HF rodents (SMD: 0.86, 95% CI: 0.09-1.63, I2 = 78%) and had no significant effect on cardiac function. Additionally, further subgroup analysis indicated that ketogenic diet significantly alleviated cardiac hypertrophy and fibrosis, whereas ketone esters did not yield significant effects. The effect of ketone on left ventricular ejection fraction strengthened with the duration of intervention. Our results suggested that ketone therapy significantly improved the cardiac systolic function and structure in rodents with HF, and had no effect in rodents non-HF. Thus, ketone intervention may be a promising treatment for HF patients.
Collapse
Affiliation(s)
- Tingting Lv
- Department of General Practice, Shaoxing People's Hospital, Shaoxing, PR China; Department of Pharmacology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, PR China
| | - Chunyan Liu
- Department of Infection Management, Shaoxing People's Hospital, Shaoxing, PR China.
| | - Mengfei Ye
- Department of Psychiatry, Shaoxing Seventh People's Hospital (Affiliated Mental Health Center, Medical College of Shaoxing University), Shaoxing, Zhejiang, PR China
| | - Gang Li
- Department of General Practice, Shaoxing People's Hospital, Shaoxing, PR China
| | - Zheng Liu
- Department of Pharmacology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, PR China
| |
Collapse
|
3
|
Mensah EO, Danyo EK, Asase RV. Exploring the effect of different diet types on ageing and age-related diseases. Nutrition 2025; 129:112596. [PMID: 39488864 DOI: 10.1016/j.nut.2024.112596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/21/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024]
Abstract
In recent times, there has been growing interest in understanding the factors contributing to prolonged and healthy lifespans observed in specific populations, tribes, or countries. Factors such as environmental and dietary play significant roles in shaping the ageing process and are often the focus of inquiries seeking to unravel the secrets behind longevity. Among these factors, diet emerges as a primary determinant, capable of either promoting or mitigating the onset of age-related diseases that impact the ageing trajectory. This review examines the impact of various diet types on ageing and age-related conditions, including cardiovascular disease, cancer, neurodegenerative disorders, and metabolic syndrome. Different dietary patterns, such as the Mediterranean diet, the Japanese diet, vegetarian and vegan diets, as well as low-carbohydrate and ketogenic diets, are evaluated for their potential effects on longevity and health span. Each diet type is characterized by distinct nutritional profiles, emphasizing specific food groups, macronutrient compositions, and bioactive components, which may exert diverse effects on ageing processes and disease risk. Additionally, dietary factors such as calorie restriction, intermittent fasting, and dietary supplementation are explored for their potential anti-ageing and disease-modifying effects. Understanding the influence of various diet types on ageing and age-related diseases can inform personalized dietary recommendations and lifestyle interventions aimed at promoting healthy aging and mitigating age-associated morbidities.
Collapse
Affiliation(s)
- Emmanuel O Mensah
- Faculty of Ecotechnology, ITMO University, Saint Petersburg, Russian Federation.
| | - Emmanuel K Danyo
- Institute of Chemical Engineering, Ural Federal University, Yekaterinburg, Russian Federation
| | - Richard V Asase
- Institute of Chemical Engineering, Ural Federal University, Yekaterinburg, Russian Federation
| |
Collapse
|
4
|
Bellomo F, Pugliese S, Cairoli S, Krohn P, De Stefanis C, Raso R, Rega LR, Taranta A, De Leo E, Ciolfi A, Cicolani N, Petrini S, Luciani A, Goffredo BM, Porzio O, Devuyst O, Dionisi-Vici C, Emma F. Ketogenic Diet and Progression of Kidney Disease in Animal Models of Nephropathic Cystinosis. J Am Soc Nephrol 2024; 35:1493-1506. [PMID: 38995697 PMCID: PMC11543012 DOI: 10.1681/asn.0000000000000439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024] Open
Abstract
Key Points Ketogenic diet can change the metabolism in the body and helped restore the function of altered pathways in nephropathic cystinosis. Ketogenic diet had significant benefits for preventing kidney damage, even when initiated after the onset of kidney impairment. Ketogenic diet may provide a partial therapeutic alternative in countries where cysteamine therapy is too expensive. Background Nephropathic cystinosis is a rare inherited lysosomal storage disorder caused by mutations in the CTNS gene that encodes for cystinosin, a lysosomal cystine/H+ symporter. From the standpoint of the kidneys, patients develop early-onset renal Fanconi syndrome and progressive CKD. Current therapy with cysteamine delays but does not prevent kidney failure and has significant side effects that limit adherence and reduce the quality of life of patients. Methods We have tested biochemically and histologically the effects of ketogenic diet on kidney disease of two animal models of nephropathic cystinosis. Results When Ctns −/− mice were fed with ketogenic diet from 3 to 12 months of age, we observed significant nearly complete prevention of Fanconi syndrome, including low molecular weight proteinuria, glycosuria, and polyuria. Compared with wild-type animals, BUN at 12 months was higher in cystinotic mice fed with standard diet (P < 0.001), but not with ketogenic diet. At sacrifice, kidneys of knockout mice fed with ketogenic diet appeared macroscopically similar to those of wild-type animals, which was reflected microscopically by a significant reduction of interstitial cell infiltration (CD3 and CD68 positive cells, P < 0.01), of interstitial fibrosis (Masson and α -smooth muscle actin staining, P < 0.001), and of apoptosis (cleaved caspase-3 levels; P < 0.001), and by indirect evidence of restoration of a normal autophagic flux (SQSTM1/p62 and LC3-II expression, P < 0.05). Beneficial effects of ketogenic diet on tubular function were also observed after mice were fed with this ketogenic diet from the age of 6 months to the age of 15 months, after they had developed proximal tubular dysfunction. Although slightly less pronounced, these results were replicated in Ctns −/− rats fed with ketogenic diet from 2 to 8 months of life. Conclusions These results indicate significant mitigation of the kidney phenotype in cystinotic animals fed with ketogenic diet.
Collapse
Affiliation(s)
- Francesco Bellomo
- Laboratory of Nephrology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Sara Pugliese
- Laboratory of Nephrology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Sara Cairoli
- Division of Metabolic Diseases and Drug Biology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Patrick Krohn
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Roberto Raso
- Laboratory of Nephrology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Laura Rita Rega
- Laboratory of Nephrology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Anna Taranta
- Laboratory of Nephrology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Ester De Leo
- Laboratory of Nephrology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Andrea Ciolfi
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Nicolò Cicolani
- Confocal Microscopy Core Facility, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | - Bianca Maria Goffredo
- Division of Metabolic Diseases and Drug Biology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Ottavia Porzio
- Clinical Biochemistry Laboratory, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Carlo Dionisi-Vici
- Division of Metabolic Diseases and Drug Biology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Francesco Emma
- Laboratory of Nephrology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
- Division of Nephrology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| |
Collapse
|
5
|
Alibhai FJ, Li RK. Rejuvenation of the Aging Heart: Molecular Determinants and Applications. Can J Cardiol 2024; 40:1394-1411. [PMID: 38460612 DOI: 10.1016/j.cjca.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024] Open
Abstract
In Canada and worldwide, the elderly population (ie, individuals > 65 years of age) is increasing disproportionately relative to the total population. This is expected to have a substantial impact on the health care system, as increased aged is associated with a greater incidence of chronic noncommunicable diseases. Within the elderly population, cardiovascular disease is a leading cause of death, therefore developing therapies that can prevent or slow disease progression in this group is highly desirable. Historically, aging research has focused on the development of anti-aging therapies that are implemented early in life and slow the age-dependent decline in cell and organ function. However, accumulating evidence supports that late-in-life therapies can also benefit the aged cardiovascular system by limiting age-dependent functional decline. Moreover, recent studies have demonstrated that rejuvenation (ie, reverting cellular function to that of a younger phenotype) of the already aged cardiovascular system is possible, opening new avenues to develop therapies for older individuals. In this review, we first provide an overview of the functional changes that occur in the cardiomyocyte with aging and how this contributes to the age-dependent decline in heart function. We then discuss the various anti-aging and rejuvenation strategies that have been pursued to improve the function of the aged cardiomyocyte, with a focus on therapies implemented late in life. These strategies include 1) established systemic approaches (caloric restriction, exercise), 2) pharmacologic approaches (mTOR, AMPK, SIRT1, and autophagy-targeting molecules), and 3) emerging rejuvenation approaches (partial reprogramming, parabiosis/modulation of circulating factors, targeting endogenous stem cell populations, and senotherapeutics). Collectively, these studies demonstrate the exciting potential and limitations of current rejuvenation strategies and highlight future areas of investigation that will contribute to the development of rejuvenation therapies for the aged heart.
Collapse
Affiliation(s)
- Faisal J Alibhai
- Toronto General Research Hospital Institute, University Health Network, Toronto, Ontario, Canada
| | - Ren-Ke Li
- Toronto General Research Hospital Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, Division of Cardiovascular Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Dai G, Li M, Xu H, Quan N. Status of Research on Sestrin2 and Prospects for its Application in Therapeutic Strategies Targeting Myocardial Aging. Curr Probl Cardiol 2023; 48:101910. [PMID: 37422038 DOI: 10.1016/j.cpcardiol.2023.101910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
Cardiac aging is accompanied by changes in the heart at the cellular and molecular levels, leading to alterations in cardiac structure and function. Given today's increasingly aging population, the decline in cardiac function caused by cardiac aging has a significant impact on quality of life. Antiaging therapies to slow the aging process and attenuate changes in cardiac structure and function have become an important research topic. Treatment with drugs, including metformin, spermidine, rapamycin, resveratrol, astaxanthin, Huolisu oral liquid, and sulforaphane, has been demonstrated be effective in delaying cardiac aging by stimulating autophagy, delaying ventricular remodeling, and reducing oxidative stress and the inflammatory response. Furthermore, caloric restriction has been shown to play an important role in delaying aging of the heart. Many studies in cardiac aging and cardiac aging-related models have demonstrated that Sestrin2 has antioxidant and anti-inflammatory effects, stimulates autophagy, delays aging, regulates mitochondrial function, and inhibits myocardial remodeling by regulation of relevant signaling pathways. Therefore, Sestrin2 is likely to become an important target for antimyocardial aging therapy.
Collapse
Affiliation(s)
- Gaoying Dai
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Meina Li
- Department of Infection Control, The First Hospital of Jilin University, Changchun, China
| | - He Xu
- Department of Integrative Medicine, Lequn Branch, The First Hospital of Jilin University, Changchun, China
| | - Nanhu Quan
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
7
|
Chen Q, Thompson J, Hu Y, Lesnefsky EJ. Endoplasmic reticulum stress and alterations of peroxiredoxins in aged hearts. Mech Ageing Dev 2023; 215:111859. [PMID: 37661065 PMCID: PMC11103240 DOI: 10.1016/j.mad.2023.111859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/20/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Aging-related cardiovascular disease is influenced by multiple factors, with oxidative stress being a key contributor. Aging-induced endoplasmic reticulum (ER) stress exacerbates oxidative stress by impairing mitochondrial function. Furthermore, a decline in antioxidants, including peroxiredoxins (PRDXs), augments the oxidative stress during aging. To explore if ER stress leads to PRDX degradation during aging, young adult (3 mo.) and aged (24 mo.) male mice were studied. Treatment with 4-phenylbutyrate (4-PBA) was used to alleviate ER stress in young adult and aged mice. Aged hearts showed elevated oxidative stress levels compared to young hearts. However, treatment with 4-PBA to attenuate ER stress reduced oxidative stress in aged hearts, indicating that ER stress contributes to increased oxidative stress in aging. Moreover, aging resulted in reduced levels of peroxiredoxin 3 (PRDX3) in mitochondria and peroxiredoxin 4 (PRDX4) in myocardium. While 4-PBA treatment improved PRDX3 content in aged hearts, it did not restore PRDX4 content in aged mice. These findings suggest that ER stress not only leads to mitochondrial dysfunction and increased oxidant stress but also impairs a vital antioxidant defense through decreased PRDX3 content. Additionally, the results suggest that PRDX4 may contribute an upstream role in inducing ER stress during aging.
Collapse
Affiliation(s)
- Qun Chen
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jeremy Thompson
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ying Hu
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Edward J Lesnefsky
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298, USA; Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA; Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA; Richmond Department of Veterans Affairs Medical Center, Richmond, VA 23249, USA.
| |
Collapse
|
8
|
Hao Y, Li B, Huber SA, Liu W. Bibliometric analysis of trends in cardiac aging research over the past 20 years. Medicine (Baltimore) 2023; 102:e34870. [PMID: 37653740 PMCID: PMC10470686 DOI: 10.1097/md.0000000000034870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND In recent years, many studies have addressed cardiac aging and related diseases. This study aims to understand the research trend of cardiac aging and find new hot issues. METHODS We searched the web of science core collection database for articles published between 2003 and 2022 on the topic of "cardiac aging." Complete information including keywords, publication year, journal title, country, organization, and author were extracted for analysis. The VOS viewer software was used to generate network maps of keywords, countries, institutions, and author relationships for visual network analysis. RESULTS A total of 1002 papers were analyzed in the study. Overall, the number of annual publications on cardiac aging has increased since 2009, and new hot topics are emerging. The top 3 countries with the most publications were the United States (471 articles), China (209 articles) and Italy (101 articles). The University of Washington published the most papers (35 articles). The cluster analysis with author as the keyword found that the connections among different scholars are scattered and clustered in a small range. Network analysis based on keyword co-occurrence and year of publication identified relevant features and trends in cardiac aging research. According to the results of cluster analysis, all the articles are divided into 4 topics: "mechanisms of cardiac aging", "prevention and treatment of cardiac aging", "characteristics of cardiac aging", and "others." In recent years, the mechanism and treatment of cardiac aging have attracted the most attention. In both studies, animal models are used more often than in human populations. Mitochondrial dysfunction, autophagy and mitochondrial autophagy are hotspots in current research. CONCLUSION In this study, bibliometric analysis was used to analyze the research trend of cardiac aging in the past 20 years. The mechanism and treatment of cardiac aging are the most concerned contents. Mitochondrial dysfunction, autophagy and mitophagy are the focus of future research on cardiac aging.
Collapse
Affiliation(s)
- Yan Hao
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Harbin Medical University, Harbin, Heilongjiang, China
| | - Bohan Li
- Harbin Medical University, Harbin, Heilongjiang, China
| | - Sally A. Huber
- Department of Pathology and Laboratory Medicine, University of Vermont, Colchester, VT
| | - Wei Liu
- Harbin Medical University, Harbin, Heilongjiang, China
- Department of Geriatric Cardiovascular Division, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
9
|
Sun S, Qin J, Liao W, Gao X, Shang Z, Luo D, Xiong S. Mitochondrial Dysfunction in Cardiotoxicity Induced by BCR-ABL1 Tyrosine Kinase Inhibitors -Underlying Mechanisms, Detection, Potential Therapies. Cardiovasc Toxicol 2023; 23:233-254. [PMID: 37479951 DOI: 10.1007/s12012-023-09800-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/08/2023] [Indexed: 07/23/2023]
Abstract
The advent of BCR-ABL tyrosine kinase inhibitors (TKIs) targeted therapy revolutionized the treatment of chronic myeloid leukemia (CML) patients. Mitochondria are the key organelles for the maintenance of myocardial tissue homeostasis. However, cardiotoxicity associated with BCR-ABL1 TKIs can directly or indirectly cause mitochondrial damage and dysfunction, playing a pivotal role in cardiomyocytes homeostatic system and putting the cancer survivors at higher risk. In this review, we summarize the cardiotoxicity caused by BCR-ABL1 TKIs and the underlying mechanisms, which contribute dominantly to the damage of mitochondrial structure and dysfunction: endoplasmic reticulum (ER) stress, mitochondrial stress, damage of myocardial cell mitochondrial respiratory chain, increased production of mitochondrial reactive oxygen species (ROS), and other kinases and other potential mechanisms of cardiotoxicity induced by BCR-ABL1 TKIs. Furthermore, detection and management of BCR-ABL1 TKIs will promote our rational use, and cardioprotection strategies based on mitochondria will improve our understanding of the cardiotoxicity from a mitochondrial perspective. Ultimately, we hope shed light on clinical decision-making. By integrate and learn from both research and practice, we will endeavor to minimize the mitochondria-mediated cardiotoxicity and reduce the adverse sequelae associated with BCR-ABL1 TKIs.
Collapse
Affiliation(s)
- Sheng Sun
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Medical Oncology, Hospital of Chengdu University of Traditioanal Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Jiqiu Qin
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenhao Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhoubiao Shang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dehua Luo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaoquan Xiong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Medical Oncology, Hospital of Chengdu University of Traditioanal Chinese Medicine, Chengdu, 610075, Sichuan Province, China.
| |
Collapse
|
10
|
Lin LC, Tu B, Song K, Liu ZY, Sun H, Zhou Y, Sha JM, Yang JJ, Zhang Y, Zhao JY, Tao H. Mitochondrial quality control in cardiac fibrosis: Epigenetic mechanisms and therapeutic strategies. Metabolism 2023:155626. [PMID: 37302693 DOI: 10.1016/j.metabol.2023.155626] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Cardiac fibrosis (CF) is considered an ultimate common pathway of a wide variety of heart diseases in response to diverse pathological and pathophysiological stimuli. Mitochondria are characterized as isolated organelles with a double-membrane structure, and they primarily contribute to and maintain highly dynamic energy and metabolic networks whose distribution and structure exert potent support for cellular properties and performance. Because the myocardium is a highly oxidative tissue with high energy demands to continuously pump blood, mitochondria are the most abundant organelles within mature cardiomyocytes, accounting for up to one-third of the total cell volume, and play an essential role in maintaining optimal performance of the heart. Mitochondrial quality control (MQC), including mitochondrial fusion, fission, mitophagy, mitochondrial biogenesis, and mitochondrial metabolism and biosynthesis, is crucial machinery that modulates cardiac cells and heart function by maintaining and regulating the morphological structure, function and lifespan of mitochondria. Certain investigations have focused on mitochondrial dynamics, including manipulating and maintaining the dynamic balance of energy demand and nutrient supply, and the resultant findings suggest that changes in mitochondrial morphology and function may contribute to bioenergetic adaptation during cardiac fibrosis and pathological remodeling. In this review, we discuss the function of epigenetic regulation and molecular mechanisms of MQC in the pathogenesis of CF and provide evidence for targeting MQC for CF. Finally, we discuss how these findings can be applied to improve the treatment and prevention of CF.
Collapse
Affiliation(s)
- Li-Chan Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Bin Tu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Kai Song
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - He Sun
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Yang Zhou
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Ji-Ming Sha
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Jing-Jing Yang
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| | - Jian-Yuan Zhao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| |
Collapse
|
11
|
Xu H, Yang F, Bao Z. Gut microbiota and myocardial fibrosis. Eur J Pharmacol 2023; 940:175355. [PMID: 36309048 DOI: 10.1016/j.ejphar.2022.175355] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 01/18/2023]
Abstract
Myocardial fibrosis (MF) is a pathophysiological condition that accompanies various myocardial diseases and comprises a damaged myocardial matrix repair process. Although fibrosis plays a vital role in repair, it ultimately alters cardiac systolic and diastolic functions. The gut microbiota is a complex and dynamic ecosystem with billions of microorganisms that produce bioactive compounds that influence host health and disease progression. Intestinal microbiota has been shown to correlate with cardiovascular disease, and dysbiosis of the intestinal microbiota is involved in the development of MF. In this review, we discuss the role of intestinal microbiota in the process of MF, including alterations in microbiota composition and the effects of metabolites. We also discuss how diet and medicines can affect cardiac fibrosis by influencing the gut microbiota, and potential future therapies targeting the gut-heart axis. A healthy gut microbiota can prevent disease, but dysbiosis can lead to various symptoms, including the induction of heart disease. In this review, we discuss the relevance of the gut-heart axis and the multiple pathways by which gut microbiota may affect cardiac fibrosis, including inflammatory factors, immune cells, and gut microbiota metabolites, such as trimethylamine-N-oxide (TMAO) and short-chain fatty acids (SCFAs). Finally, we discuss the involvement of gut microbiota in the treatment of cardiac fibrosis, including drugs, fecal microbiota transplantation, and oral probiotics or prebiotics. With future studies on the relationship between the heart and gut microbiota, we hope to find better ways to improve MF through the gut-heart axis.
Collapse
Affiliation(s)
- Han Xu
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Fan Yang
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China.
| | - Zhijun Bao
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Research Center on Aging and Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Srivastava S, Pawar V, Tyagi A, Sharma K, Kumar V, Shukla S. Immune Modulatory Effects of Ketogenic Diet in Different Disease Conditions. IMMUNO 2022; 3:1-15. [DOI: 10.3390/immuno3010001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Interceding nutrients have been acquiring increased attention and prominence in the field of healing and deterrence of various disorders. In this light, the present article encompasses several facets of ketogenic diet as an immunomodulator with respect to its expansive clinical applications. Accordingly, several scientific records, models, and case histories, including viral infections, cancer, chronic diseases, e.g., cardiovascular diseases, epilepsy, as well as numerous other neuro-disorders, are assembled, revealing a profound influence of KD in favor of improvement in the patient’s condition. We accentuate possible manifold mechanisms of KD that require further exploration.
Collapse
Affiliation(s)
- Shivani Srivastava
- Department of Pathology, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Vishakha Pawar
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anuradha Tyagi
- Department of cBRN, Institute of Nuclear Medicine and Allied Science, Delhi 110054, India
| | - Kanti Sharma
- Department of Nutrition Biology, Central University of Haryana, Mahendragarh 123029, India
| | - Vinay Kumar
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, 473 W 12th Ave, Columbus, OH 43210, USA
| | - Surendra Shukla
- Department of Oncology Science, OU Health Stephenson Cancer Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
13
|
Aminzadeh-Gohari S, Kofler B, Herzog C. Dietary restriction in senolysis and prevention and treatment of disease. Crit Rev Food Sci Nutr 2022; 64:5242-5268. [PMID: 36484738 PMCID: PMC7616065 DOI: 10.1080/10408398.2022.2153355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aging represents a key risk factor for a plethora of diseases. Targeting detrimental processes which occur during aging, especially before onset of age-related disease, could provide drastic improvements in healthspan. There is increasing evidence that dietary restriction (DR), including caloric restriction, fasting, or fasting-mimicking diets, extend both lifespan and healthspan. This has sparked interest in the use of dietary regimens as a non-pharmacological means to slow aging and prevent disease. Here, we review the current evidence on the molecular mechanisms underlying DR-induced health improvements, including removal of senescent cells, metabolic reprogramming, and epigenetic rejuvenation.
Collapse
Affiliation(s)
- Sepideh Aminzadeh-Gohari
- Research Program for Receptor Biochemistry and Tumor Metabollism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
- European Translational Oncology Prevention and Screening Institute, Universität Innsbruck, Innsbruck, Austria
- Research Institute for Biomedical Ageing, Universität Innsbruck, Innsbruck, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabollism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Chiara Herzog
- European Translational Oncology Prevention and Screening Institute, Universität Innsbruck, Innsbruck, Austria
- Research Institute for Biomedical Ageing, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
14
|
Mitochondrial function and nutrient sensing pathways in ageing: enhancing longevity through dietary interventions. Biogerontology 2022; 23:657-680. [PMID: 35842501 DOI: 10.1007/s10522-022-09978-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/30/2022] [Indexed: 12/13/2022]
Abstract
Ageing is accompanied by alterations in several biochemical processes, highly influenced by its environment. It is controlled by the interactions at various levels of biological hierarchy. To maintain homeostasis, a number of nutrient sensors respond to the nutritional status of the cell and control its energy metabolism. Mitochondrial physiology is influenced by the energy status of the cell. The alterations in mitochondrial physiology and the network of nutrient sensors result in mitochondrial damage leading to age related metabolic degeneration and diseases. Calorie restriction (CR) has proved to be as the most successful intervention to achieve the goal of longevity and healthspan. CR elicits a hormetic response and regulates metabolism by modulating these networks. In this review, the authors summarize the interdependent relationship between mitochondrial physiology and nutrient sensors during the ageing process and their role in regulating metabolism.
Collapse
|
15
|
Role of Nutrients and Foods in Attenuation of Cardiac Remodeling through Oxidative Stress Pathways. Antioxidants (Basel) 2022; 11:antiox11102064. [PMID: 36290787 PMCID: PMC9598077 DOI: 10.3390/antiox11102064] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022] Open
Abstract
Cardiac remodeling is defined as a group of molecular, cellular, and interstitial changes that manifest clinically as changes in the heart’s size, mass, geometry, and function after different injuries. Importantly, remodeling is associated with increased risk of ventricular dysfunction and heart failure. Therefore, strategies to attenuate this process are critical. Reactive oxygen species and oxidative stress play critical roles in remodeling. Importantly, antioxidative dietary compounds potentially have protective properties against remodeling. Therefore, this review evaluates the role of nutrients and food as modulators of cardiac remodeling.
Collapse
|
16
|
Mendoza A, Karch J. Keeping the beat against time: Mitochondrial fitness in the aging heart. FRONTIERS IN AGING 2022; 3:951417. [PMID: 35958271 PMCID: PMC9360554 DOI: 10.3389/fragi.2022.951417] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022]
Abstract
The process of aging strongly correlates with maladaptive architectural, mechanical, and biochemical alterations that contribute to the decline in cardiac function. Consequently, aging is a major risk factor for the development of heart disease, the leading cause of death in the developed world. In this review, we will summarize the classic and recently uncovered pathological changes within the aged heart with an emphasis on the mitochondria. Specifically, we describe the metabolic changes that occur in the aging heart as well as the loss of mitochondrial fitness and function and how these factors contribute to the decline in cardiomyocyte number. In addition, we highlight recent pharmacological, genetic, or behavioral therapeutic intervention advancements that may alleviate age-related cardiac decline.
Collapse
Affiliation(s)
- Arielys Mendoza
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, United States
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| | - Jason Karch
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, United States
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
17
|
A medium-chain triglyceride containing ketogenic diet exacerbates cardiomyopathy in a CRISPR/Cas9 gene-edited rat model with Duchenne muscular dystrophy. Sci Rep 2022; 12:11580. [PMID: 35803994 PMCID: PMC9270409 DOI: 10.1038/s41598-022-15934-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/01/2022] [Indexed: 11/08/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive myopathy caused by dystrophin mutations. Although respiratory management has improved the prognosis of patients with DMD, inevitable progressive cardiomyopathy is a current leading cause of premature death. Recently, we showed that a medium-chain triglyceride containing ketogenic diet (MCTKD) improves skeletal muscle function and pathology in a CRISPR/Cas9 gene-edited rat model with DMD. In this study, we sought to clarify whether MCTKD also improves the cardiomyopathy in these rats. DMD rats were fed either the MCTKD or normal diet (ND) from ages of 3 weeks to 9 months old. Compared with the ND-fed rats, MCTKD-fed rats showed significantly prolonged QRS duration, decreased left ventricular fractional shortening, an increased heart weight/body weight ratio, and progression of cardiac fibrosis. In contrast to our previous study which found that MCTKD improved skeletal myopathy, the current study showed unexpected exacerbation of the cardiomyopathy. Further studies are needed to explore the underlying mechanisms for these differences and to explore modified dietary options that improve skeletal and cardiac muscles simultaneously.
Collapse
|
18
|
Zhou J, Lu Y, Jia Y, Lu J, Jiang Z, Chen K. Ketogenic diet ameliorates lipid dysregulation in type 2 diabetic mice by downregulating hepatic pescadillo 1. Mol Med 2022; 28:1. [PMID: 34979900 PMCID: PMC8722053 DOI: 10.1186/s10020-021-00429-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
Background Previous reports implied a possible link between PES1 and lipid metabolism. However, the role of PES1 in regulating T2DM related lipid metabolism and the effect of ketogenic diet (KD) on PES1 have not been reported. The aim of present study is to explore the role of PES1 in effects of KD on diabetic mice and its mediated mechanism. Methods Male C57BL/6J and KKAy mice were fed with standard diet (SD) and KD, respectively. Simultaneously, McArdle 7777 cells were treated by β-hydroxybutyric acid (β-HB), Pes1 siRNA or Pes1 overexpression plasmid, respectively. Additionally, liver-conditional knockout (CKO) of Pes1 in vivo was applied. Results Hepatic PES1 expression in diabetic mice was markedly increased, which was suppressed by KD feeding with an accompanying reduction of hepatic and plasma triglycerides (TG). In mice with CKO of Pes1, the protein levels of p300, SREBP1c, FASN, SCD1, Caspase1, NLRP3 and GSDMD were dramatically downregulated in livers, and the plasma and hepatic TG, IL-1β and IL-18 were decreased as well. The similar outcomes were also observed in β-HB and Pes1 knockdown treated hepatocytes. By contrast, Pes1 overexpression in cultured hepatocytes showed that these levels were significantly enhanced, which were, however reduced under β-HB treatment. Mechanistically, we discovered that β-HB decreased CHOP binding to the Pes1 promoters, resulting in the downregulation of PES1, thereby reducing PES1 binding to p300 and Caspase1 promoters. The inhibition of p300 and Caspase1 expression elicited the dramatic suppression of acetylation of SREBP1c via its interaction with p300, and the decreased GSDMD levels. Besides, knockdown of Caspase1 also alleviated the TG levels in cultured hepatocytes. Conclusion KD may improve lipid dysregulation in type 2 diabetic mice by downregulating hepatic PES1 expression. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00429-6.
Collapse
Affiliation(s)
- Jielin Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yao Lu
- Department of Anesthesiology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yajing Jia
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jing Lu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Zhengxuan Jiang
- Department of Ophthalmology, The Second Affiliated Hospital, Anhui Medical University, Hefei, 230021, Anhui, China.
| | - Keyang Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China. .,Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
19
|
Shen W, He J, Hou T, Si J, Chen S. Common Pathogenetic Mechanisms Underlying Aging and Tumor and Means of Interventions. Aging Dis 2022; 13:1063-1091. [PMID: 35855334 PMCID: PMC9286910 DOI: 10.14336/ad.2021.1208] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022] Open
Abstract
Recently, there has been an increase in the incidence of malignant tumors among the older population. Moreover, there is an association between aging and cancer. During the process of senescence, the human body suffers from a series of imbalances, which have been shown to further accelerate aging, trigger tumorigenesis, and facilitate cancer progression. Therefore, exploring the junctions of aging and cancer and searching for novel methods to restore the junctions is of great importance to intervene against aging-related cancers. In this review, we have identified the underlying pathogenetic mechanisms of aging-related cancers by comparing alterations in the human body caused by aging and the factors that trigger cancers. We found that the common mechanisms of aging and cancer include cellular senescence, alterations in proteostasis, microbiota disorders (decreased probiotics and increased pernicious bacteria), persistent chronic inflammation, extensive immunosenescence, inordinate energy metabolism, altered material metabolism, endocrine disorders, altered genetic expression, and epigenetic modification. Furthermore, we have proposed that aging and cancer have common means of intervention, including novel uses of common medicine (metformin, resveratrol, and rapamycin), dietary restriction, and artificial microbiota intervention or selectively replenishing scarce metabolites. In addition, we have summarized the research progress of each intervention and revealed their bidirectional effects on cancer progression to compare their reliability and feasibility. Therefore, the study findings provide vital information for advanced research studies on age-related cancers. However, there is a need for further optimization of the described methods and more suitable methods for complicated clinical practices. In conclusion, targeting aging may have potential therapeutic effects on aging-related cancers.
Collapse
Affiliation(s)
- Weiyi Shen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
| | - Jiamin He
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
| | - Tongyao Hou
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
- Correspondence should be addressed to: Dr. Shujie Chen (), Dr. Jianmin Si () and Dr. Tongyao Hou (), Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Jianmin Si
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
- Correspondence should be addressed to: Dr. Shujie Chen (), Dr. Jianmin Si () and Dr. Tongyao Hou (), Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Shujie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
- Correspondence should be addressed to: Dr. Shujie Chen (), Dr. Jianmin Si () and Dr. Tongyao Hou (), Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| |
Collapse
|
20
|
Abstract
Sodium glucose cotransporter 2 (SGLT-2) inhibitors are the latest class of antidiabetic medications. They prevent glucose reabsorption in the proximal convoluted tubule to decrease blood sugar. Several animal studies revealed that SGLT-2 is profoundly involved in the inflammatory response, fibrogenesis, and regulation of numerous intracellular signaling pathways. Likewise, SGLT-2 inhibitors markedly attenuated inflammation and fibrogenesis and improved the function of damaged organ in animal studies, observational studies, and clinical trials. SGLT-2 inhibitors can decrease blood pressure and ameliorate hypertriglyceridemia and obesity. Likewise, they improve the outcome of cardiovascular diseases such as heart failure, arrhythmias, and ischemic heart disease. SGLT-2 inhibitors are associated with lower cardiovascular and all-cause mortality as well. Meanwhile, they protect against nonalcoholic fatty liver disease (NAFLD), chronic kidney disease, acute kidney injury, and improve micro- and macroalbuminuria. SGLT-2 inhibitors can reprogram numerous signaling pathways to improve NAFLD, cardiovascular diseases, and renal diseases. For instance, they enhance lipolysis, ketogenesis, mitochondrial biogenesis, and autophagy while they attenuate the renin-angiotensin-aldosterone system, lipogenesis, endoplasmic reticulum stress, oxidative stress, apoptosis, and fibrogenesis. This review explains the beneficial effects of SGLT-2 inhibitors on NAFLD and cardiovascular and renal diseases and dissects the underlying molecular mechanisms in detail. This narrative review explains the beneficial effects of SGLT-2 inhibitors on NAFLD and cardiovascular and renal diseases using the results of latest observational studies, clinical trials, and meta-analyses. Thereafter, it dissects the underlying molecular mechanisms involved in the clinical effects of SGLT-2 inhibitors on these diseases.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
21
|
Cao Y, Jiang W, Bai H, Li J, Zhu H, Xu L, Li Y, Li K, Tang H, Duan W, Wang S. Study on active components of mulberry leaf for the prevention and treatment of cardiovascular complications of diabetes. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
22
|
Oka SI, Tang F, Chin A, Ralda G, Xu X, Hu C, Yang Z, Abdellatif M, Sadoshima J. β-Hydroxybutyrate, a Ketone Body, Potentiates the Antioxidant Defense via Thioredoxin 1 Upregulation in Cardiomyocytes. Antioxidants (Basel) 2021; 10:antiox10071153. [PMID: 34356388 PMCID: PMC8301070 DOI: 10.3390/antiox10071153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 12/21/2022] Open
Abstract
Thioredoxin 1 (Trx1) is a major antioxidant that acts adaptively to protect the heart during the development of diabetic cardiomyopathy. The molecular mechanism(s) responsible for regulating the Trx1 level and/or activity during diabetic cardiomyopathy is unknown. β-hydroxybutyrate (βHB), a major ketone body in mammals, acts as an alternative energy source in cardiomyocytes under stress, but it also appears to be involved in additional mechanisms that protect the heart against stress. βHB upregulated Trx1 in primary cultured cardiomyocytes in a dose- and a time-dependent manner and a ketogenic diet upregulated Trx1 in the heart. βHB protected cardiomyocytes against H2O2-induced death, an effect that was abolished in the presence of Trx1 knockdown. βHB also alleviated the H2O2-induced inhibition of mTOR and AMPK, known targets of Trx1, in a Trx1-dependent manner, suggesting that βHB potentiates Trx1 function. It has been shown that βHB is a natural inhibitor of HDAC1 and knockdown of HDAC1 upregulated Trx1 in cardiomyocytes, suggesting that βHB may upregulate Trx1 through HDAC inhibition. βHB induced Trx1 acetylation and inhibited Trx1 degradation, suggesting that βHB-induced inhibition of HDAC1 may stabilize Trx1 through protein acetylation. These results suggest that βHB potentiates the antioxidant defense in cardiomyocytes through the inhibition of HDAC1 and the increased acetylation and consequent stabilization of Trx1. Thus, modest upregulation of ketone bodies in diabetic hearts may protect the heart through the upregulation of Trx1.
Collapse
Affiliation(s)
- Shin-ichi Oka
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.-i.O.); (F.T.); (A.C.); (G.R.); (X.X.); (C.H.); (Z.Y.); (M.A.)
| | - Fan Tang
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.-i.O.); (F.T.); (A.C.); (G.R.); (X.X.); (C.H.); (Z.Y.); (M.A.)
| | - Adave Chin
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.-i.O.); (F.T.); (A.C.); (G.R.); (X.X.); (C.H.); (Z.Y.); (M.A.)
| | - Guersom Ralda
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.-i.O.); (F.T.); (A.C.); (G.R.); (X.X.); (C.H.); (Z.Y.); (M.A.)
| | - Xiaoyong Xu
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.-i.O.); (F.T.); (A.C.); (G.R.); (X.X.); (C.H.); (Z.Y.); (M.A.)
- Department of Cardiovascular Disease, Ningbo Medical Treatment Centre Li Huili Hospital, Ningbo 315000, China
| | - Chengchen Hu
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.-i.O.); (F.T.); (A.C.); (G.R.); (X.X.); (C.H.); (Z.Y.); (M.A.)
| | - Zhi Yang
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.-i.O.); (F.T.); (A.C.); (G.R.); (X.X.); (C.H.); (Z.Y.); (M.A.)
| | - Maha Abdellatif
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.-i.O.); (F.T.); (A.C.); (G.R.); (X.X.); (C.H.); (Z.Y.); (M.A.)
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.-i.O.); (F.T.); (A.C.); (G.R.); (X.X.); (C.H.); (Z.Y.); (M.A.)
- Correspondence: ; Tel.: +1-97-3972-8619
| |
Collapse
|
23
|
Tao J, Chen H, Wang YJ, Qiu JX, Meng QQ, Zou RJ, Li L, Huang JG, Zhao ZK, Huang YL, Zhang HF, Zheng JM. Ketogenic Diet Suppressed T-Regulatory Cells and Promoted Cardiac Fibrosis via Reducing Mitochondria-Associated Membranes and Inhibiting Mitochondrial Function. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5512322. [PMID: 33959215 PMCID: PMC8075689 DOI: 10.1155/2021/5512322] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/28/2021] [Accepted: 03/22/2021] [Indexed: 02/05/2023]
Abstract
Ketogenic diet (KD) is popular in diabetic patients but its cardiac safety and efficiency on the heart are unknown. The aim of the present study is to determine the effects and the underlined mechanisms of KD on cardiac function in diabetic cardiomyopathy (DCM). We used db/db mice to model DCM, and different diets (regular or KD) were used. Cardiac function and interstitial fibrosis were determined. T-regulatory cell (Treg) number and functions were evaluated. The effects of ketone body (KB) on fatty acid (FA) and glucose metabolism, mitochondria-associated endoplasmic reticulum membranes (MAMs), and mitochondrial respiration were assessed. The mechanisms via which KB regulated MAMs and Tregs were addressed. KD improved metabolic indices in db/db mice. However, KD impaired cardiac diastolic function and exacerbated ventricular fibrosis. Proportions of circulatory CD4+CD25+Foxp3+ cells in whole blood cells and serum levels of IL-4 and IL-10 were reduced in mice fed with KD. KB suppressed the differentiation to Tregs from naive CD4+ T cells. Cultured medium from KB-treated Tregs synergically activated cardiac fibroblasts. Meanwhile, KB inhibited Treg proliferation and productions of IL-4 and IL-10. Treg MAMs, mitochondrial respiration and respiratory complexes, and FA synthesis and oxidation were all suppressed by KB while glycolytic levels were increased. L-carnitine reversed Treg proliferation and function inhibited by KB. Proportions of ST2L+ cells in Tregs were reduced by KB, as well as the production of ST2L ligand, IL-33. Reinforcement expressions of ST2L in Tregs counteracted the reductions in MAMs, mitochondrial respiration, and Treg proliferations and productions of Treg cytokines IL-4 and IL-10. Therefore, despite the improvement of metabolic indices, KD impaired Treg expansion and function and promoted cardiac fibroblast activation and interstitial fibrosis. This could be mainly mediated by the suppression of MAMs and fatty acid metabolism inhibition via blunting IL-33/ST2L signaling.
Collapse
Affiliation(s)
- Jun Tao
- Department of Cardiovascular surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ya-Jing Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun-Xiong Qiu
- Department of Cardiovascular surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qing-Qi Meng
- Department of Orthopedics of Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Rong-Jun Zou
- Heart Center, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ling Li
- Department of Cardiovascular surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun-Gang Huang
- Department of Cardiovascular surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zong-Kai Zhao
- Department of Cardiovascular surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu-Li Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Hai-Feng Zhang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jun-Meng Zheng
- Department of Cardiovascular surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of surgery, Kiang Wu Hospital, Macau SAR, China
| |
Collapse
|
24
|
Attenuating senescence and dead cells accumulation as heart failure therapy: Break the communication networks. Int J Cardiol 2021; 334:72-85. [PMID: 33794236 DOI: 10.1016/j.ijcard.2021.03.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 02/03/2023]
|