1
|
Chen H, Wang X, Wang Y, Chang X. What happens to regulatory T cells in multiple myeloma. Cell Death Discov 2023; 9:468. [PMID: 38129374 PMCID: PMC10739837 DOI: 10.1038/s41420-023-01765-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Abnormal tumor microenvironment and immune escape in multiple myeloma (MM) are associated with regulatory T cells (Tregs), which play an important role in maintaining self-tolerance and regulating the overall immune response to infection or tumor cells. In patients with MM, there are abnormalities in the number, function and distribution of Tregs, and these abnormalities may be related to the disease stage, risk grade and prognosis of patients. During the treatment, Tregs have different responses to various treatment regiments, thus affecting the therapeutic effect of MM. It is also possible to predict the therapeutic response by observing the changes of Tregs. In addition to the above, we reviewed the application of Tregs in the treatment of MM. In conclusion, there is still much room for research on the mechanism and application of Tregs in MM.
Collapse
Affiliation(s)
- Huixian Chen
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xueling Wang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yan Wang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xiaotian Chang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
2
|
Firer MA, Shapira MY, Luboshits G. The Impact of Induction Regimes on Immune Responses in Patients with Multiple Myeloma. Cancers (Basel) 2021; 13:4090. [PMID: 34439244 PMCID: PMC8393868 DOI: 10.3390/cancers13164090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/16/2022] Open
Abstract
Current standard frontline therapy for newly diagnosed patients with multiple myeloma (NDMM) involves induction therapy, autologous stem cell transplantation (ASCT), and maintenance therapy. Major efforts are underway to understand the biological and the clinical impacts of each stage of the treatment protocols on overall survival statistics. The most routinely used drugs in the pre-ASCT "induction" regime have different mechanisms of action and are employed either as monotherapies or in various combinations. Aside from their direct effects on cancer cell mortality, these drugs are also known to have varying effects on immune cell functionality. The question remains as to how induction therapy impacts post-ASCT immune reconstitution and anti-tumor immune responses. This review provides an update on the known immune effects of melphalan, dexamethasone, lenalidomide, and bortezomib commonly used in the induction phase of MM therapy. By analyzing the actions of each individual drug on the immune system, we suggest it might be possible to leverage their effects to rationally devise more effective induction regimes. Given the genetic heterogeneity between myeloma patients, it may also be possible to identify subgroups of patients for whom particular induction drug combinations would be more appropriate.
Collapse
Affiliation(s)
- Michael A. Firer
- Department Chemical Engineering, Ariel University, Ariel 40700, Israel;
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel
- Ariel Center for Applied Cancer Research, Ariel University, Ariel 40700, Israel
| | - Michael Y. Shapira
- The Hematology Institute, Assuta Medical Center, Tel Aviv 6971028, Israel;
| | - Galia Luboshits
- Department Chemical Engineering, Ariel University, Ariel 40700, Israel;
- Ariel Center for Applied Cancer Research, Ariel University, Ariel 40700, Israel
| |
Collapse
|
3
|
Wang Y, Feng W, Liu P. Genotype-immunophenotype analysis reveals the immunogenomic subtype and prognosis of multiple myeloma. Carcinogenesis 2021; 41:1746-1754. [PMID: 32278317 DOI: 10.1093/carcin/bgaa037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/22/2020] [Accepted: 04/10/2020] [Indexed: 01/28/2023] Open
Abstract
Immune dysfunction plays an important role in tumour development, recurrence, therapeutic responses and overall survival (OS). Multiple myeloma (MM) is a clonal B-cell malignancy which characterized by anti-tumoural immune dysfunction. In this study, we analysed 28 tumour-immune-related pathways and calculated the immune pathway score through published microarray data from the Gene Expression Omnibus (GEO) data portal. A training set of 345 patients and a validation set of 214 patients with primary MM were chosen. We performed least absolute shrinkage and selection operator (LASSO) analysis to identify prognostic factors. Then, we used cluster analysis to divide patients into three immunogenomic subtypes, which named abnormal immune activated type, common type and anti-myeloma immune activated type. Log‑rank tests showed that anti-myeloma immune activated type had the best prognosis and abnormal immune activated type had the shortest OS (P = 0.000) and event-free survival (EFS) (P = 0.000). Multivariate Cox also indicated that the immunogenomic subtype was an independent predictor of OS (P = 0.001) and EFS (P = 0.000). We also analysed the characteristics and the immune-response patterns of different subtypes. Then, we established a mathematical model to classify patients in the validation set. In the validation set, patients with different immunogenomic subtypes also had a significantly different OS (P = 0.001) and EFS (P = 0.005). Our study explored tumour-immune-related pathways at a multi-dimensional level and found the immunogenomic subtype of MM. Potential mechanisms on the genetic level of how tumour-immunity influences the prognosis and therapeutic responses are provided. The immunogenomic subtype may be feasible for deciding clinical treatment in the future.
Collapse
Affiliation(s)
- Yue Wang
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wanjing Feng
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Peng Liu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Yan X, Wu C, Chen T, Santos MM, Liu CL, Yang C, Zhang L, Ren J, Liao S, Guo H, Sukhova GK, Shi GP. Cathepsin S inhibition changes regulatory T-cell activity in regulating bladder cancer and immune cell proliferation and apoptosis. Mol Immunol 2016; 82:66-74. [PMID: 28033540 DOI: 10.1016/j.molimm.2016.12.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/17/2016] [Accepted: 12/19/2016] [Indexed: 12/29/2022]
Abstract
Regulatory T cells (Tregs) are immune suppressive cells, but their roles in tumor growth have been elusive, depending on tumor type or site. Our prior study demonstrated a role of cathepsin S (CatS) in reducing Treg immunosuppressive activity. Therefore, CatS inhibition in Tregs may exacerbate tumor growth. Using mouse bladder carcinoma MB49 cell subcutaneous implant tumor model, we detected no difference in tumor growth, whether mice were given saline- or CatS inhibitor-treated Tregs. However, mice that received inhibitor-treated Tregs had fewer splenic and tumor Tregs, and lower levels of tumor and splenic cell proliferation than mice that received saline-treated Tregs. In vitro, inhibitor-treated Tregs showed lower proliferation and higher apoptosis than saline-treated Tregs when cells were exposed to MB49. In contrast, both types of Tregs showed no difference in proliferation when they were co-cultured with normal splenocytes. Inhibitor-treated Tregs had less apoptosis in splenocytes, but more apoptosis in splenocytes with MB49 conditioned media than saline-treated Tregs. In turn, we detected less proliferation and more apoptosis of MB94 cells after co-culture with inhibitor-treated Tregs, compared with saline-treated Tregs. B220+ B-cell, CD4+ T-cell, and CD8+ T-cell proliferation and apoptosis were also lower in splenocytes co-cultured with inhibitor-treated Tregs than with saline-treated Tregs. Under the same conditions, the addition of cancer cell-conditioned media greatly increased CD8+ T-cell proliferation and reduced CD8+ T-cell apoptosis. These observations suggest that CatS inhibition of Tregs may reduce overall T-cell immunity under normal conditions, but enhance CD8+ T-cell immunity in the presence of cancer cells.
Collapse
Affiliation(s)
- Xiang Yan
- Department of Urology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Chun Wu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Cardiology, Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and technology, Wuhan, 430022, China
| | - Tao Chen
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Marcela M Santos
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Cong-Lin Liu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Chongzhe Yang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Lijun Zhang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jingyuan Ren
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sha Liao
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hongqiang Guo
- Department of Urology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China
| | - Galina K Sukhova
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|