1
|
Li J, Kalev-Zylinska ML. Advances in molecular characterization of myeloid proliferations associated with Down syndrome. Front Genet 2022; 13:891214. [PMID: 36035173 PMCID: PMC9399805 DOI: 10.3389/fgene.2022.891214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Myeloid leukemia associated with Down syndrome (ML-DS) has a unique molecular landscape that differs from other subtypes of acute myeloid leukemia. ML-DS is often preceded by a myeloproliferative neoplastic condition called transient abnormal myelopoiesis (TAM) that disrupts megakaryocytic and erythroid differentiation. Over the last two decades, many genetic and epigenetic changes in TAM and ML-DS have been elucidated. These include overexpression of molecules and micro-RNAs located on chromosome 21, GATA1 mutations, and a range of other somatic mutations and chromosomal alterations. In this review, we summarize molecular changes reported in TAM and ML-DS and provide a comprehensive discussion of these findings. Recent advances in the development of CRISPR/Cas9-modified induced pluripotent stem cell-based disease models are also highlighted. However, despite significant progress in this area, we still do not fully understand the pathogenesis of ML-DS, and there are no targeted therapies. Initial diagnosis of ML-DS has a favorable prognosis, but refractory and relapsed disease can be difficult to treat; therapeutic options are limited in Down syndrome children by their stronger sensitivity to the toxic effects of chemotherapy. Because of the rarity of TAM and ML-DS, large-scale multi-center studies would be helpful to advance molecular characterization of these diseases at different stages of development and progression.
Collapse
Affiliation(s)
- Jixia Li
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, China
- *Correspondence: Jixia Li, ; Maggie L. Kalev-Zylinska,
| | - Maggie L. Kalev-Zylinska
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Haematology Laboratory, Department of Pathology and Laboratory Medicine, Auckland City Hospital, Auckland, New Zealand
- *Correspondence: Jixia Li, ; Maggie L. Kalev-Zylinska,
| |
Collapse
|
2
|
Chen SC, Yen MC, Chen FW, Wu LY, Yang SJ, Kuo PL, Hsu YL. Knockdown of GA-binding protein subunit β1 inhibits cell proliferation via p21 induction in renal cell carcinoma. Int J Oncol 2018; 53:886-894. [PMID: 29845229 DOI: 10.3892/ijo.2018.4411] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/04/2018] [Indexed: 11/05/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common type of renal cancer. In the present study, bioinformatics tools were systematically used to investigate the potential upstream effector involved in the progression of ccRCC. Using the Gene Expression Omnibus database and Library of Integrated Network-based Cellular Signatures L1000 platform, it was identified that GA-binding protein subunit β1 (GABPB1) was a potential effector gene. GABPB1 is a transcription factor subunit and its function in ccRCC is unclear. Elevated expression of GABPB1 mRNA in ccRCC was also observed in other clinical datasets from the Oncomine database. Following reverse transcription-quantitative polymerase chain reaction and western blot analysis, the ccRCC 786-O and A498 cell lines showed higher expression levels of GABPB1 than HK-2, a normal kidney cell line. Knockdown of GABPB1 in the 786-O and A498 cells significantly decreased the ability to form colonies by inducing the expression of p21Waf/Cip1. SurvExpress database analysis indicated that a higher expression of GABPB1 was associated with poor survival outcome in patients with renal cancer. These findings imply that GABPB1 serves an important role in the progression of ccRCC.
Collapse
Affiliation(s)
- Szu-Chia Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Meng-Chi Yen
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Feng-Wei Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Ling-Yu Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Shiang-Jie Yang
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| |
Collapse
|
3
|
GABPA predicts prognosis and inhibits metastasis of hepatocellular carcinoma. BMC Cancer 2017; 17:380. [PMID: 28549418 PMCID: PMC5446731 DOI: 10.1186/s12885-017-3373-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 05/18/2017] [Indexed: 02/06/2023] Open
Abstract
Background Increasing evidence indicates that abnormal expression of GABPA is associated with tumor development and progression. However, the function and clinicopathological significance of GABPA in hepatocellular carcinoma (HCC) remain obscure. Methods The mRNA and protein expression of GABPA in HCC clinical specimens and cell lines was examined by real-time PCR and western blotting, respectively. Follow-up data were used to uncover the relationship between GABPA expression and the prognosis of HCC patients. HCC cell lines stably overexpressing or silencing GABPA were established to explore the function of GABPA in HCC cell migration and invasion by Transwell and wound healing assays in vitro and in a xenograft model in vivo. Restoration of function analysis was used to examine the underlying molecular mechanisms. Results GABPA was downregulated at the protein and mRNA levels in HCC tissues compared with adjacent normal tissues. Decreased GABPA expression was correlated with alpha-fetoprotein levels (P = 0.001), tumor grade (P = 0.017), and distant metastasis (P = 0.021). Kaplan-Meier survival analysis showed that patients with lower GABPA expression had significantly shorter survival times than those with higher GABPA (P = 0.031). In vivo and in vitro assays demonstrated that GABPA negatively regulated HCC cell migration and invasion, and the effect of GABPA on HCC cell migration was mediated at least partly by the regulation of E-cadherin. Conclusions Collectively, our data indicate that GABPA inhibits HCC cell migration by modulating E-cadherin and could serve as a novel biomarker for HCC prognosis. GABPA may act as a tumor suppressor during HCC progression and metastasis, and is a potential therapeutic target in HCC. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3373-7) contains supplementary material, which is available to authorized users.
Collapse
|
4
|
Manukjan G, Ripperger T, Venturini L, Stadler M, Göhring G, Schambach A, Schlegelberger B, Steinemann D. GABP is necessary for stem/progenitor cell maintenance and myeloid differentiation in human hematopoiesis and chronic myeloid leukemia. Stem Cell Res 2016; 16:677-81. [DOI: 10.1016/j.scr.2016.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 03/16/2016] [Accepted: 04/07/2016] [Indexed: 10/21/2022] Open
|
5
|
Ripperger T, Manukjan G, Meyer J, Wolter S, Schambach A, Bohne J, Modlich U, Li Z, Skawran B, Schlegelberger B, Steinemann D. The heteromeric transcription factor GABP activates the ITGAM/CD11b promoter and induces myeloid differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1145-54. [PMID: 26170143 DOI: 10.1016/j.bbagrm.2015.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/19/2015] [Accepted: 07/09/2015] [Indexed: 11/16/2022]
Abstract
The heteromeric transcription factor GA-binding protein (GABP) consists of two subunits, the alpha subunit (GABPA) carrying the DNA-binding ETS domain, and the beta subunit (GABPB1) harbouring the transcriptional activation domain. GABP is involved in haematopoietic stem cell maintenance and differentiation of myeloid and lymphoid lineages in mice. To elucidate the molecular function of GABP in human haematopoiesis, the present study addressed effects of ectopic overexpression of GABP focussing on the myeloid compartment. Combined overexpression of GABPA and GABPB1 caused a proliferation block in cell lines and drastically reduced the colony-forming capacity of murine lineage-negative cells. Impaired proliferation resulted from perturbed cellular cycling and induction of myeloid differentiation shown by surface markers and myelomonocytic morphology of U937 cells. Depending on the dosage and functional integrity of GABP, ITGAM expression was induced. ITGAM encodes CD11b, the alpha subunit of integrin Mac-1, whose beta subunit, ITGB2/CD18, was already described to be regulated by GABP. Finally, Shield1-dependent proteotuning, luciferase reporter assays and chromatin immunoprecipitation showed that GABP activates the ITGAM/CD11b promoter via three binding sites close to the translational start site. In conclusion, the present study supports the crucial role of GABP in myeloid cell differentiation and identified ITGAM/CD11b as a novel GABP target gene.
Collapse
Affiliation(s)
- Tim Ripperger
- Institute of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Georgi Manukjan
- Institute of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Johann Meyer
- Institute of Experimental Haematology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Sabine Wolter
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Axel Schambach
- Institute of Experimental Haematology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Jens Bohne
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Ute Modlich
- Institute of Experimental Haematology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Zhixiong Li
- Institute of Experimental Haematology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Britta Skawran
- Institute of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Brigitte Schlegelberger
- Institute of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Doris Steinemann
- Institute of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|