1
|
Awate S, Scruten E, Mutwiri G, Napper S. Kinome Analysis to Define Mechanisms of Adjuvant Action: PCEP Induces Unique Signaling at the Injection Site and Lymph Nodes. Vaccines (Basel) 2022; 10:vaccines10060927. [PMID: 35746541 PMCID: PMC9228728 DOI: 10.3390/vaccines10060927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Understanding the mechanism of action of adjuvants through systems biology enables rationale criteria for their selection, optimization, and application. As kinome analysis has proven valuable for defining responses to infectious agents and providing biomarkers of vaccine responsiveness, it is a logical candidate to define molecular responses to adjuvants. Signaling responses to the adjuvant poly[di(sodiumcarboxylatoethylphenoxy)phosphazene] (PCEP) were defined at the site of injection and draining lymph node at 24 h post-vaccination. Kinome analysis indicates that PCEP induces a proinflammatory environment at the injection site, including activation of interferon and IL-6 signaling events. This is supported by the elevated expression of proinflammatory genes (IFNγ, IL-6 and TNFα) and the recruitment of myeloid (neutrophils, macrophages, monocytes and dendritic cells) and lymphoid (CD4+, CD8+ and B) cells. Kinome analysis also indicates that PCEP’s mechanism of action is not limited to the injection site. Strong signaling responses to PCEP, but not alum, are observed at the draining lymph node where, in addition to proinflammatory signaling, PCEP activates responses associated with growth factor and erythropoietin stimulation. Coupled with the significant (p < 0.0001) recruitment of macrophages and dendritic cells to the lymph node by PCEP (but not alum) supports the systemic consequences of the adjuvant. Collectively, these results indicate that PCEP utilizes a complex, multi-faceted MOA and support the utility of kinome analysis to define cellular responses to adjuvants.
Collapse
Affiliation(s)
- Sunita Awate
- UVAXX Pte. Ltd., 203 Henderson Industrial Road, Singapore 159546, Singapore
- Vaccine and Infectious Disease Organization, 120 Veterinary Road, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (E.S.); (G.M.); (S.N.)
- Correspondence:
| | - Erin Scruten
- Vaccine and Infectious Disease Organization, 120 Veterinary Road, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (E.S.); (G.M.); (S.N.)
| | - George Mutwiri
- Vaccine and Infectious Disease Organization, 120 Veterinary Road, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (E.S.); (G.M.); (S.N.)
- School of Public Health, 107 Wiggins Road, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Scott Napper
- Vaccine and Infectious Disease Organization, 120 Veterinary Road, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (E.S.); (G.M.); (S.N.)
- Department of Biochemistry, Microbiology, and Immunology, 107 Wiggins Road, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
2
|
Papadopoulos KI, Sutheesophon W, Manipalviratn S, Aw TC. Age and genotype dependent erythropoietin protection in COVID-19. World J Stem Cells 2021; 13:1513-1529. [PMID: 34786155 PMCID: PMC8567454 DOI: 10.4252/wjsc.v13.i10.1513] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/23/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023] Open
Abstract
Erythropoietin (EPO) is the main mediator of erythropoiesis and an important tissue protective hormone that appears to mediate an ancestral neuroprotective innate immune response mechanism at an early age. When the young brain is threatened-prematurity, neonatal hyperbilirubinemia, malaria- EPO is hyper-secreted disproportionately to any concurrent anemic stimuli. Under eons of severe malarial selection pressure, neuroprotective EPO augmenting genetic determinants such as the various hemoglobinopathies, and the angiotensin converting enzyme (ACE) I/D polymorphism, have been positively selected. When malarial and other cerebral threats abate and the young child survives to adulthood, EPO subsides. Sustained high ACE and angiotensin II (Ang II) levels through the ACE D allele in adulthood may then become detrimental as witnessed by epidemiological studies. The ubiquitous renin angiotensin system (RAS) influences the α-klotho/fibroblast growth factor 23 (FGF23) circuitry, and both are interconnected with EPO. Here we propose that at a young age, EPO augmenting genetic determinants through ACE D allele elevated Ang II levels in some or HbE/beta thalassemia in others would increase EPO levels and shield against coronavirus disease 2019, akin to protection from malaria and dengue fever. Human evolution may use ACE2 as a "bait" for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) to gain cellular entry in order to trigger an ACE/ACE2 imbalance and stimulate EPO hypersecretion using tissue RAS, uncoupled from hemoglobin levels. In subjects without EPO augmenting genetic determinants at any age, ACE2 binding and internalization upon SARS-CoV-2 entry would trigger an ACE/ACE2 imbalance, and Ang II oversecretion leading to protective EPO stimulation. In children, low nasal ACE2 Levels would beneficially augment this imbalance, especially for those without protective genetic determinants. On the other hand, in predisposed adults with the ACE D allele, ACE/ACE2 imbalance, may lead to uncontrolled RAS overactivity and an Ang II induced proinflammatory state and immune dysregulation, with interleukin 6 (IL-6), plasminogen activator inhibitor, and FGF23 elevations. IL-6 induced EPO suppression, aggravated through co-morbidities such as hypertension, diabetes, obesity, and RAS pharmacological interventions may potentially lead to acute respiratory distress syndrome, cytokine storm and/or autoimmunity. HbE/beta thalassemia carriers would enjoy protection at any age as their EPO stimulation is uncoupled from the RAS system. The timely use of rhEPO, EPO analogs, acetylsalicylic acid, bioactive lipids, or FGF23 antagonists in genetically predisposed individuals may counteract those detrimental effects.
Collapse
Affiliation(s)
| | | | - Somjate Manipalviratn
- Department of Reproductive Endocrinology, Jetanin Institute for Assisted Reproduction, Bangkok 10330, Thailand
| | - Tar-Choon Aw
- Department of Laboratory Medicine, Changi General Hospital, Singapore 529889, Singapore
| |
Collapse
|
3
|
Oster HS, Gvili Perelman M, Kolomansky A, Neumann D, Mittelman M. Erythropoietin Treatment Is Associated with Decreased Blood Glucose Levels in Hematologic Patients. Acta Haematol 2020; 144:252-258. [PMID: 32662775 DOI: 10.1159/000507974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 04/15/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Erythroid stimulating agents (ESAs) have pleiotropic effects, and in animal and human studies those exposed to high erythropoietin had lower blood glucose. OBJECTIVE To determine the association between ESA and glucose in anemia-treated patients with myelodysplastic syndromes (MDS) or multiple myeloma (MM). PATIENTS AND METHODS Patients' glucose levels were compared while on to while off ESA, and all served as their own controls. To test the association between ESA and blood glucose, we employed a linear mixed model, accounting for variability in the number of measurements for each patient. RESULTS Charts of 20 patients were reviewed. Mean age was 77 ± 9.8 years (range 50-91). Thirteen patients had MDS, and 8 had MM (1 with both). Glucose (mean ± standard error of the mean) was 116.38 ± 5.21 mg/dL without ESA, as opposed to 105.64 ± 5.11 mg/dL with ESA (p < 0.0001). The 3 diabetic and 5 steroid-treated patients also demonstrated reduced glucose by approximately 19 mg/dL with ESA (p = 0.003 and p = 0.0001, respectively). There was no difference in collective hemoglobin levels between the 2 groups. CONCLUSION ESA treatment for anemia is associated with lower blood glucose in hematologic patients. In those who also have diabetes mellitus, ESA might contribute to glucose control, and even to hypoglycemia. Glucose monitoring is thus advised. Further studies with both diabetic and nondiabetic patients are needed to clarify this association and underlying mechanisms.
Collapse
Affiliation(s)
- Howard S Oster
- Department of Internal Medicine A, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel,
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel,
| | - Moran Gvili Perelman
- Department of Internal Medicine A, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Albert Kolomansky
- Department of Internal Medicine A, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Department of Cell and Developmental Biology, Tel Aviv University, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Drorit Neumann
- Department of Cell and Developmental Biology, Tel Aviv University, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moshe Mittelman
- Department of Internal Medicine A, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Girmenia C, Candoni A, Delia M, Latagliata R, Molteni A, Oliva EN, Palumbo GA, Poloni A, Salutari P, Santini V, Voso MT, Musto P. Infection control in patients with myelodysplastic syndromes who are candidates for active treatment: Expert panel consensus-based recommendations. Blood Rev 2019; 34:16-25. [PMID: 30448050 DOI: 10.1016/j.blre.2018.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/05/2018] [Accepted: 10/26/2018] [Indexed: 12/15/2022]
Abstract
The improvement in supportive care and the introduction of new therapeutic agents, including lenalidomide and hypomethylating agents, in myelodysplastic syndromes have improved patients' outcomes; however, at the same time, the frequency and epidemiology of infections have changed. Therefore, the great strides in the indications and use of new treatment strategies for myelodysplastic syndromes need a parallel progress in the best approach to prophylaxis and supportive therapy for infections. Based on the recognition that the above issues represent an unmet clinical need in myelodysplastic syndromes, an Italian expert panel performed a review of the literature and composed a framework of the best recommendations for optimal infection control in patient candidates to receive active treatment for myelodysplastic syndromes. In this consensus document we report the outcomes of that review and of the consensus meetings held during 2017. The issues tackled in the project dealt with: information to be collected from candidates for active treatment for myelodysplastic syndromes; how to monitor the risk of infection; antimicrobial prophylaxis; the role of iron chelation and antiviral/antibacterial vaccinations. For each of these issues, practice recommendations are provided.
Collapse
Affiliation(s)
- Corrado Girmenia
- Dipartimento di Ematologia, Oncologia e Dermatologia, Policlinico Umberto I, Sapienza University of Rome, Italy.
| | - Anna Candoni
- Clinica Ematologica, Centro Trapianti e Terapie Cellulari, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Mario Delia
- Hematology and BMT Unit, Policlinic of Bari, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Roberto Latagliata
- Dipartimento di Ematologia, Oncologia e Dermatologia, Policlinico Umberto I, Sapienza University of Rome, Italy
| | | | - Esther N Oliva
- Grande Ospedale Metropolitano Bianchi Melacrino Morelli, Reggio Calabria, Italy
| | - Giuseppe A Palumbo
- Dipartimento di Scienze Mediche Chirurgiche e Tecnologie Avanzate "G.F.Ingrassia", Università degli Studi di Catania, Catania, Italy
| | - Antonella Poloni
- Clinica di Ematologia, AOU Ospedali Riuniti, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Ancona, Italy
| | - Prassede Salutari
- Dipartimento di Ematologia, Medicina Trasfusionale e Biotecnologie, Ospedale Spirito Santo, Pescara, Italy
| | - Valeria Santini
- MDS UNIT, Hematology, AOU-Careggi University Hospital, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Pellegrino Musto
- Scientific Direction, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| |
Collapse
|
5
|
Gilboa D, Haim-Ohana Y, Deshet-Unger N, Ben-Califa N, Hiram-Bab S, Reuveni D, Zigmond E, Gassmann M, Gabet Y, Varol C, Neumann D. Erythropoietin enhances Kupffer cell number and activity in the challenged liver. Sci Rep 2017; 7:10379. [PMID: 28871174 PMCID: PMC5583293 DOI: 10.1038/s41598-017-11082-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/15/2017] [Indexed: 02/07/2023] Open
Abstract
Erythropoietin (EPO) is the main hormone driving mammalian erythropoiesis, with activity mediated via the surface receptor, EPO-R, on erythroid progenitor cells. Recombinant human EPO is currently used clinically for the treatment of anemia in patients with end-stage renal disease, and in certain cancer patients suffering from anemia induced either by the tumor itself or by chemotherapy. EPO-R expression is also detected in non-erythroid cells, including macrophages present in the peritoneum, spleen, and bone marrow (BM). Here we demonstrate that Kupffer cells (KCs) - the liver-resident macrophages - are EPO targets. We show that, in vitro, EPO initiated intracellular signalling and enhanced phagocytosis in a rat KC line (RKC-2) and in sorted KCs. Moreover, continuous EPO administration in mice, resulted in an increased number of KCs, up-regulation of liver EPO-R expression and elevated production of the monocyte chemoattractant CCL2, with corresponding egress of Ly6Chi monocytes from the BM. In a model of acute acetaminophen-induced liver injury, EPO administration increased the recruitment of Ly6Chi monocytes and neutrophils to the liver. Taken together, our results reveal a new role for EPO in stimulating KC proliferation and phagocytosis, and in recruiting Ly6Chi monocytes in response to liver injury.
Collapse
Affiliation(s)
- Dafna Gilboa
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yasmin Haim-Ohana
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Naamit Deshet-Unger
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nathalie Ben-Califa
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sahar Hiram-Bab
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Debby Reuveni
- The Research Center for Digestive Tract and Liver Diseases, Sourasky Medical Center and Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ehud Zigmond
- The Research Center for Digestive Tract and Liver Diseases, Sourasky Medical Center and Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Max Gassmann
- Institute for Veterinary Physiology, Vetsuisse Faculty and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Yankel Gabet
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chen Varol
- The Research Center for Digestive Tract and Liver Diseases, Sourasky Medical Center and Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Drorit Neumann
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
6
|
Kim JU, Kim M, Kim S, Nguyen TT, Kim E, Lee S, Kim S, Kim H. Dendritic Cell Dysfunction in Patients with End-stage Renal Disease. Immune Netw 2017; 17:152-162. [PMID: 28680376 PMCID: PMC5484645 DOI: 10.4110/in.2017.17.3.152] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 02/07/2023] Open
Abstract
End-stage renal disease (ESRD) with immune disorder involves complex interactions between the innate and adaptive immune responses. ESRD is associated with various alterations in immune function such as a reduction in polymorphonuclear leukocyte bactericidal activity, a suppression of lymphocyte proliferative response to stimuli, and a malfunction of cell-mediated immunity at the molecular level. ESRD also increases patients' propensity for infections and malignancies as well as causing a diminished response to vaccination. Several factors influence the immunodeficiency in patients with ESRD, including uremic toxins, malnutrition, chronic inflammation, and the therapeutic dialysis modality. The alteration of T-cell function in ESRD has been considered to be a major factor underlying the impaired adaptive cellular immunity in these patients. However, cumulative evidence has suggested that the immune defect in ESRD can be caused by an Ag-presenting dendritic cell (DC) dysfunction in addition to a T-cell defect. It has been reported that ESRD has a deleterious effect on DCs both in terms of their number and function, although the precise mechanism by which DC function becomes altered in these patients is unclear. In this review, we discuss the effects of ESRD on the number and function of DCs and propose a possible molecular mechanism for DC dysfunction. We also address therapeutic approaches to improve immune function by optimally activating DCs in patients with ESRD.
Collapse
Affiliation(s)
- Ji Ung Kim
- Division of Nephrology, Department of Internal Medicine, Jeju National University Hospital, Jeju National University School of Medicine, Jeju 63241, Korea
| | - Miyeon Kim
- Division of Nephrology, Department of Internal Medicine, Jeju National University Hospital, Jeju National University School of Medicine, Jeju 63241, Korea
| | - Sinae Kim
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.,College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Tam Thanh Nguyen
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.,College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Eunhye Kim
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.,College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Siyoung Lee
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.,YbdYbiotech research center, Seoul 08589, Korea
| | - Soohyun Kim
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.,College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea.,College of Veterinary Medicine, Veterinary Science Research Institute, Konkuk University, Seoul 05029, Korea
| | - Hyunwoo Kim
- Division of Nephrology, Department of Internal Medicine, Jeju National University Hospital, Jeju National University School of Medicine, Jeju 63241, Korea
| |
Collapse
|
7
|
Deshet-Unger N, Oster HS, Prutchi-Sagiv S, Maaravi N, Golishevski N, Neumann D, Mittelman M. Erythropoietin administration is associated with improved T-cell properties in patients with myelodysplastic syndromes. Leuk Res 2016; 52:20-27. [PMID: 27870945 DOI: 10.1016/j.leukres.2016.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 10/05/2016] [Accepted: 11/01/2016] [Indexed: 01/19/2023]
Abstract
The immune system is impaired in myelodysplastic syndromes (MDS) and plays a role in the pathogenesis of the disease. Here we show effects of recombinant human erythropoietin (rHuEPO) on T cell (CD4+, CD8+ and CD4+CD25+) number and function in MDS patients. Healthy (20 subjects), MDS patients without rHuEPO treatment ('MDS', 13), and MDS patients treated with rHuEPO ('MDS+EPO', 17) were examined. CD4+ and CD8+ T cell numbers were reduced and increased respectively in MDS compared to healthy subjects. EPO treatment normalized these levels. CD4+CD25+ cell numbers, lower in MDS, were normalized in MDS+EPO. In vitro activation of CD4+ and CD8+ cells with phytohemagglutinin as measured by CD69 expression, demonstrated a 7.2 fold increase in CD4+ activation vs 13.6 fold for MDS and MDS+EPO respectively (p=0.004); and 10.2 fold (MDS) vs 18.6 fold (MDS+EPO, p<0.003) for CD8+ T cells. Expression of the co-stimulatory marker CD28, decreased in CD4+ and CD8+ T cells in MDS, was normalized in MDS+EPO CD4+ T cells. Subgroup analysis of milder disease (WHO RA and RARS) and more advanced disease revealed no difference in CD4+ and CD8+ T cell numbers. However, the activation of these cells in the RA/RARS subgroup was impaired in EPO-untreated and enhanced in EPO-treated MDS patients. Our data suggest that EPO treatment improves immune abnormalities in MDS and may depend on disease severity.
Collapse
Affiliation(s)
- Naamit Deshet-Unger
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Howard S Oster
- Department of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, 64239, and Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Sara Prutchi-Sagiv
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nir Maaravi
- Department of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, 64239, and Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Nataliya Golishevski
- Department of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, 64239, and Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Drorit Neumann
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Moshe Mittelman
- Department of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, 64239, and Sackler Faculty of Medicine, Tel Aviv University, Israel.
| |
Collapse
|
8
|
Deshet-Unger N, Hiram-Bab S, Haim-Ohana Y, Mittelman M, Gabet Y, Neumann D. Erythropoietin treatment in murine multiple myeloma: immune gain and bone loss. Sci Rep 2016; 6:30998. [PMID: 27481313 PMCID: PMC4969594 DOI: 10.1038/srep30998] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/12/2016] [Indexed: 12/24/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy, characterized by osteolytic lesions and monoclonal immunoglobulins. The anemia, accompanying the disease is often treated with recombinant human EPO. Diverse non-erythropoietic effects of EPO have led us to question its combined action on the immune system and bone in the 5T33MM mouse model. EPO administration to MM mice attenuated disease progression as demonstrated by a decrease in serum MM IgG2b, splenic CD138 expressing cells, IL-6 and RORγτ transcripts in bone marrow (BM). IFN-γ transcript levels and macrophages (F4/80+CD11b+) in the BM both increased ~1.5 fold in the EPO-treated MM mice. In-vitro, EPO stimulated phagocytosis of 5T33MM cells (+30%) by BM-derived macrophages. In contrast, high-resolution microCT analysis of distal femurs revealed EPO-associated bone loss in both healthy and 5T33MM mice. EPO significantly increased expression of the osteoclastogenic nuclear factor-kappa B ligand (RANKL) in healthy mice, but not in MM mice, likely due to antagonizing effects on MM progression. Thus, in MM, EPO may act as a double-edged-sword stimulating immune response, while accelerating bone resorption, possibly via direct action on BM macrophages. This study supports a prudent approach of treating anemia in MM patients, aiming to maintain EPO-associated anti-MM effects, while considering bone damage.
Collapse
Affiliation(s)
- Naamit Deshet-Unger
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Sahar Hiram-Bab
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Israel.,Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Yasmin Haim-Ohana
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Moshe Mittelman
- Department of Medicine, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Yankel Gabet
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Drorit Neumann
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Israel
| |
Collapse
|
9
|
Erythropoietin exerts direct immunomodulatory effects on the cytokine production by activated human T-lymphocytes. Int Immunopharmacol 2016; 36:277-281. [DOI: 10.1016/j.intimp.2016.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/21/2016] [Accepted: 05/08/2016] [Indexed: 01/29/2023]
|
10
|
Maxwell P, Melendez-Rodríguez F, Matchett KB, Aragones J, Ben-Califa N, Jaekel H, Hengst L, Lindner H, Bernardini A, Brockmeier U, Fandrey J, Grunert F, Oster HS, Mittelman M, El-Tanani M, Thiersch M, Schneider Gasser EM, Gassmann M, Dangoor D, Cuthbert RJ, Irvine A, Jordan A, Lappin T, Thompson J, Neumann D. Novel antibodies directed against the human erythropoietin receptor: creating a basis for clinical implementation. Br J Haematol 2015; 168:429-442. [PMID: 25283956 DOI: 10.1111/bjh.13133] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/02/2014] [Indexed: 12/12/2022]
Abstract
Recombinant human erythropoietin (rHuEPO) is an effective treatment for anaemia but concerns that it causes disease progression in cancer patients by activation of EPO receptors (EPOR) in tumour tissue have been controversial and have restricted its clinical use. Initial clinical studies were flawed because they used polyclonal antibodies, later shown to lack specificity for EPOR. Moreover, multiple isoforms of EPOR caused by differential splicing have been reported in cancer cell lines at the mRNA level but investigations of these variants and their potential impact on tumour progression, have been hampered by lack of suitable antibodies. The EpoCan consortium seeks to promote improved pathological testing of EPOR, leading to safer clinical use of rHuEPO, by producing well characterized EPOR antibodies. Using novel genetic and traditional peptide immunization protocols, we have produced mouse and rat monoclonal antibodies, and show that several of these specifically recognize EPOR by Western blot, immunoprecipitation, immunofluorescence, flow cytometry and immunohistochemistry in cell lines and clinical material. Widespread availability of these antibodies should enable the research community to gain a better understanding of the role of EPOR in cancer, and eventually to distinguish patients who can be treated safely by rHuEPO from those at increased risk from treatment.
Collapse
Affiliation(s)
- Perry Maxwell
- Northern Ireland Molecular Pathology Laboratory, Belfast Health & Social Care Trust, Queen's University Belfast, Belfast, UK; Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|