1
|
Hemmati S, Haque T, Gritsman K. Inflammatory Signaling Pathways in Preleukemic and Leukemic Stem Cells. Front Oncol 2017; 7:265. [PMID: 29181334 PMCID: PMC5693908 DOI: 10.3389/fonc.2017.00265] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/20/2017] [Indexed: 12/15/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are a rare subset of bone marrow cells that usually exist in a quiescent state, only entering the cell cycle to replenish the blood compartment, thereby limiting the potential for errors in replication. Inflammatory signals that are released in response to environmental stressors, such as infection, trigger active cycling of HSCs. These inflammatory signals can also directly induce HSCs to release cytokines into the bone marrow environment, promoting myeloid differentiation. After stress myelopoiesis is triggered, HSCs require intracellular signaling programs to deactivate this response and return to steady state. Prolonged or excessive exposure to inflammatory cytokines, such as in prolonged infection or in chronic rheumatologic conditions, can lead to continued HSC cycling and eventual HSC loss. This promotes bone marrow failure, and can precipitate preleukemic states or leukemia through the acquisition of genetic and epigenetic changes in HSCs. This can occur through the initiation of clonal hematopoiesis, followed by the emergence preleukemic stem cells (pre-LSCs). In this review, we describe the roles of multiple inflammatory signaling pathways in the generation of pre-LSCs and in progression to myelodysplastic syndrome (MDS), myeloproliferative neoplasms, and acute myeloid leukemia (AML). In AML, activation of some inflammatory signaling pathways can promote the cycling and differentiation of LSCs, and this can be exploited therapeutically. We also discuss the therapeutic potential of modulating inflammatory signaling for the treatment of myeloid malignancies.
Collapse
Affiliation(s)
- Shayda Hemmati
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Tamanna Haque
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Oncology, Montefiore Medical Center, Bronx, NY, United States
| | - Kira Gritsman
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Oncology, Montefiore Medical Center, Bronx, NY, United States
| |
Collapse
|
2
|
Shikama Y, Cao M, Ono T, Feng X, Noji H, Kimura H, Ogawa K, Suzuki Y, Ikeda K, Takeishi Y, Kimura J. Reduction of c-Fos via Overexpression of miR-34a Results in Enhancement of TNF- Production by LPS in Neutrophils from Myelodysplastic Syndrome Patients. PLoS One 2016; 11:e0158527. [PMID: 27513856 PMCID: PMC4981319 DOI: 10.1371/journal.pone.0158527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/16/2016] [Indexed: 02/07/2023] Open
Abstract
Although increased TNF-α has been considered to cause ineffective hematopoiesis in myelodysplastic syndromes (MDS), the mechanisms of TNF-α elevation are not known. We recently found that c-Fos mRNA stabilization under translation-inhibiting stimuli was impaired in MDS-derived neutrophilic granulocytes. In the current study, we identified overexpression of c-Fos-targeting miR-34a and miR-155 as the cause of impairment. Expression levels of miR-34a but not miR-155 inversely correlated with ratios of c-Fos-positive cells in MDS-derived CD16+ neutrophils (r = -0.618, P<0.05), which were analyzed by flow cytometry. Among the seventeen patients, c-Fos was detectable in less than 60% of CD16+ cells in eight patients (Group A), while five (Group B) expressed c-Fos in more than 80% of CD16+ cells, which was consistent with the controls (88.6 ± 7.8%). Group A-derived granulocytes secreted more TNF-α in response to 1 μM LPS for 3 hours (735.4 ± 237.5 pg/mL) than Group B (143.5 ± 65.7 pg/mL, P<0.05) and healthy controls (150.8 ± 91.5 pg/mL, P<0.05). Knockdown of c-Fos in neutrophil-like differentiated HL60 increased the binding of NF-κB p65 to the promoter region of TNF-α DNA. Thus, c-Fos reduction via overexpression of miR-34a contributes to TNF-α overproduction under inflammatory stimuli in MDS.
Collapse
Affiliation(s)
- Yayoi Shikama
- Department of Pharmacology, Fukushima Medical University, Fukushima, Japan
- * E-mail:
| | - Meiwan Cao
- Department of Pharmacology, Fukushima Medical University, Fukushima, Japan
| | - Tomoyuki Ono
- Department of Pharmacology, Fukushima Medical University, Fukushima, Japan
| | - Xiaomin Feng
- Department of Pharmacology, Fukushima Medical University, Fukushima, Japan
| | - Hideyoshi Noji
- Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan
| | - Hideo Kimura
- Department of Hematology, Kita Fukushima Medical Center, Date, Japan
| | - Kazuei Ogawa
- Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan
| | - Yuko Suzuki
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University, Fukushima, Japan
| | - Kazuhiko Ikeda
- Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University, Fukushima, Japan
| | - Yasuchika Takeishi
- Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan
| | - Junko Kimura
- Department of Pharmacology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
3
|
Ullenhag GJ, Al-Attar A, Mukherjee A, Green AR, Ellis IO, Durrant LG. The TRAIL system is over-expressed in breast cancer and FLIP a marker of good prognosis. J Cancer Res Clin Oncol 2015; 141:505-14. [PMID: 25230899 DOI: 10.1007/s00432-014-1822-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/01/2014] [Indexed: 02/04/2023]
Abstract
BACKGROUND Breast cancer is the most common cancer in women. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) pathway transmits apoptotic signals. Novel anticancer agents that activate this system are in clinical development, including anti-breast cancer. METHODS The tissue microarray technique was applied. We used an array of breast cancer tissues from a large group of patients (>800) to assess the protein expression of TRAIL-R1, TRAIL-R2, the long isoform of FLICE-inhibitory protein and total FLICE-inhibitory protein (FLIP(L) and FLIP(T)). Disease-free survival was examined by Kaplan-Meier estimates and the log-rank test. The independence of prognostic factors was determined by Cox multivariate analysis. RESULTS High intra-tumoral expression of all these proteins of the TRAIL pathway was found. The TRAIL receptors and FLIP(L) were not associated with survival. On univariate analysis, strong FLIP(T) expression was associated with a significantly better survival (p = 0.001). On multivariate analysis using the Cox proportional hazards model, FLIP(T) phenotype was significantly associated with a good prognosis in this series (HR 0.52, 95 % CI 0.35-0.78, p = 0.039). Results indicate that this association is valid for all the biological subtypes of breast cancer. The expression of FLIP(T) was especially high in the luminal subtype, known for its good prognosis. CONCLUSIONS These findings support the use of agonistic TRAIL antibodies and drugs targeting FLIP in breast cancer patients. Over-expression of FLIP(T) but not TRAIL-R1, TRAIL-R2 or FLIP(L) provides stage-independent prognostic information in breast cancer patients. This indicates a clinically less aggressive phenotype.
Collapse
Affiliation(s)
- Gustav J Ullenhag
- Section of Oncology, Department of Radiology, Oncology and Radiation Science, Uppsala University, Uppsala, Sweden,
| | | | | | | | | | | |
Collapse
|
4
|
Pennarun B, Kleibeuker JH, Boersma-van Ek W, Kruyt FAE, Hollema H, de Vries EGE, de Jong S. Targeting FLIP and Mcl-1 using a combination of aspirin and sorafenib sensitizes colon cancer cells to TRAIL. J Pathol 2013; 229:410-21. [PMID: 23132258 DOI: 10.1002/path.4138] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 10/15/2012] [Accepted: 10/19/2012] [Indexed: 12/16/2022]
Abstract
The multikinase inhibitor sorafenib is highly effective against certain types of cancer in the clinic and prevents colon cancer cell proliferation in vitro. Non-steroidal anti-inflammatory drugs, such as acetylsalicylic acid (aspirin), have shown activity against colon cancer cells. The aims of this study were to determine whether the combination of aspirin with sorafenib has enhanced anti-proliferative effects and increases recombinant human tumour necrosis factor-related apoptosis-inducing ligand (rhTRAIL)-induced apoptosis in the human SW948, Lovo, Colo205, Colo320, Caco-2 and HCT116 colon cancer cell lines. In four cell lines, aspirin strongly stimulated the anti-proliferative effects of sorafenib (∼four-fold enhancement) by inducing cell cycle arrest. Furthermore, combining low doses of aspirin (≤ 5 mm) and sorafenib (≤ 2.5 µm) greatly sensitized TRAIL-sensitive and TRAIL-resistant colon cancer cells to rhTRAIL, much more potently than either drug combined with rhTRAIL. The increase in rhTRAIL sensitivity was due to inhibition of FLIP and Mcl-1 protein expression following aspirin and sorafenib co-treatment, as confirmed by knock-down studies. Next, the clinical relevance of targeting FLIP and Mcl-1 in colon cancer was examined. Using immunohistochemistry, we found that Mcl-1 expression was significantly increased in colon adenoma and carcinoma patient material compared to healthy colonic epithelium, similar to the enhanced FLIP expression we recently observed in colon cancer. These results underscore the potential of combining low doses of aspirin with sorafenib to inhibit proliferation and target the anti-apoptotic proteins FLIP and Mcl-1 in colon cancer cells.
Collapse
Affiliation(s)
- Bodvael Pennarun
- Department of Medical Oncology, University of Groningen, University Medical Centre Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
5
|
Song NM, Jun S, Zang DY, Kim SG, Park HR, Kang D. Differential susceptibility of gastric cancer cells to TRAIL-induced apoptosis. Oncol Rep 2012; 29:1224-30. [PMID: 23233033 DOI: 10.3892/or.2012.2183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 11/23/2012] [Indexed: 11/05/2022] Open
Abstract
Understanding the molecular basis of the differential sensitivity of cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis is required to predict therapeutic outcomes and to improve the effectiveness of TRAIL-based therapy. This study aimed to compare the responsiveness of gastric cancer cells to TRAIL treatment and to investigate the molecular basis of the differential TRAIL sensitivity of four gastric cancer cell lines. The TRAIL sensitivity of the four cell lines was ranked in the following order: SNU-16 ≈ SNU-620 > SNU-5 >> SNU-1. The level of Annexin V binding and the activation profile of caspase-3, -8 and -9 corroborated the differential TRAIL susceptibility of the cell lines. To determine the molecular basis of the differential sensitivity to TRAIL, we examined the expression of signaling components involved in TRAIL-mediated apoptosis. The mRNA level and surface expression of death receptor 4 (DR4) were significantly decreased in the SNU-1 cells compared to the other cell lines. Bid cleavage and X-linked inhibitor of apoptosis (XIAP) degradation were significantly increased in the SNU-16 and SNU-620 cells compared to the SNU-5 and SNU-1 cells, although Bid and XIAP were expressed at similar levels across the four cell lines. The expression and degradation of FLICE-inhibitory protein (FLIP) upon TRAIL treatment was independent of TRAIL sensitivity. In conclusion, the differential susceptibility of the four gastric cancer cells to TRAIL may be ascribed to the differential expression of DR4 and the proper augmentation of the death signal by the truncation of Bid and degradation of XIAP.
Collapse
Affiliation(s)
- Nak-Mi Song
- Ilsong Institute of Life Science, Hallym University, Anyang, Kyonggi-do 431-060, Republic of Korea
| | | | | | | | | | | |
Collapse
|
6
|
Li X, Xu F, Chang C, Byon J, Papayannopoulou T, Deeg HJ, Marcondes AM. Transcriptional regulation of miR-10a/b by TWIST-1 in myelodysplastic syndromes. Haematologica 2012; 98:414-9. [PMID: 22983574 DOI: 10.3324/haematol.2012.071753] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The transcription factor TWIST-1 is up-regulated in CD34(+) cells in myelodysplastic syndrome and is involved in resistance to apoptosis. There is evidence that TWIST-1 affects apoptosis via microRNAs (miRs). Expression of miRs was determined in myeloid cell lines and primary CD34(+) marrow cells from patients with myelodysplastic syndrome and healthy donors using NanoString/array and validated by real-time-polymerase chain reaction. Expression levels of miR10a and miR10b were significantly higher in CD34(+) marrow cells from 28 patients with myelodysplastic syndrome than in CD34(+) cells from healthy donors (P=0.05 and P=0.012, respectively). Levels of miR10a/b correlated with TWIST-1 miR levels in CD34(+) myelodysplastic marrow cells (miR10a, R=+0.69, P<0.0001; miR10b, R=+0.56, P=0.0008). Inhibition of miR10a/10b in clonal cells interfered with proliferation and enhanced sensitivity to apoptosis, which involved NF-κB-dependent p53 activation. These data support a role for miR10a/10b in the regulation of apoptosis in myelodysplastic syndrome and suggest the TWIST-1/miR10a/b-axis as a therapeutic target in myelodysplastic syndrome.
Collapse
Affiliation(s)
- Xiang Li
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Droin N, Guéry L, Benikhlef N, Solary E. Targeting apoptosis proteins in hematological malignancies. Cancer Lett 2011; 332:325-34. [PMID: 21767908 DOI: 10.1016/j.canlet.2011.06.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 04/30/2011] [Accepted: 06/12/2011] [Indexed: 02/04/2023]
Abstract
The apoptotic machinery plays a key role in hematopoietic cell homeostasis. Terminally differentiated cells are eliminated, at least in part, by apoptosis, whereas part of the apoptotic machinery, including one or several caspases, is required to go through very specific steps of the differentiation pathways. A number of hematological diseases involve a deregulation of this machinery, which in most cases is a decrease in cell sensitivity to pro-apoptotic signals through over-expression of anti-apoptotic molecules. In some situations however, e.g. in the erythroid lineage of low grade myelodysplastic syndromes, cell sensitivity to apoptosis is increased in a death receptor-dependent manner and cell death pathways are inhibited only when these diseases progress into high grade and acute leukemia. Therapeutic strategies targeting the apoptotic machinery specifically block cell death inhibitors that are over-expressed in transformed cells, mainly Bcl-2-related proteins and Inhibitor of Apoptosis Proteins (IAPs). Another strategy is the activation of the extrinsic pathway to apoptosis, mainly through the death receptor agonist Tumor necrosis factor-Related Apoptosis Inducing Ligand (TRAIL) or agonistic antibodies targeting TRAIL receptors. The use of inhibitors of death receptors could make sense when these receptors are involved in excessive cell death or activation of survival pathways. Most of the drugs targeting apoptotic pathways introduced in clinics have demonstrated their tolerability. Their efficacy, either alone or in combination with other drugs such as demethylating agents and histone deacetylase inhibitors, is currently tested in both myeloid and lymphoid hematological diseases.
Collapse
Affiliation(s)
- Nathalie Droin
- Inserm UMR 1009, Institut Gustave Roussy, Université Paris-Sud 11, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | | | | | | |
Collapse
|
8
|
Sloand EM, Melenhorst JJ, Tucker ZCG, Pfannes L, Brenchley JM, Yong A, Visconte V, Wu C, Gostick E, Scheinberg P, Olnes MJ, Douek DC, Price DA, Barrett AJ, Young NS. T-cell immune responses to Wilms tumor 1 protein in myelodysplasia responsive to immunosuppressive therapy. Blood 2011; 117:2691-9. [PMID: 21097671 PMCID: PMC3062357 DOI: 10.1182/blood-2010-04-277921] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 11/04/2010] [Indexed: 12/21/2022] Open
Abstract
Clinical observations and laboratory evidence link bone marrow failure in myelodysplastic syndrome (MDS) to a T cell-mediated immune process that is responsive to immunosuppressive treatment (IST) in some patients. Previously, we showed that trisomy 8 MDS patients had clonally expanded CD8(+) T-cell populations that recognized aneuploid hematopoietic progenitor cells (HPC). Furthermore, microarray analyses showed that Wilms tumor 1 (WT1) gene was overexpressed by trisomy 8 hematopoietic progenitor (CD34(+)) cells compared with CD34(+) cells from healthy donors. Here, we show that WT1 mRNA expression is up-regulated in the bone marrow mononuclear cells of MDS patients with trisomy 8 relative to healthy controls and non-trisomy 8 MDS; WT1 protein levels were also significantly elevated. In addition, using a combination of physical and functional assays to detect the presence and reactivity of specific T cells, respectively, we demonstrate that IST-responsive MDS patients exhibit significant CD4(+) and CD8(+) T-cell responses directed against WT1. Finally, WT1-specific CD8(+) T cells were present within expanded T-cell receptor Vβ subfamilies and inhibited hematopoiesis when added to autologous patient bone marrow cells in culture. Thus, our results suggest that WT1 is one of the antigens that triggers T cell-mediated myelosuppression in MDS.
Collapse
MESH Headings
- Bone Marrow Cells/immunology
- Bone Marrow Cells/pathology
- CD8-Positive T-Lymphocytes/immunology
- Case-Control Studies
- Chromosomes, Human, Pair 8/genetics
- Chromosomes, Human, Pair 8/immunology
- Gene Expression Regulation
- HLA-A Antigens/chemistry
- HLA-A Antigens/immunology
- HLA-A2 Antigen
- Humans
- Immunodominant Epitopes/immunology
- Immunosuppression Therapy
- Myelodysplastic Syndromes/immunology
- Myelodysplastic Syndromes/therapy
- Protein Structure, Quaternary
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Trisomy/genetics
- Trisomy/immunology
- WT1 Proteins/genetics
- WT1 Proteins/immunology
- WT1 Proteins/metabolism
Collapse
Affiliation(s)
- Elaine M Sloand
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Li X, Marcondes AM, Gooley TA, Deeg HJ. The helix-loop-helix transcription factor TWIST is dysregulated in myelodysplastic syndromes. Blood 2010; 116:2304-14. [PMID: 20562331 PMCID: PMC2953837 DOI: 10.1182/blood-2009-09-242313] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 06/04/2010] [Indexed: 11/20/2022] Open
Abstract
Patients with low-grade myelodysplastic syndromes (MDS) show high levels of tumor necrosis factor α (TNFα) and up-regulation of apoptosis in the marrow. In contrast, marrow cells in advanced MDS are typically resistant to TNFα-induced apoptosis but are rendered apoptosis-sensitive on coculture with stroma. The present studies show that CD34(+) marrow cells in advanced MDS express high levels of TWIST, a basic helix-loop-helix transcription factor that opposes p53 function. TWIST levels correlated with disease stage (advanced > low grade; P = .01). Coculture with HS5 stroma resulted in down-regulation of TWIST and increased apoptosis in response to TNFα in CD34(+) cells from advanced MDS; the same effect was achieved by TWIST-specific RNA interference in CD34(+) cells. In primary MDS marrow stroma TWIST expression was lower than in healthy controls; suppression of TWIST in stroma interfered with induction of apoptosis sensitivity in cocultured CD34(+) cells. Stroma cells so modified expressed reduced levels of intercellular adhesion molecule-1 (ICAM1; CD54); blockade of ICAM1 in unmodified stroma was associated with reduced apoptosis in cocultured CD34(+) MDS marrow cells. These data suggest role for dysregulation of TWIST in the pathophysiology of MDS. Conceivably, TWIST or components in the signaling pathway could serve as therapeutic targets for patients with MDS.
Collapse
Affiliation(s)
- Xiang Li
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | | | |
Collapse
|
10
|
Ragusa M, Avola G, Angelica R, Barbagallo D, Guglielmino MR, Duro LR, Majorana A, Statello L, Salito L, Consoli C, Camuglia MG, Di Pietro C, Milone G, Purrello M. Expression profile and specific network features of the apoptotic machinery explain relapse of acute myeloid leukemia after chemotherapy. BMC Cancer 2010; 10:377. [PMID: 20642818 PMCID: PMC2914706 DOI: 10.1186/1471-2407-10-377] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 07/19/2010] [Indexed: 11/10/2022] Open
Abstract
Background According to the different sensitivity of their bone marrow CD34+ cells to in vitro treatment with Etoposide or Mafosfamide, Acute Myeloid Leukaemia (AML) patients in apparent complete remission (CR) after chemotherapy induction may be classified into three groups: (i) normally responsive; (ii) chemoresistant; (iii) highly chemosensitive. This inversely correlates with in vivo CD34+ mobilization and, interestingly, also with the prognosis of the disease: patients showing a good mobilizing activity are resistant to chemotherapy and subject to significantly higher rates of Minimal Residual Disease (MRD) and relapse than the others. Based on its known role in patients' response to chemotherapy, we hypothesized an involvement of the Apoptotic Machinery (AM) in these phenotypic features. Methods To investigate the molecular bases of the differential chemosensitivity of bone marrow hematopoietic stem cells (HSC) in CR AML patients, and the relationship between chemosensitivity, mobilizing activity and relapse rates, we analyzed their AM expression profile by performing Real Time RT-PCR of 84 AM genes in CD34+ pools from the two extreme classes of patients (i.e., chemoresistant and highly chemosensitive), and compared them with normal controls. Results The AM expression profiles of patients highlighted features that could satisfactorily explain their in vitro chemoresponsive phenotype: specifically, in chemoresistant patients we detected up regulation of antiapoptotic BIRC genes and down regulation of proapoptotic APAF1, FAS, FASL, TNFRSF25. Interestingly, our analysis of the AM network showed that the dysregulated genes in these patients are characterized by high network centrality (i.e., high values of betweenness, closeness, radiality, stress) and high involvement in drug response. Conclusions AM genes represent critical nodes for the proper execution of cell death following pharmacological induction in patients. We propose that their dysregulation (either due to inborn or de novo genomic mutations selected by treatment) could cause a relapse in apparent CR AML patients. Based on this, AM profiling before chemotherapy and transplantation could identify patients with a predisposing genotype to MRD and relapse: accordingly, they should undergo a different, specifically tailored, therapeutic regimen and should be carefully checked during the post-treatment period.
Collapse
Affiliation(s)
- Marco Ragusa
- Dipartimento di Scienze BioMediche, Unità di BioMedicina Molecolare Genomica e dei Sistemi Complessi, Genetica, Biologia Computazionale G Sichel, Via Santa Sofia 87, 95123 Catania, Italy, EU
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
This study shows that forcing c-Flip overexpression in undifferentiated skeletal myogenic cells in vivo results in early aging muscle phenotype. In the transgenic mice, adult muscle histology, histochemistry and biochemistry show strong alterations: reduction of fibers size and muscle mass, mitochondrial abnormalities, increase in protein oxidation and apoptosis markers and reduced AKT/GSK3β phosphorylation. In the infant, higher levels of Pax-7, PCNA, P-ERK and active-caspase-3 were observed, indicating enhanced proliferation and concomitant apoptosis of myogenic precursors. Increased proliferation correlated with NF-κB activation, detected as p65 phosphorylation, and with high levels of embryonic myosin heavy chain. Reduced regenerative potential after muscle damage in the adult and impaired fiber growth associated with reduced NFATc2 activation in the infant were also observed, indicating that the satellite cell pool is prematurely compromised. Altogether, these data show a role for c-Flip in modulating skeletal muscle phenotype by affecting the proliferative potential of undifferentiated cells. This finding indicates a novel additional mechanism through which c-Flip might possibly control tissue remodeling.
Collapse
|
12
|
Identification of DJ-1/PARK-7 as a determinant of stroma-dependent and TNF-alpha-induced apoptosis in MDS using mass spectrometry and phosphopeptide analysis. Blood 2010; 115:1993-2002. [PMID: 20061558 DOI: 10.1182/blood-2009-08-236992] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In patients with myelodysplastic syndromes (MDS), apoptosis in hematopoietic cells is up-regulated in low-grade disease, whereas advanced disease is characterized by apoptosis resistance. We have shown that marrow stroma-derived signals convey sensitivity to tumor-necrosis-factor alpha (TNF-alpha)-mediated apoptosis in otherwise-resistant KG1a myeloid cells and CD34(+) cells from MDS marrow. Here, we used a PhosphoScan proteomic liquid chromatography-mass spectrometry method to identify signals relevant for this effect. The transcription factor DJ-1/PARK-7 (DJ-1) was highly phosphorylated in KG1a cells cultured without stroma but dephosphorylated after stroma coculture, whereas expression of p53 increased significantly, suggesting a stroma contact-dependent effect of DJ-1 on p53. In CD34(+) marrow cells from advanced MDS, expression of DJ-1 was up-regulated, whereas p53 levels were low, resulting in significantly greater DJ-1/p53 ratios than in patients with low-grade MDS (P = .01). DJ-1 levels were correlated with increasing International Prognostic Scoring System scores (P = .006). Increasing DJ-1/p53 ratios were associated with an increased risk of mortality, although the correlation did not reach statistical significance (P = .18). These data suggest that DJ-1/p53 interactions contribute to apoptosis resistance in clonal myeloid cells and may serve as a prognostic marker in patients with MDS.
Collapse
|
13
|
|