1
|
Murai N, Koyanagi-Aoi M, Terashi H, Aoi T. Re-generation of cytotoxic γδT cells with distinctive signatures from human γδT-derived iPSCs. Stem Cell Reports 2023; 18:853-868. [PMID: 36963392 PMCID: PMC10147660 DOI: 10.1016/j.stemcr.2023.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/26/2023] Open
Abstract
For a long time, ex vivo-expanded peripheral-blood-derived γδT cell (PBγδT)-based immunotherapy has been attractive, and clinical trials have been undertaken. However, the difficulty in expanding cytotoxic γδT cells to an adequate number has been a major limitation to the efficacy of treatment in most cases. We successfully re-generated γδT cells from γδT cell-derived human induced pluripotent stem cells (iPSCs). The iPSC-derived γδT cells (iγδTs) killed several cancer types in a major histocompatibility complex (MHC)-unrestricted manner. Single-cell RNA sequencing (scRNA-seq) revealed that the iγδTs were identical to a minor subset of PBγδTs. Compared with a major subset of PBγδTs, the iγδTs showed a distinctive gene expression pattern: lower CD2, CD5, and antigen-presenting genes; higher CD7, KIT, and natural killer (NK) cell markers. The iγδTs expressed granzyme B and perforin but not interferon gamma (IFNγ). Our data provide a new source for γδT cell-based immunotherapy without quantitative limitation.
Collapse
Affiliation(s)
- Nobuyuki Murai
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan; Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan; Division of Plastic Surgery, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Michiyo Koyanagi-Aoi
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan; Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan; Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, Kobe, Hyogo, Japan
| | - Hiroto Terashi
- Division of Plastic Surgery, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Takashi Aoi
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan; Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan; Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, Kobe, Hyogo, Japan.
| |
Collapse
|
2
|
Mayer IM, Hoelbl-Kovacic A, Sexl V, Doma E. Isolation, Maintenance and Expansion of Adult Hematopoietic Stem/Progenitor Cells and Leukemic Stem Cells. Cancers (Basel) 2022; 14:1723. [PMID: 35406494 PMCID: PMC8996967 DOI: 10.3390/cancers14071723] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are rare, self-renewing cells that perch on top of the hematopoietic tree. The HSCs ensure the constant supply of mature blood cells in a tightly regulated process producing peripheral blood cells. Intense efforts are ongoing to optimize HSC engraftment as therapeutic strategy to treat patients suffering from hematopoietic diseases. Preclinical research paves the way by developing methods to maintain, manipulate and expand HSCs ex vivo to understand their regulation and molecular make-up. The generation of a sufficient number of transplantable HSCs is the Holy Grail for clinical therapy. Leukemia stem cells (LSCs) are characterized by their acquired stem cell characteristics and are responsible for disease initiation, progression, and relapse. We summarize efforts, that have been undertaken to increase the number of long-term (LT)-HSCs and to prevent differentiation towards committed progenitors in ex vivo culture. We provide an overview and compare methods currently available to isolate, maintain and enrich HSC subsets, progenitors and LSCs and discuss their individual advantages and drawbacks.
Collapse
Affiliation(s)
| | | | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (I.M.M.); (A.H.-K.); (E.D.)
| | | |
Collapse
|
3
|
A robust approach for the generation of functional hematopoietic progenitor cell lines to model leukemic transformation. Blood Adv 2021; 5:39-53. [PMID: 33570624 DOI: 10.1182/bloodadvances.2020003022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
Studies of molecular mechanisms of hematopoiesis and leukemogenesis are hampered by the unavailability of progenitor cell lines that accurately mimic the situation in vivo. We now report a robust method to generate and maintain LSK (Lin-, Sca-1+, c-Kit+) cells, which closely resemble MPP1 cells. HPCLSKs reconstitute hematopoiesis in lethally irradiated recipient mice over >8 months. Upon transformation with different oncogenes including BCR/ABL, FLT3-ITD, or MLL-AF9, their leukemic counterparts maintain stem cell properties in vitro and recapitulate leukemia formation in vivo. The method to generate HPCLSKs can be applied to transgenic mice, and we illustrate it for CDK6-deficient animals. Upon BCR/ABLp210 transformation, HPCLSKsCdk6-/- induce disease with a significantly enhanced latency and reduced incidence, showing the importance of CDK6 in leukemia formation. Studies of the CDK6 transcriptome in murine HPCLSK and human BCR/ABL+ cells have verified that certain pathways depend on CDK6 and have uncovered a novel CDK6-dependent signature, suggesting a role for CDK6 in leukemic progenitor cell homing. Loss of CDK6 may thus lead to a defect in homing. The HPCLSK system represents a unique tool for combined in vitro and in vivo studies and enables the production of large quantities of genetically modifiable hematopoietic or leukemic stem/progenitor cells.
Collapse
|
4
|
Lemarié M, Bottardi S, Mavoungou L, Pak H, Milot E. IKAROS is required for the measured response of NOTCH target genes upon external NOTCH signaling. PLoS Genet 2021; 17:e1009478. [PMID: 33770102 PMCID: PMC8026084 DOI: 10.1371/journal.pgen.1009478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 04/07/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022] Open
Abstract
The tumor suppressor IKAROS binds and represses multiple NOTCH target genes. For their induction upon NOTCH signaling, IKAROS is removed and replaced by NOTCH Intracellular Domain (NICD)-associated proteins. However, IKAROS remains associated to other NOTCH activated genes upon signaling and induction. Whether IKAROS could participate to the induction of this second group of NOTCH activated genes is unknown. We analyzed the combined effect of IKAROS abrogation and NOTCH signaling on the expression of NOTCH activated genes in erythroid cells. In IKAROS-deleted cells, we observed that many of these genes were either overexpressed or no longer responsive to NOTCH signaling. IKAROS is then required for the organization of bivalent chromatin and poised transcription of NOTCH activated genes belonging to either of the aforementioned groups. Furthermore, we show that IKAROS-dependent poised organization of the NOTCH target Cdkn1a is also required for its adequate induction upon genotoxic insults. These results highlight the critical role played by IKAROS in establishing bivalent chromatin and transcriptional poised state at target genes for their activation by NOTCH or other stress signals. NOTCH1 deregulation can favor hematological malignancies. In addition to RBP-Jκ/NICD/MAML1, other regulators are required for the measured activation of NOTCH target genes. IKAROS is a known repressor of many NOTCH targets. Since it can also favor transcriptional activation and control gene expression levels, we questioned whether IKAROS could participate to the activation of specific NOTCH target genes. We are reporting that upon NOTCH induction, the absence of IKAROS impairs the measured activation of two groups of NOTCH target genes: (i) those overexpressed and characterized by an additive effect imposed by the absence of IKAROS and NOTCH induction; and (ii) those ‘desensitized’ and no more activated by NOTCH. At genes of both groups, IKAROS controls the timely recruitment of the chromatin remodelers CHD4 and BRG1. IKAROS then influences the activation of these genes through the organization of chromatin and poised transcription or through transcriptional elongation control. The importance of the IKAROS controlled and measured activation of genes is not limited to NOTCH signaling as it also characterizes Cdkn1a expression upon genotoxic stress. Thus, these results provide a new perspective on the importance of IKAROS for the adequate cellular response to stress, whether imposed by NOTCH or genotoxic insults.
Collapse
Affiliation(s)
- Maud Lemarié
- Maisonneuve-Rosemont Hospital Research Center; CIUSSS de l’est de l’Île de Montréal, Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Stefania Bottardi
- Maisonneuve-Rosemont Hospital Research Center; CIUSSS de l’est de l’Île de Montréal, Montréal, QC, Canada
| | - Lionel Mavoungou
- Maisonneuve-Rosemont Hospital Research Center; CIUSSS de l’est de l’Île de Montréal, Montréal, QC, Canada
| | - Helen Pak
- Maisonneuve-Rosemont Hospital Research Center; CIUSSS de l’est de l’Île de Montréal, Montréal, QC, Canada
| | - Eric Milot
- Maisonneuve-Rosemont Hospital Research Center; CIUSSS de l’est de l’Île de Montréal, Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
5
|
Izawa K, Yamazaki S, Becker HJ, Bhadury J, Kakegawa T, Sakaguchi M, Tojo A. Activated HoxB4-induced hematopoietic stem cells from murine pluripotent stem cells via long-term programming. Exp Hematol 2020; 89:68-79.e7. [PMID: 32795499 DOI: 10.1016/j.exphem.2020.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022]
Abstract
Hematopoietic stem cells (HSCs) are multipotent cells that form the entire blood system and have the potential to cure several pathogenic conditions directly or indirectly arising from defects within the HSC compartment. Pluripotent stem cells (PSCs) or induced pluripotent stem cells (iPSCs) can give rise to all embryonic cell types; however, efficient in vitro differentiation of HSCs from PSCs remains challenging. HoxB4 is a key regulator orchestrating the differentiation of PSCs into all cells types across the mesodermal lineage, including HSCs. Moreover, the ectopic expression of HoxB4 enhances the in vitro generation and expansion of HSCs. However, several aspects of HoxB4 biology including its regulatory functions are not fully understood. Here, we describe the role of HoxB4 in indirectly inhibiting the emergence of mature CD45+ HSCs from iPSCs in vitro. Forced activation of HoxB4 permitted long-term maintenance of functional hematopoietic stem and progenitor cells (HSPCs), which efficiently reconstituted hematopoiesis upon transplantation. Our method enables an easy and scalable in vitro platform for the generation of HSCs from iPSCs, which will ultimately lead to a better understanding of HSC biology and facilitate preparation of the roadma for producing an unrestricted supply of HSCs for several curative therapies.
Collapse
Affiliation(s)
- Kiyoko Izawa
- Division of Molecular Therapy, Center for Experimental Medicine, The Institute of Medical Science, University of Tokyo, Tokyo, Japan; Division of Stem Cell Biology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Satoshi Yamazaki
- Division of Stem Cell Biology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, University of Tokyo, Tokyo, Japan; Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.
| | - Hans J Becker
- Division of Molecular Therapy, Center for Experimental Medicine, The Institute of Medical Science, University of Tokyo, Tokyo, Japan; Division of Stem Cell Biology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Joydeep Bhadury
- Department of Clinical Chemistry and Transfusion Medicine, The Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg, Sweden; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Tomoya Kakegawa
- Division of Molecular Therapy, Center for Experimental Medicine, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Momoko Sakaguchi
- Division of Molecular Therapy, Center for Experimental Medicine, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Arinobu Tojo
- Division of Molecular Therapy, Center for Experimental Medicine, The Institute of Medical Science, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
6
|
Zhang C, Fondufe-Mittendorf YN, Wang C, Chen J, Cheng Q, Zhou D, Zheng Y, Geiger H, Liang Y. Latexin regulation by HMGB2 is required for hematopoietic stem cell maintenance. Haematologica 2019; 105:573-584. [PMID: 31171637 PMCID: PMC7049332 DOI: 10.3324/haematol.2018.207092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 06/05/2019] [Indexed: 01/12/2023] Open
Abstract
Hematopoietic stem cells provide life-long production of blood cells and undergo self-renewal division in order to sustain the stem cell pool. Homeostatic maintenance of hematopoietic stem cell pool and blood cell production is vital for the organism to survive. We previously reported that latexin is a negative regulator of hematopoietic stem cells in mice. Its natural variation in the expression is inversely correlated with hematopoietic stem cell number. However, the molecular mechanisms regulating latexin transcription remain largely unknown, and the genetic factors contributing to its natural variation are not clearly defined. Here we discovered a chromatin protein, high-mobility group protein B2, as a novel transcriptional suppressor of latexin by using DNA pull-down and mass spectrometry. High-mobility group protein B2 knockdown increases latexin expression at transcript and protein levels, and decreases hematopoietic stem cell number and regeneration capacity in vivo. Concomitant blockage of latexin activation significantly reverses these phenotypic changes, suggesting that latexin is one of the downstream targets and functional mediators of high-mobility group protein B2. We further identified a functional single nucleotide polymorphism, rs31528793, in the latexin promoter that binds to high-mobility group protein B2 and affects the promoter activity. G allelic variation in rs31528793 associates with the higher latexin expression and lower hematopoietic stem cell number, whereas C allele indicates the lower latexin expression and higher stem cell number. This study reveals for the first time that latexin transcription is regulated by both transacting (high-mobility group protein B2) and cis-acting (single nucleotide polymorphism rs31528793) factors. It uncovers the functional role of naturally occurring genetic variants, in combination with epigenetic regulator, in determining differential gene expression and phenotypic diversity in the hematopoietic stem cell population.
Collapse
Affiliation(s)
- Cuiping Zhang
- Departments of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | | | - Chi Wang
- Department of Cancer Biostatistics, University of Kentucky, Lexington, KY, USA
| | - Jin Chen
- Department of Internal Medicine and Computer Science, University of Kentucky, Lexington, KY, USA
| | - Qiang Cheng
- Department of Internal Medicine and Computer Science, University of Kentucky, Lexington, KY, USA
| | - Daohong Zhou
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Yi Zheng
- Cincinnati Children's Hospital Medical Center, Experimental Hematology and Cancer Biology, Cincinnati, OH, USA
| | - Hartmut Geiger
- Cincinnati Children's Hospital Medical Center, Experimental Hematology and Cancer Biology, Cincinnati, OH, USA.,Institute for Molecular Medicine, University of Ulm, Ulm, Germany
| | - Ying Liang
- Departments of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
7
|
TNF-alpha and Notch signaling regulates the expression of HOXB4 and GATA3 during early T lymphopoiesis. In Vitro Cell Dev Biol Anim 2016; 52:920-934. [PMID: 27251160 DOI: 10.1007/s11626-016-0055-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/04/2016] [Indexed: 10/21/2022]
Abstract
During the early thymus colonization, Notch signaling activation on hematopoietic progenitor cells (HPCs) drives proliferation and T cell commitment. Although these processes are driven by transcription factors such as HOXB4 and GATA3, there is no evidence that Notch directly regulates their transcription. To evaluate the role of NOTCH and TNF signaling in this process, human CD34+ HPCs were cocultured with OP9-DL1 cells, in the presence or absence of TNF. The use of a Notch signaling inhibitor and a protein synthesis inhibitor allowed us to distinguish primary effects, mediated by direct signaling downstream Notch and TNF, from secondary effects, mediated by de novo synthesized proteins. A low and physiologically relevant concentration of TNF promoted T lymphopoiesis in OP9-DL1 cocultures. TNF positively modulated the expression of both transcripts in a Notch-dependent manner; however, GATA3 induction was mediated by a direct mechanism, while HOXB4 induction was indirect. Induction of both transcripts was repressed by a GSK3β inhibitor, indicating that activation of canonical Wnt signaling inhibits rather than induces their expression. Our study provides novel evidences of the mechanisms integrating Notch and TNF-alpha signaling in the transcriptional induction of GATA3 and HOXB4. This mechanism has direct implications in the control of self-renewal, proliferation, commitment, and T cell differentiation.
Collapse
|
8
|
Cauchy P, Maqbool MA, Zacarias-Cabeza J, Vanhille L, Koch F, Fenouil R, Gut M, Gut I, Santana MA, Griffon A, Imbert J, Moraes-Cabé C, Bories JC, Ferrier P, Spicuglia S, Andrau JC. Dynamic recruitment of Ets1 to both nucleosome-occupied and -depleted enhancer regions mediates a transcriptional program switch during early T-cell differentiation. Nucleic Acids Res 2015; 44:3567-85. [PMID: 26673693 PMCID: PMC4856961 DOI: 10.1093/nar/gkv1475] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/03/2015] [Indexed: 12/20/2022] Open
Abstract
Ets1 is a sequence-specific transcription factor that plays an important role during hematopoiesis, and is essential for the transition of CD4−/CD8− double negative (DN) to CD4+/CD8+ double positive (DP) thymocytes. Using genome-wide and functional approaches, we investigated the binding properties, transcriptional role and chromatin environment of Ets1 during this transition. We found that while Ets1 binding at distal sites was associated with active genes at both DN and DP stages, its enhancer activity was attained at the DP stage, as reflected by levels of the core transcriptional hallmarks H3K4me1/3, RNA Polymerase II and eRNA. This dual, stage-specific ability reflected a switch from non-T hematopoietic toward T-cell specific gene expression programs during the DN-to-DP transition, as indicated by transcriptome analyses of Ets1−/− thymic cells. Coincidentally, Ets1 associates more specifically with Runx1 in DN and with TCF1 in DP cells. We also provide evidence that Ets1 predominantly binds distal nucleosome-occupied regions in DN and nucleosome-depleted regions in DP. Finally and importantly, we demonstrate that Ets1 induces chromatin remodeling by displacing H3K4me1-marked nucleosomes. Our results thus provide an original model whereby the ability of a transcription factor to bind nucleosomal DNA changes during differentiation with consequences on its cognate enhancer activity.
Collapse
Affiliation(s)
- Pierre Cauchy
- CIML CNRS UMR7280, Case 906, Campus de Luminy, Marseille F-13009, France CIML INSERM U1104, Case 906, Campus de Luminy, Marseille F-13009, France Aix-Marseille University, 58 Boulevard Charles Livon, Marseille F-13284, France Inserm U1090, Technological Advances for Genomics and Clinics (TAGC), Marseille F-13009, France Aix-Marseille University UMR-S 1090, TAGC, Marseille F-13009, France
| | - Muhammad A Maqbool
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR5535, 1919 Route de Mende, Montpellier F-34293, France
| | - Joaquin Zacarias-Cabeza
- CIML CNRS UMR7280, Case 906, Campus de Luminy, Marseille F-13009, France CIML INSERM U1104, Case 906, Campus de Luminy, Marseille F-13009, France Aix-Marseille University, 58 Boulevard Charles Livon, Marseille F-13284, France
| | - Laurent Vanhille
- Inserm U1090, Technological Advances for Genomics and Clinics (TAGC), Marseille F-13009, France Aix-Marseille University UMR-S 1090, TAGC, Marseille F-13009, France
| | - Frederic Koch
- CIML CNRS UMR7280, Case 906, Campus de Luminy, Marseille F-13009, France CIML INSERM U1104, Case 906, Campus de Luminy, Marseille F-13009, France Aix-Marseille University, 58 Boulevard Charles Livon, Marseille F-13284, France
| | - Romain Fenouil
- CIML CNRS UMR7280, Case 906, Campus de Luminy, Marseille F-13009, France CIML INSERM U1104, Case 906, Campus de Luminy, Marseille F-13009, France Aix-Marseille University, 58 Boulevard Charles Livon, Marseille F-13284, France
| | - Marta Gut
- Centre Nacional D'Anàlisi Genòmica, Parc Científic de Barcelona, Baldiri i Reixac 4, Barcelona ES-08028, Spain
| | - Ivo Gut
- Centre Nacional D'Anàlisi Genòmica, Parc Científic de Barcelona, Baldiri i Reixac 4, Barcelona ES-08028, Spain
| | - Maria A Santana
- CIML CNRS UMR7280, Case 906, Campus de Luminy, Marseille F-13009, France CIML INSERM U1104, Case 906, Campus de Luminy, Marseille F-13009, France Aix-Marseille University, 58 Boulevard Charles Livon, Marseille F-13284, France
| | - Aurélien Griffon
- Inserm U1090, Technological Advances for Genomics and Clinics (TAGC), Marseille F-13009, France Aix-Marseille University UMR-S 1090, TAGC, Marseille F-13009, France
| | - Jean Imbert
- Inserm U1090, Technological Advances for Genomics and Clinics (TAGC), Marseille F-13009, France Aix-Marseille University UMR-S 1090, TAGC, Marseille F-13009, France
| | - Carolina Moraes-Cabé
- INSERM UMR 1126 Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris F-75475, France
| | - Jean-Christophe Bories
- INSERM UMR 1126 Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris F-75475, France
| | - Pierre Ferrier
- CIML CNRS UMR7280, Case 906, Campus de Luminy, Marseille F-13009, France CIML INSERM U1104, Case 906, Campus de Luminy, Marseille F-13009, France Aix-Marseille University, 58 Boulevard Charles Livon, Marseille F-13284, France
| | - Salvatore Spicuglia
- Inserm U1090, Technological Advances for Genomics and Clinics (TAGC), Marseille F-13009, France Aix-Marseille University UMR-S 1090, TAGC, Marseille F-13009, France
| | - Jean-Christophe Andrau
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR5535, 1919 Route de Mende, Montpellier F-34293, France
| |
Collapse
|
9
|
Delta-Like-1 Changes the Immunomodulatory Property of OP9 Cells. Stem Cells Int 2015; 2016:1628352. [PMID: 26649045 PMCID: PMC4663344 DOI: 10.1155/2016/1628352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/10/2015] [Accepted: 04/20/2015] [Indexed: 01/10/2023] Open
Abstract
As stromal cells and recently confirmed mesenchymal stem cells, OP9 cells support hematopoiesis stem cell (HSC) differentiation into the B lymphocyte lineage, yet Delta-like-1 (DL1) overexpressing OP9 (OP9DL1) cells promote the development of early T lymphocytes from HSC. However, the immunomodulatory capacity of OP9 or OP9DL1 on mature B and T cell proliferation has not been elucidated. Here, we show that OP9 and OP9DL1 have similar proliferation capacities and immunophenotypes except DL1 expression. Compared with OP9, OP9DL1 displayed more osteogenesis and less adipogenesis when cultured in the respective induction media. Both OP9 and OP9DL1 inhibited mature B and T cell proliferation. Furthermore, OP9 showed stronger inhibition on B cell proliferation and OP9DL1 exhibited stronger inhibition on T cell proliferation. With stimulation, both OP9 and OP9DL1 showed increased nitrate oxide (NO) production. The NO levels of OP9 were higher than that of OP9DL1 when stimulated with TNFα/IFNγ or LPS/IL4. Taken together, our study reveals a previously unrecognized role of OP9 and OP9DL1 in mature B and T cell proliferation. DL1 overexpression alone changed the properties of OP9 cells in addition to their role in early B cell development.
Collapse
|
10
|
Dynamic equilibrium of heterogeneous and interconvertible multipotent hematopoietic cell subsets. Sci Rep 2014; 4:5199. [PMID: 24903657 PMCID: PMC4047531 DOI: 10.1038/srep05199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 05/16/2014] [Indexed: 01/23/2023] Open
Abstract
Populations of hematopoietic stem cells and progenitors are quite heterogeneous and consist of multiple cell subsets with distinct phenotypic and functional characteristics. Some of these subsets also appear to be interconvertible and oscillate between functionally distinct states. The multipotent hematopoietic cell line EML has emerged as a unique model to study the heterogeneity and interconvertibility of multipotent hematopoietic cells. Here we describe extensive phenotypic and functional heterogeneity of EML cells which stems from the coexistence of multiple cell subsets. Each of these subsets is phenotypically and functionally heterogeneous, and displays distinct multilineage differentiation potential, cell cycle profile, proliferation kinetics, and expression pattern of HSC markers and some of the key lineage-associated transcription factors. Analysis of their maintenance revealed that on a population level all EML cell subsets exhibit cell-autonomous interconvertible properties, with the capacity to generate all other subsets and re-establish complete parental EML cell population. Moreover, all EML cell subsets generated during multiple cell generations maintain their distinct phenotypic and functional signatures and interconvertible properties. The model of EML cell line suggests that interconvertible multipotent hematopoietic cell subsets coexist in a homeostatically maintained dynamic equilibrium which is regulated by currently unknown cell-intrinsic mechanisms.
Collapse
|
11
|
Brown G, Hughes PJ, Ceredig R, Michell RH. Versatility and nuances of the architecture of haematopoiesis – Implications for the nature of leukaemia. Leuk Res 2012; 36:14-22. [DOI: 10.1016/j.leukres.2011.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/16/2011] [Accepted: 10/10/2011] [Indexed: 12/11/2022]
|
12
|
Fernández-Sánchez V, Pelayo R, Flores-Guzmán P, Flores-Figueroa E, Villanueva-Toledo J, Garrido E, Ruiz-Sánchez E, Alvarez-Sanchez E, Mayani H. In vitro effects of stromal cells expressing different levels of Jagged-1 and Delta-1 on the growth of primitive and intermediate CD34+ cell subsets from human cord blood. Blood Cells Mol Dis 2011; 47:205-13. [DOI: 10.1016/j.bcmd.2011.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 08/05/2011] [Accepted: 08/08/2011] [Indexed: 01/14/2023]
|