1
|
Podocalyxin in Normal Tissue and Epithelial Cancer. Cancers (Basel) 2021; 13:cancers13122863. [PMID: 34201212 PMCID: PMC8227556 DOI: 10.3390/cancers13122863] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/13/2022] Open
Abstract
Podocalyxin (PODXL), a glycosylated cell surface sialomucin of the CD34 family, is normally expressed in kidney podocytes, vascular endothelial cells, hematopoietic progenitors, mesothelium, as well as a subset of neurons. In the kidney, PODXL functions primarily as an antiadhesive molecule in podocyte epithelial cells, regulating adhesion and cell morphology, and playing an essential role in the development and function of the organ. Outside the kidney, PODXL plays subtle roles in tissue remodelling and development. Furthermore, many cancers, especially those that originated from the epithelium, have been reported to overexpress PODXL. Collective evidence suggests that PODXL overexpression is linked to poor prognosis, more aggressive tumour progression, unfavourable treatment outcomes, and possibly chemoresistance. This review summarises our current knowledge of PODXL in normal tissue function and epithelial cancer, with a particular focus on its underlying roles in cancer metastasis, likely involvement in chemoresistance, and potential use as a diagnostic and prognostic biomarker.
Collapse
|
2
|
Paradossi G, Oddo L, Cerroni B, Ben-Harush C, Ariel E, Di Meco F, Ram Z, Grossman R. In Vivo Toxicity Study of Engineered Lipid Microbubbles in Rodents. ACS OMEGA 2019; 4:5526-5533. [PMID: 31497678 PMCID: PMC6715268 DOI: 10.1021/acsomega.8b03161] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/16/2019] [Indexed: 05/08/2023]
Abstract
Real-time intraoperative imaging for brain tumor surgery is crucial for achieving complete resection. We are developing novel lipid-based microbubbles (MBs), engineered with specific ligands, which are able to interact with the integrins overexpressed in the endothelium of the brain tumor vasculature. These MBs are designed to visualize the tumor and to carry therapeutic molecules into the tumor tissue, preserving the ultrasound acoustic properties of the starting plain lipid MBs. The potential toxicity of this novel technology was assessed in rats by intravenous injections of two doses of plain MBs and MBs engineered for targeting and near-infrared fluorescence visualization at two time-points, 10 min and 7 days, for potential acute and chronic responses in rats [(1) MB, (2) MB-ICG, (3) MB-RGD, and (4) MB-ICG-RGD]. No mortality occurred during the 7-day study period in any of the dosing groups. All animals demonstrated a body weight gain during the study period. Minor, mostly reversible changes in hematological and biochemical analysis were observed in some of the treated animals. All changes were reversible by the 7-day time-point. Histopathology examination in the high-dose animals showed development of foreign body granulomatous inflammation. We concluded that the low-dose tested items appear to be safe. The results allow for proceeding to clinical testing of the product.
Collapse
Affiliation(s)
- Gaio Paradossi
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma Tor Vergata, 00133 Roma, Italy
| | - Letizia Oddo
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma Tor Vergata, 00133 Roma, Italy
| | - Barbara Cerroni
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma Tor Vergata, 00133 Roma, Italy
| | - Carmit Ben-Harush
- Department of Neurosurgery,
Tel Aviv Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, 6997801 Tel-Aviv, Israel
| | - Eti Ariel
- Department of Neurosurgery,
Tel Aviv Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, 6997801 Tel-Aviv, Israel
| | - Francesco Di Meco
- Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Zvi Ram
- Department of Neurosurgery,
Tel Aviv Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, 6997801 Tel-Aviv, Israel
| | - Rachel Grossman
- Department of Neurosurgery,
Tel Aviv Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, 6997801 Tel-Aviv, Israel
- E-mail: . Phone: +972-3-6974273. Fax: +972-3-6974860
| |
Collapse
|
3
|
Podocalyxin is required for maintaining blood-brain barrier function during acute inflammation. Proc Natl Acad Sci U S A 2019; 116:4518-4527. [PMID: 30787191 DOI: 10.1073/pnas.1814766116] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Podocalyxin (Podxl) is broadly expressed on the luminal face of most blood vessels in adult vertebrates, yet its function on these cells is poorly defined. In the present study, we identified specific functions for Podxl in maintaining endothelial barrier function. Using electrical cell substrate impedance sensing and live imaging, we found that, in the absence of Podxl, human umbilical vein endothelial cells fail to form an efficient barrier when plated on several extracellular matrix substrates. In addition, these monolayers lack adherens junctions and focal adhesions and display a disorganized cortical actin cytoskeleton. Thus, Podxl has a key role in promoting the appropriate endothelial morphogenesis required to form functional barriers. This conclusion is further supported by analyses of mutant mice in which we conditionally deleted a floxed allele of Podxl in vascular endothelial cells (vECs) using Tie2Cre mice (Podxl ΔTie2Cre). Although we did not detect substantially altered permeability in naïve mice, systemic priming with lipopolysaccharide (LPS) selectively disrupted the blood-brain barrier (BBB) in Podxl ΔTie2Cre mice. To study the potential consequence of this BBB breach, we used a selective agonist (TFLLR-NH2) of the protease-activated receptor-1 (PAR-1), a thrombin receptor expressed by vECs, neuronal cells, and glial cells. In response to systemic administration of TFLLR-NH2, LPS-primed Podxl ΔTie2Cre mice become completely immobilized for a 5-min period, coinciding with severely dampened neuroelectric activity. We conclude that Podxl expression by CNS tissue vECs is essential for BBB maintenance under inflammatory conditions.
Collapse
|
4
|
Debruin EJ, Hughes MR, Sina C, Liu A, Cait J, Jian Z, Lopez M, Lo B, Abraham T, McNagny KM. Podocalyxin regulates murine lung vascular permeability by altering endothelial cell adhesion. PLoS One 2014; 9:e108881. [PMID: 25303643 PMCID: PMC4193771 DOI: 10.1371/journal.pone.0108881] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/26/2014] [Indexed: 12/11/2022] Open
Abstract
Despite the widespread use of CD34-family sialomucins (CD34, podocalyxin and endoglycan) as vascular endothelial cell markers, there is remarkably little known of their vascular function. Podocalyxin (gene name Podxl), in particular, has been difficult to study in adult vasculature as germ-line deletion of podocalyxin in mice leads to kidney malformations and perinatal death. We generated mice that conditionally delete podocalyxin in vascular endothelial cells (Podxl(ΔEC) mice) to study the homeostatic role of podocalyxin in adult mouse vessels. Although Podxl(ΔEC) adult mice are viable, their lungs display increased lung volume and changes to the matrix composition. Intriguingly, this was associated with increased basal and inflammation-induced pulmonary vascular permeability. To further investigate the etiology of these defects, we isolated mouse pulmonary endothelial cells. Podxl(ΔEC) endothelial cells display mildly enhanced static adhesion to fibronectin but spread normally when plated on fibronectin-coated transwells. In contrast, Podxl(ΔEC) endothelial cells exhibit a severely impaired ability to spread on laminin and, to a lesser extent, collagen I coated transwells. The data suggest that, in endothelial cells, podocalyxin plays a previously unrecognized role in maintaining vascular integrity, likely through orchestrating interactions with extracellular matrix components and basement membranes, and that this influences downstream epithelial architecture.
Collapse
Affiliation(s)
- Erin J. Debruin
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Michael R. Hughes
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Christina Sina
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Alex Liu
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Jessica Cait
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Zhiqi Jian
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Martin Lopez
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Bernard Lo
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Thomas Abraham
- UBC James Hogg Research Centre, Institute for Heart + Lung Health, Vancouver, BC, Canada
- Penn State College of Medicine, Penn State University, Hershey, Pennsylvania, United States of America
| | - Kelly M. McNagny
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
- * E-mail:
| |
Collapse
|
5
|
Scherberich A, Di Maggio ND, McNagny KM. A familiar stranger: CD34 expression and putative functions in SVF cells of adipose tissue. World J Stem Cells 2013; 5:1-8. [PMID: 23362435 PMCID: PMC3557347 DOI: 10.4252/wjsc.v5.i1.1] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 09/19/2012] [Accepted: 12/20/2012] [Indexed: 02/06/2023] Open
Abstract
Human adipose tissue obtained by liposuction is easily accessible and an abundant potential source of autologous cells for regenerative medicine applications. After digestion of the tissue and removal of differentiated adipocytes, the so-called stromal vascular fraction (SVF) of adipose, a mix of various cell types, is obtained. SVF contains mesenchymal fibroblastic cells, able to adhere to culture plastic and to generate large colonies in vitro, that closely resemble bone marrow-derived colony forming units-fibroblastic, and whose expanded progeny, adipose mesenchymal stem/stromal cells (ASC), show strong similarities with bone marrow mesenchymal stem cells. The sialomucin CD34, which is well known as a hematopoietic stem cell marker, is also expressed by ASC in native adipose tissue but its expression is gradually lost upon standard ASC expansion in vitro. Surprisingly little is known about the functional role of CD34 in the biology and tissue forming capacity of SVF cells and ASC. The present editorial provides a short introduction to the CD34 family of sialomucins and reviews the data from the literature concerning expression and function of these proteins in SVF cells and their in vitro expanded progeny.
Collapse
Affiliation(s)
- Arnaud Scherberich
- Arnaud Scherberich, Nunzia Di Maggio, Department of Biomedicine, University and University Hospital of Basel, CH-4031 Basel, Switzerland
| | | | | |
Collapse
|
6
|
Eng D, Campbell A, Hilton T, Leid M, Gross MK, Kioussi C. Prediction of regulatory networks in mouse abdominal wall. Gene 2010; 469:1-8. [PMID: 20797427 PMCID: PMC2956860 DOI: 10.1016/j.gene.2010.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/11/2010] [Accepted: 08/16/2010] [Indexed: 01/13/2023]
Abstract
Sequence specific transcription factors are essential for pattern formation and cell differentiation processes in mammals. The formation of the abdominal wall depends on a flawless merge of several developmental fields in time and space. The absence of Pitx2 leads to an open abdominal wall in mice, while mutations in humans result in umbilical defects, suggesting that a single homeobox transcription factor coordinates the formation and patterning of this anatomical structure. Gene expression analysis from abdominal tissue including the abdominal wall after removal of the major organs, of wild type, Pitx2 heterozygote and mutant mice, at embryonic day 10.5, identified 275 genes with altered expression levels. Pitx2 target genes were clustered using the "David Bioinformatics Functional Annotation Tool" web application, which bins genes according to gene ontology (GO) key word enrichment. This provided a way to both narrow the target gene list and to start identifying potential gene families regulated by Pitx2. Target genes in the most enriched bins were further analyzed for the presence and the evolutionary conservation of Pitx2 consensus binding sequence, TAATCY, on the -20 kb, intronic and coding gene sequences. Twenty Pitx2 target genes that passed all the above criteria were classified as genes involved in cell transport and growth. Data from these studies suggest that Pitx2 acts as an inhibitor of protein transport and cell apoptosis contributing to the open body wall phenotype. This work provides the framework to which the developmental network leading to abdominal wall syndromes can be built.
Collapse
Affiliation(s)
- Diana Eng
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Adam Campbell
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Traci Hilton
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Mark Leid
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Michael K. Gross
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Chrissa Kioussi
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
7
|
Zeigler BM, Vajdos J, Qin W, Loverro L, Niss K. A mouse model for an erythropoietin-deficiency anemia. Dis Model Mech 2010; 3:763-72. [PMID: 20959632 DOI: 10.1242/dmm.004788] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In mammals, the production of red blood cells is tightly regulated by the growth factor erythropoietin (EPO). Mice lacking a functional Epo gene are embryonic lethal, and studying erythropoiesis in EPO-deficient adult animals has therefore been limited. In order to obtain a preclinical model for an EPO-deficient anemia, we developed a mouse in which Epo can be silenced by Cre recombinase. After induction of Cre activity, Epo(KO/flox) mice experience a significant reduction of serum EPO levels and consequently develop a chronic, normocytic and normochromic anemia. Furthermore, compared with wild-type mice, Epo expression in Epo(KO/flox) mice is dramatically reduced in the kidney, and expression of a well-known target gene of EPO signaling, Bcl2l1, is reduced in the bone marrow. These observations are similar to the clinical display of anemia in patients with chronic kidney disease. In addition, during stress-induced erythropoiesis these mice display the same recovery rate as their heterozygous counterparts. Taken together, these results demonstrate that this model can serve as a valuable preclinical model for the anemia of EPO deficiency, as well as a tool for the study of stress-induced erythropoiesis during limiting conditions of EPO.
Collapse
Affiliation(s)
- Brandon M Zeigler
- Department of Inflammation, Pfizer Global Research and Development, 700 West Chesterfield Parkway, St Louis, MO 63017, USA
| | | | | | | | | |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW In 1985-1989, erythropoietin (EPO), its receptor (EPOR), and janus kinase 2 were cloned; established to be essential for definitive erythropoiesis; and initially intensely studied. Recently, new impetus, tools, and model systems have emerged to re-examine EPO/EPOR actions, and are addressed in this review. Impetus includes indications that EPO affects significantly more than standard erythroblast survival pathways, the development of novel erythropoiesis-stimulating agents, increasing evidence for EPO/EPOR cytoprotection of ischemically injured tissues, and potential EPO-mediated worsening of tumorigenesis. RECENT FINDINGS New findings are reviewed in four functional contexts: (pro)erythroblast survival mechanisms, new candidate EPO/EPOR effects on erythroid cell development and new EPOR responses, EPOR downmodulation and trafficking, and novel erythropoiesis-stimulating agents. SUMMARY As Current Opinion, this monograph seeks to summarize, and provoke, new EPO/EPOR action concepts. Specific problems addressed include: beyond (and before) BCL-XL, what key survival factors are deployed in early-stage proerythroblasts? Are distinct EPO/EPOR signals transduced in stage-selective fashions? Is erythroblast proliferation also modulated by EPO/EPOR signals? What functions are subserved by new noncanonical EPO/EPOR response factors (e.g. podocalyxin like-1, tribbles 3, reactive oxygen species, and nuclear factor kappa B)? What key regulators mediate EPOR inhibition and trafficking? And for emerging erythropoiesis-stimulating agents, to what extent do activities parallel EPOs (or differ in advantageous, potentially complicating ways, or both)?
Collapse
|