1
|
Sucre O, Pamulapati S, Muzammil Z, Bitran J. Advances in Therapy of Adult Patients with Acute Lymphoblastic Leukemia. Cells 2025; 14:371. [PMID: 40072099 PMCID: PMC11898990 DOI: 10.3390/cells14050371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/17/2025] [Accepted: 02/26/2025] [Indexed: 03/15/2025] Open
Abstract
The landscape of adult acute lymphoblastic leukemia (ALL) is dramatically changing. With very promising results seen with novel immunotherapeutics in the setting of relapsed and refractory disease, the prospect of using these agents in first-line therapy has prompted the development of multiple clinical trials addressing this question. This review seeks to outline and expand the current standard of care, as well as new advances, in the treatment of adult patients with ALL and address future areas of research. We expect the frontline integration of immuno-oncology agents such as bispecific T-cell engagers, antibody-drug conjugates, and chimeric antigen receptor (CAR) T cells may maintain or improve outcomes in adults while also minimizing toxicity. Treatment of ALL will continue to evolve as we focus on personalized, patient-centered approaches.
Collapse
Affiliation(s)
- Oscar Sucre
- Department of Hematology and Medical Oncology, Advocate Lutheran General Hospital, Park Ridge, IL 60068, USA; (O.S.); (S.P.)
| | - Saagar Pamulapati
- Department of Hematology and Medical Oncology, Advocate Lutheran General Hospital, Park Ridge, IL 60068, USA; (O.S.); (S.P.)
| | - Zeeshan Muzammil
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA;
| | - Jacob Bitran
- Department of Hematology and Medical Oncology, Advocate Lutheran General Hospital, Park Ridge, IL 60068, USA; (O.S.); (S.P.)
| |
Collapse
|
2
|
Østergaard A, Boer JM, van Leeuwen FN, Pieters R, Den Boer ML. IKZF1 in acute lymphoblastic leukemia: the rise before the fall? Leuk Lymphoma 2024; 65:2077-2087. [PMID: 39210599 DOI: 10.1080/10428194.2024.2396046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/23/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common malignancy in children and adolescents and in recent decades, the survival rates have risen to >90% in children largely due the introduction of risk adapted therapy. Therefore, knowledge of factors influencing risk of relapse is important. The transcription factor IKAROS is a regulator of lymphocyte development and alterations of its coding gene, IKZF1, are frequent in ALL and are associated with higher relapse risk. This concise review will discuss the normal function of IKAROS together with the effect of gene alterations in ALL such as relieved energy restriction and altered response to anti-leukemic drugs. Besides the biology, the clinical impact of gene alterations in the different subtypes of ALL will be discussed. Finally, possibilities for treating ALL with IKZF1 alterations will be considered including novel therapies like cell signaling inhibitors and immunotherapy.
Collapse
Affiliation(s)
- Anna Østergaard
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Judith M Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | |
Collapse
|
3
|
Khawaji ZY, Khawaji NY, Alahmadi MA, Elmoneim AA. Prediction of Response to FDA-Approved Targeted Therapy and Immunotherapy in Acute Lymphoblastic Leukemia (ALL). Curr Treat Options Oncol 2024; 25:1163-1183. [PMID: 39102166 DOI: 10.1007/s11864-024-01237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 08/06/2024]
Abstract
OPINION STATEMENT Acute lymphoblastic leukemia (ALL) represents the predominant cancer in pediatric populations, though its occurrence in adults is relatively rare. Pre-treatment risk stratification is crucial for predicting prognosis. Important factors for assessment include patient age, white blood cell (WBC) count at diagnosis, extramedullary involvement, immunophenotype, and cytogenetic aberrations. Minimal residual disease (MRD), primarily assessed by flow cytometry following remission, plays a substantial role in guiding management plans. Over the past decade, significant advancements in ALL outcomes have been witnessed. Conventional chemotherapy has remarkably reduced mortality rates; however, its intensive nature raises safety concerns and has led to the emergence of treatment-resistant cases with recurrence of relapses. Consequently, The U.S. Food and Drug Administration (FDA) has approved several novel treatments for relapsed/refractory ALL due to their demonstrated efficacy, as indicated by improved complete remission and survival rates. These treatments include tyrosine kinase inhibitors (TKIs), the anti-CD19 monoclonal antibody blinatumomab, anti-CD22 inotuzumab ozogamicin, anti-CD20 rituximab, and chimeric antigen receptor (CAR) T-cell therapy. Identifying the variables that influence treatment decisions is a pressing necessity for tailoring therapy based on heterogeneous patient characteristics. Key predictive factors identified in various observational studies and clinical trials include prelymphodepletion disease burden, complex genetic abnormalities, and MRD. Furthermore, the development of serious adverse events following treatment could be anticipated through predictive models, allowing for appropriate prophylactic measures to be considered. The ultimate aim is to incorporate the concept of precision medicine in the field of ALL through valid prediction platform to facilitate the selection of the most suitable treatment approach.
Collapse
Affiliation(s)
| | | | | | - Abeer Abd Elmoneim
- Women and Child Health Department, Taibah University, Madinah, Kingdom of Saudi Arabia
- 2nd Affiliation: Pediatric Department, Faculty of Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
4
|
Zerella JR, Homan CC, Arts P, Brown AL, Scott HS, Hahn CN. Transcription factor genetics and biology in predisposition to bone marrow failure and hematological malignancy. Front Oncol 2023; 13:1183318. [PMID: 37377909 PMCID: PMC10291195 DOI: 10.3389/fonc.2023.1183318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Transcription factors (TFs) play a critical role as key mediators of a multitude of developmental pathways, with highly regulated and tightly organized networks crucial for determining both the timing and pattern of tissue development. TFs can act as master regulators of both primitive and definitive hematopoiesis, tightly controlling the behavior of hematopoietic stem and progenitor cells (HSPCs). These networks control the functional regulation of HSPCs including self-renewal, proliferation, and differentiation dynamics, which are essential to normal hematopoiesis. Defining the key players and dynamics of these hematopoietic transcriptional networks is essential to understanding both normal hematopoiesis and how genetic aberrations in TFs and their networks can predispose to hematopoietic disease including bone marrow failure (BMF) and hematological malignancy (HM). Despite their multifaceted and complex involvement in hematological development, advances in genetic screening along with elegant multi-omics and model system studies are shedding light on how hematopoietic TFs interact and network to achieve normal cell fates and their role in disease etiology. This review focuses on TFs which predispose to BMF and HM, identifies potential novel candidate predisposing TF genes, and examines putative biological mechanisms leading to these phenotypes. A better understanding of the genetics and molecular biology of hematopoietic TFs, as well as identifying novel genes and genetic variants predisposing to BMF and HM, will accelerate the development of preventative strategies, improve clinical management and counseling, and help define targeted treatments for these diseases.
Collapse
Affiliation(s)
- Jiarna R. Zerella
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Claire C. Homan
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Peer Arts
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Anna L. Brown
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Hamish S. Scott
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Christopher N. Hahn
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
5
|
Conserva MR, Redavid I, Anelli L, Zagaria A, Tarantini F, Cumbo C, Tota G, Parciante E, Coccaro N, Minervini CF, Minervini A, Specchia G, Musto P, Albano F. IKAROS in Acute Leukemia: A Positive Influencer or a Mean Hater? Int J Mol Sci 2023; 24:3282. [PMID: 36834692 PMCID: PMC9961161 DOI: 10.3390/ijms24043282] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
One key process that controls leukemogenesis is the regulation of oncogenic gene expression by transcription factors acting as tumor suppressors. Understanding this intricate mechanism is crucial to elucidating leukemia pathophysiology and discovering new targeted treatments. In this review, we make a brief overview of the physiological role of IKAROS and the molecular pathway that contributes to acute leukemia pathogenesis through IKZF1 gene lesions. IKAROS is a zinc finger transcription factor of the Krüppel family that acts as the main character during hematopoiesis and leukemogenesis. It can activate or repress tumor suppressors or oncogenes, regulating the survival and proliferation of leukemic cells. More than 70% of Ph+ and Ph-like cases of acute lymphoblastic leukemia exhibit IKZF1 gene variants, which are linked to worse treatment outcomes in both childhood and adult B-cell precursor acute lymphoblastic leukemia. In the last few years, much evidence supporting IKAROS involvement in myeloid differentiation has been reported, suggesting that loss of IKZF1 might also be a determinant of oncogenesis in acute myeloid leukemia. Considering the complicated "social" network that IKAROS manages in hematopoietic cells, we aim to focus on its involvement and the numerous alterations of molecular pathways it can support in acute leukemias.
Collapse
Affiliation(s)
- Maria Rosa Conserva
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Immacolata Redavid
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Luisa Anelli
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Antonella Zagaria
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Francesco Tarantini
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Cosimo Cumbo
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Giuseppina Tota
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Elisa Parciante
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Nicoletta Coccaro
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Crescenzio Francesco Minervini
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Angela Minervini
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Giorgina Specchia
- School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Pellegrino Musto
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Francesco Albano
- Hematology Section, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| |
Collapse
|
6
|
Pal D, Blair H, Parker J, Hockney S, Beckett M, Singh M, Tirtakusuma R, Nelson R, McNeill H, Angel SH, Wilson A, Nizami S, Nakjang S, Zhou P, Schwab C, Sinclair P, Russell LJ, Coxhead J, Halsey C, Allan JM, Harrison CJ, Moorman AV, Heidenreich O, Vormoor J. hiPSC-derived bone marrow milieu identifies a clinically actionable driver of niche-mediated treatment resistance in leukemia. Cell Rep Med 2022; 3:100717. [PMID: 35977468 PMCID: PMC9418860 DOI: 10.1016/j.xcrm.2022.100717] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/18/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022]
Abstract
Leukemia cells re-program their microenvironment to augment blast proliferation and enhance treatment resistance. Means of clinically targeting such niche-driven treatment resistance remain ambiguous. We develop human induced pluripotent stem cell (hiPSC)-engineered niches to reveal druggable cancer-niche dependencies. We reveal that mesenchymal (iMSC) and vascular niche-like (iANG) hiPSC-derived cells support ex vivo proliferation of patient-derived leukemia cells, affect dormancy, and mediate treatment resistance. iMSCs protect dormant and cycling blasts against dexamethasone, while iANGs protect only dormant blasts. Leukemia proliferation and protection from dexamethasone-induced apoptosis is dependent on cancer-niche interactions mediated by CDH2. Consequently, we test CDH2 antagonist ADH-1 (previously in Phase I/II trials for solid tumors) in a very aggressive patient-derived xenograft leukemia mouse model. ADH-1 shows high in vivo efficacy; ADH-1/dexamethasone combination is superior to dexamethasone alone, with no ADH-1-conferred additional toxicity. These findings provide a proof-of-concept starting point to develop improved, potentially safer therapeutics targeting niche-mediated cancer dependencies in blood cancers.
Collapse
Affiliation(s)
- Deepali Pal
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK; Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST UK.
| | - Helen Blair
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Jessica Parker
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST UK
| | - Sean Hockney
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST UK
| | - Melanie Beckett
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Mankaran Singh
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Ricky Tirtakusuma
- Princess Maxima Centrum for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Ryan Nelson
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Hesta McNeill
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Sharon H Angel
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Aaron Wilson
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Salem Nizami
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Sirintra Nakjang
- Bioinformatics Support Unit, William Leech Building, The Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Peixun Zhou
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Claire Schwab
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Paul Sinclair
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Lisa J Russell
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Jonathan Coxhead
- Genomics Core Facility, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Christina Halsey
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1QH UK
| | - James M Allan
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Christine J Harrison
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Anthony V Moorman
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Olaf Heidenreich
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK; Princess Maxima Centrum for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Josef Vormoor
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK; Princess Maxima Centrum for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
7
|
Bone Marrow Stromal Cell Regeneration Profile in Treated B-Cell Precursor Acute Lymphoblastic Leukemia Patients: Association with MRD Status and Patient Outcome. Cancers (Basel) 2022; 14:cancers14133088. [PMID: 35804860 PMCID: PMC9265080 DOI: 10.3390/cancers14133088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 12/10/2022] Open
Abstract
For the last two decades, measurable residual disease (MRD) has become one of the most powerful independent prognostic factors in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). However, the effect of therapy on the bone marrow (BM) microenvironment and its potential relationship with the MRD status and disease free survival (DFS) still remain to be investigated. Here we analyzed the distribution of mesenchymal stem cells (MSC) and endothelial cells (EC) in the BM of treated BCP-ALL patients, and its relationship with the BM MRD status and patient outcome. For this purpose, the BM MRD status and EC/MSC regeneration profile were analyzed by multiparameter flow cytometry (MFC) in 16 control BM (10 children; 6 adults) and 1204 BM samples from 347 children and 100 adult BCP-ALL patients studied at diagnosis (129 children; 100 adults) and follow-up (824 childhood samples; 151 adult samples). Patients were grouped into a discovery cohort (116 pediatric BCP-ALL patients; 338 samples) and two validation cohorts (74 pediatric BCP-ALL, 211 samples; and 74 adult BCP-ALL patients; 134 samples). Stromal cells (i.e., EC and MSC) were detected at relatively low frequencies in all control BM (16/16; 100%) and in most BCP-ALL follow-up samples (874/975; 90%), while they were undetected in BCP-ALL BM at diagnosis. In control BM samples, the overall percentage of EC plus MSC was higher in children than adults (p = 0.011), but with a similar EC/MSC ratio in both groups. According to the MRD status similar frequencies of both types of BM stromal cells were detected in BCP-ALL BM studied at different time points during the follow-up. Univariate analysis (including all relevant prognostic factors together with the percentage of stromal cells) performed in the discovery cohort was used to select covariates for a multivariate Cox regression model for predicting patient DFS. Of note, an increased percentage of EC (>32%) within the BCP-ALL BM stromal cell compartment at day +78 of therapy emerged as an independent unfavorable prognostic factor for DFS in childhood BCP-ALL in the discovery cohort—hazard ratio (95% confidence interval) of 2.50 (1−9.66); p = 0.05—together with the BM MRD status (p = 0.031). Further investigation of the predictive value of the combination of these two variables (%EC within stromal cells and MRD status at day +78) allowed classification of BCP-ALL into three risk groups with median DFS of: 3.9, 3.1 and 1.1 years, respectively (p = 0.001). These results were confirmed in two validation cohorts of childhood BCP-ALL (n = 74) (p = 0.001) and adult BCP-ALL (n = 40) (p = 0.004) treated at different centers. In summary, our findings suggest that an imbalanced EC/MSC ratio in BM at day +78 of therapy is associated with a shorter DFS of BCP-ALL patients, independently of their MRD status. Further prospective studies are needed to better understand the pathogenic mechanisms involved.
Collapse
|
8
|
Tran TH, Tasian SK. Has Ph-like ALL Superseded Ph+ ALL as the Least Favorable Subtype? Best Pract Res Clin Haematol 2021; 34:101331. [PMID: 34865703 DOI: 10.1016/j.beha.2021.101331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) is a subset of high-risk B-ALL associated with high relapse risk and inferior clinical outcomes across the pediatric-to-adult age spectrum. Ph-like ALL is characterized by frequent IKZF1 alterations and a kinase-activated gene expression profile similar to that of Philadelphia chromosome-positive (Ph+) ALL, yet lacks the canonical BCR-ABL1 rearrangement. Advances in high-throughput sequencing technologies during the past decade have unraveled the genomic landscape of Ph-like ALL, revealing a diverse array of kinase-activating translocations and mutations that may be amenable to targeted therapies that have set a remarkable precision medicine paradigm for patients with Ph + ALL. Collaborative scientific efforts to identify and characterise Ph-like ALL during the past decade has directly informed current precision medicine trials investigating the therapeutic potential of tyrosine kinase inhibitor-based therapies for children, adolescents, and adults with Ph-like ALL, although the most optimal treatment paradigm for this high-risk group of patients has yet to be established. Herein, we describe the epidemiology, clinical features, and biology of Ph-like ALL, highlight challenges in implementing pragmatic and cost-effective diagnostic algorithms in the clinic, and describe the milieu of treatment strategies under active investigation that strive to decrease relapse risk and improve long-term survival for patients with Ph-like ALL as has been successfully achieved for those with Ph + ALL.
Collapse
Affiliation(s)
- Thai Hoa Tran
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, CHU Sainte-Justine, Montreal, QC, Canada; Department of Pediatrics, University of Montreal, Montreal, QC, Canada
| | - Sarah K Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics and Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Aleem A, Haque AR, Roloff GW, Griffiths EA. Application of Next-Generation Sequencing-Based Mutational Profiling in Acute Lymphoblastic Leukemia. Curr Hematol Malig Rep 2021; 16:394-404. [PMID: 34613552 DOI: 10.1007/s11899-021-00641-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW Recent efforts to characterize hematologic cancers with genetic and molecular detail have largely relied on mutational profiling via next-generation sequencing (NGS). The application of NGS-guided disease prognostication and clinical decision making requires a basic understanding of sequencing advantages, pitfalls, and areas where clinical care might be enhanced by the knowledge generated. This article identifies avenues within the landscape of adult acute lymphoblastic leukemia (ALL) where mutational data hold the opportunity to enhance understanding of disease biology and patient care. RECENT FINDINGS NGS-based assessment of measurable residual disease (MRD) after ALL treatment allows for a sensitive and specific molecular survey that is at least comparable, if not superior, to existing techniques. Mutational assessment by NGS has unraveled complex signaling networks that drive pathogenesis of T-cell ALL. Sequencing of patients with familial clustering of ALL has also identified novel germline mutations whose inheritance predisposes to disease development in successive generations. While NGS-based assessment of hematopoietic malignancies often provides actionable information to clinicians, patients with acute lymphoblastic leukemia are left underserved due to a lack of disease classification and prognostication schema that integrate molecular data. Ongoing research is positioned to enrich the molecular toolbox available to clinicians caring for adult ALL patients and deliver new insights to guide therapeutic selection, monitor clinical response, and detect relapse.
Collapse
Affiliation(s)
- Ahmed Aleem
- Department of Medicine, Loyola University Medical Center, 2160 S. 1st Ave, Maywood, IL, 60153, USA
| | - Ali R Haque
- Department of Medicine, Loyola University Medical Center, 2160 S. 1st Ave, Maywood, IL, 60153, USA
| | - Gregory W Roloff
- Department of Medicine, Loyola University Medical Center, 2160 S. 1st Ave, Maywood, IL, 60153, USA.
| | - Elizabeth A Griffiths
- Leukemia Service, Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
10
|
Iacobucci I, Kimura S, Mullighan CG. Biologic and Therapeutic Implications of Genomic Alterations in Acute Lymphoblastic Leukemia. J Clin Med 2021; 10:3792. [PMID: 34501239 PMCID: PMC8432032 DOI: 10.3390/jcm10173792] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most successful paradigm of how risk-adapted therapy and detailed understanding of the genetic alterations driving leukemogenesis and therapeutic response may dramatically improve treatment outcomes, with cure rates now exceeding 90% in children. However, ALL still represents a leading cause of cancer-related death in the young, and the outcome for older adolescents and young adults with ALL remains poor. In the past decade, next generation sequencing has enabled critical advances in our understanding of leukemogenesis. These include the identification of risk-associated ALL subtypes (e.g., those with rearrangements of MEF2D, DUX4, NUTM1, ZNF384 and BCL11B; the PAX5 P80R and IKZF1 N159Y mutations; and genomic phenocopies such as Ph-like ALL) and the genomic basis of disease evolution. These advances have been complemented by the development of novel therapeutic approaches, including those that are of mutation-specific, such as tyrosine kinase inhibitors, and those that are mutation-agnostic, including antibody and cellular immunotherapies, and protein degradation strategies such as proteolysis-targeting chimeras. Herein, we review the genetic taxonomy of ALL with a focus on clinical implications and the implementation of genomic diagnostic approaches.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA;
| | - Shunsuke Kimura
- Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA;
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA;
- Comprehensive Cancer Center, Hematological Malignancies Program, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
11
|
Lee SHR, Li Z, Tai ST, Oh BLZ, Yeoh AEJ. Genetic Alterations in Childhood Acute Lymphoblastic Leukemia: Interactions with Clinical Features and Treatment Response. Cancers (Basel) 2021; 13:4068. [PMID: 34439222 PMCID: PMC8393341 DOI: 10.3390/cancers13164068] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/03/2021] [Accepted: 08/08/2021] [Indexed: 12/28/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer among children. This aggressive cancer comprises multiple molecular subtypes, each harboring a distinct constellation of somatic, and to a lesser extent, inherited genetic alterations. With recent advances in genomic analyses such as next-generation sequencing techniques, we can now clearly identify >20 different genetic subtypes in ALL. Clinically, identifying these genetic subtypes will better refine risk stratification and determine the optimal intensity of therapy for each patient. Underpinning each genetic subtype are unique clinical and therapeutic characteristics, such as age and presenting white blood cell (WBC) count. More importantly, within each genetic subtype, there is much less variability in treatment response and survival outcomes compared with current risk factors such as National Cancer Institute (NCI) criteria. We review how this new taxonomy of genetic subtypes in childhood ALL interacts with clinical risk factors used widely, i.e., age, presenting WBC, IKZF1del, treatment response, and outcomes.
Collapse
Affiliation(s)
- Shawn H. R. Lee
- VIVA-University Children’s Cancer Centre, Khoo-Teck Puat-National University Children’s Medical Institute, National University Hospital, Singapore 119074, Singapore; (S.H.R.L.); (B.L.Z.O.)
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| | - Zhenhua Li
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| | - Si Ting Tai
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| | - Bernice L. Z. Oh
- VIVA-University Children’s Cancer Centre, Khoo-Teck Puat-National University Children’s Medical Institute, National University Hospital, Singapore 119074, Singapore; (S.H.R.L.); (B.L.Z.O.)
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| | - Allen E. J. Yeoh
- VIVA-University Children’s Cancer Centre, Khoo-Teck Puat-National University Children’s Medical Institute, National University Hospital, Singapore 119074, Singapore; (S.H.R.L.); (B.L.Z.O.)
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| |
Collapse
|
12
|
Yadav V, Ganesan P, Veeramani R, Kumar V D. Philadelphia-Like Acute Lymphoblastic Leukemia: A Systematic Review. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 21:e57-e65. [PMID: 33485429 DOI: 10.1016/j.clml.2020.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 01/10/2023]
Abstract
Philadelphia-like (Ph-like) acute lymphoblastic leukemia (ALL) is a subgroup of B-cell precursor ALL (BCP-ALL) with a gene expression profile analogous to Philadelphia-positive ALL and recurrent IKAROS Family Zinc Finger 1 (IKZF1) gene deletion despite lacking BCR-ABL1 (Breakpoint cluster region-ABL protooncogene) translocation. Although recognized to occur at all ages, the proportion of cases among BCP-ALL varies (< 10% in children and up to 30% in adolescents). In all age groups, males are more commonly affected. Generally, Ph-like ALL is associated with adverse clinical features and an increased risk of treatment failure with conventional approaches. Genetic alterations such as aberrant expression, point mutations, or fusion translocations lead to activation of cytokine receptors and signaling kinases, which affect the ABL1 (ABL class fusion) or Janus Kinase (JAK) signaling pathways. Several clinical trials are being conducted to understand whether specific tyrosine kinase inhibitor therapy can improve cure rates. This review summarizes the current literature available about this entity.
Collapse
Affiliation(s)
- Vineeta Yadav
- Department of Anatomy, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| | - Prasanth Ganesan
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| | - Raveendranath Veeramani
- Department of Anatomy, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India.
| | - Dinesh Kumar V
- Department of Anatomy, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| |
Collapse
|
13
|
IKZF1 rs4132601 and rs11978267 Gene Polymorphisms and Acute Lymphoblastic Leukemia: Relation to Disease Susceptibility and Outcome. J Pediatr Hematol Oncol 2020; 42:420-428. [PMID: 32769565 DOI: 10.1097/mph.0000000000001874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
(IKZF1) rs4132601 and rs11978267 are common gene polymorphisms and have been associated with the risk of acute lymphoblastic leukemia. However, these associations are less evident in races and/or ethnicities other than European and Hispanic. Therefore, we investigated the association between these single-nucleotide polymorphisms and acute lymphoblastic leukemia susceptibility and disease outcome. Real-time polymerase chain reaction typing was performed for IKZF1 rs4132601 and rs11978267 for 128 pediatric acute lymphoblastic leukemia (pALL), 45 adult acute lymphoblastic leukemia (aALL), and 436 healthy controls. The G allele-containing and G-containing genotypes (GG+GT) of rs4132601 were significantly higher in pALL (P=0.003, odds ratio [OR]=1.65, 0.009, OR=1.42, respectively) and aALL (P=0.016, OR=1.81 and 0.011, OR=1.61, respectively). However, the GG haplotype was associated with the risk of pALL (P=0.044), the GA haplotype was associated with the risk of aALL (P=0.007). In aALL, the GG genotype of rs4132601 was associated with absence of remission and poor overall survival (P=0.003 and 0.041, respectively). The IKZF1 rs4132601 single-nucleotide polymorphism can be considered a susceptibility risk factor for the development of pALL and aALL in the studied cohort of Egyptian patients. The GG genotype of IKZF1 rs4132601 may be a risk factor for poor outcome in aALL patients.
Collapse
|
14
|
Enciso J, Mendoza L, Álvarez-Buylla ER, Pelayo R. Dynamical modeling predicts an inflammation-inducible CXCR7+ B cell precursor with potential implications in lymphoid blockage pathologies. PeerJ 2020; 8:e9902. [PMID: 33062419 PMCID: PMC7531334 DOI: 10.7717/peerj.9902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022] Open
Abstract
Background The blockage at the early B lymphoid cell development pathway within the bone marrow is tightly associated with hematopoietic and immune diseases, where the disruption of basal regulatory networks prevents the continuous replenishment of functional B cells. Dynamic computational models may be instrumental for the comprehensive understanding of mechanisms underlying complex differentiation processes and provide novel prediction/intervention platforms to reinvigorate the system. Methods By reconstructing a three-module regulatory network including genetic transcription, intracellular transduction, and microenvironment communication, we have investigated the early B lineage cell fate decisions in normal and pathological settings. The early B cell differentiation network was simulated as a Boolean model and then transformed, using fuzzy logic, to a continuous model. We tested null and overexpression mutants to analyze the emergent behavior of the network. Due to its importance in inflammation, we investigated the effect of NFkB induction at different early B cell differentiation stages. Results While the exhaustive synchronous and asynchronous simulation of the early B cell regulatory network (eBCRN) reproduced the configurations of the hematopoietic progenitors and early B lymphoid precursors of the pathway, its simulation as a continuous model with fuzzy logics suggested a transient IL-7R+ ProB-to-Pre-B subset expressing pre-BCR and a series of dominant B-cell transcriptional factors. This conspicuous differentiating cell population up-regulated CXCR7 and reduced CXCR4 and FoxO1 expression levels. Strikingly, constant but intermediate NFkB signaling at specific B cell differentiation stages allowed stabilization of an aberrant CXCR7+ pre-B like phenotype with apparent affinity to proliferative signals, while under constitutive overactivation of NFkB, such cell phenotype was aberrantly exacerbated from the earliest stage of common lymphoid progenitors. Our mutant models revealed an abnormal delay in the BCR assembly upon NFkB activation, concomitant to sustained Flt3 signaling, down-regulation of Ebf1, Irf4 and Pax5 genes transcription, and reduced Ig recombination, pointing to a potential lineage commitment blockage. Discussion For the first time, an inducible CXCR7hi B cell precursor endowed with the potential capability of shifting central lymphoid niches, is inferred by computational modeling. Its phenotype is compatible with that of leukemia-initiating cells and might be the foundation that bridges inflammation with blockage-related malignancies and a wide range of immunological diseases. Besides the predicted differentiation impairment, inflammation-inducible phenotypes open the possibility of newly formed niches colonized by the reported precursor. Thus, emergent bone marrow ecosystems are predicted following a pro-inflammatory induction, that may lead to hematopoietic instability associated to blockage pathologies.
Collapse
Affiliation(s)
- Jennifer Enciso
- Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Metepec, Puebla, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, México.,Programa de Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, México
| | - Luis Mendoza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, México
| | | | - Rosana Pelayo
- Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Metepec, Puebla, Mexico
| |
Collapse
|
15
|
IKZF1 Deletions as a Prognostic Factor in Costa Rican Patients With Pediatric B-Cell Acute Lymphoblastic Leukemia. J Pediatr Hematol Oncol 2020; 42:e401-e406. [PMID: 32324698 DOI: 10.1097/mph.0000000000001807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The IKZF1 gene encodes for Ikaros, a transcriptional factor in B-cell development. Deletions in this gene have been associated with a worse prognosis in B-cell acute lymphoblastic leukemia (B-ALL). We evaluated the presence of these alterations in all Costa Rican pediatric patients diagnosed with B-ALL between 2011 and 2014, treated with a modified Berlin-Frankfurt-Münster therapeutic protocol. Multiplex polymerase chain reaction with 2 detection methods (agarose gel and gene scanning) was used to detect intragenic deletions and multiplex ligation-dependent probe amplification for whole-gene deletions. Differences between groups (normal vs. deleted IKZF1) were analyzed by the χ test, the Kaplan-Meier test was used to calculate relapse-free survival and overall survival, and Cox regression was performed for multivariant analysis. Minimum follow-up was 4.5 years. Incidence of IKZF1 deletions was 12.9% (n=20), with an equal amount of intragenic and complete gene deletions. Adverse karyotype (P=0.048), high-risk category (P=0.030), occurrence of relapse (P=0.021), and medullar relapse (P=0.011) were statistically associated with the presence of deletions in IKZF1. Relapse-free survival at 54 months was lower in patients harboring an IKZF1 deletion than that in patients with IKZF1-wt (40.0% vs. 66.7%; P=0.014). Patients with B-ALL and IKZF1 deletions, showed a poorer relapse-free survival, in comparison with patients with IKZF1-wt, suggesting that IKZF1 status is an independent prognostic factor for pediatric patients with B-ALL.
Collapse
|
16
|
Leinoe E, Kjaersgaard M, Zetterberg E, Ostrowski S, Greinacher A, Rossing M. Highly impaired platelet ultrastructure in two families with novel IKZF5 variants. Platelets 2020; 32:492-497. [PMID: 32419556 DOI: 10.1080/09537104.2020.1764921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Heterozygous variants in the IKZF5 gene, encoding transcription factor Pegasus, were recently discovered to be causal of inherited thrombocytopenia (IT). We screened 90 patients suspected of inherited thrombocytopenia for variants in 101 genes associated with inherited bleeding disorders and report the clinical presentation of two Danish families with novel variants in IKZF5. Platelet ultrastructure and cytoskeleton were evaluated by immunofluorescent microscopy (IF) and found to be highly abnormal, demonstrating severe disturbances of distribution and expression of non-muscular myosin, filamin, β-tubulin and α tubulin. Number of alpha granules were reduced, and platelets elongated when evaluated by TEM. In both families a child carrying a rare IKZF5 variant was affected by developmental delay. The proband of family A presented with recurrent infections and was examined for an immunodeficiency. The concentration of naive B-cells was found moderately reduced by leucocyte subpopulation examination, indicating an impaired cellular immunity. T-cells were marginally low with reduced share and concentration of CD45RApos, CD31pos, CD4pos recent thymic immigrants as signs of reduced thymic output. The novel IKZF5 variants co-segregated with thrombocytopenia in both families and both probands had significant bleeding tendency. Through comprehensive characterizations of the platelet morphology and function linked to the specific phenotypes we add novel insight to IKZF5-associated thrombocytopenia, which may help to identify and classify more cases with IKZF5 associated IT.
Collapse
Affiliation(s)
- Eva Leinoe
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mimi Kjaersgaard
- Department of Pediatrics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Eva Zetterberg
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Sisse Ostrowski
- Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Andreas Greinacher
- Department of Immunology and Transfusion Medicine, Greifswald University Hospital, Greifswald, Germany
| | - Maria Rossing
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
17
|
Vairy S, Tran TH. IKZF1 alterations in acute lymphoblastic leukemia: The good, the bad and the ugly. Blood Rev 2020; 44:100677. [PMID: 32245541 DOI: 10.1016/j.blre.2020.100677] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 12/16/2022]
Abstract
Advances in genomics have deepened our understanding of the biology of acute lymphoblastic leukemia (ALL), defined novel molecular leukemia subtypes, discovered new prognostic biomarkers and paved the way to emerging molecularly targeted therapeutic avenues. Since its discovery, IKZF1 has generated significant interest within the leukemia scientific community.IKZF1 plays a critical role in lymphoid development and its alterations cooperate to mediate leukemogenesis. IKZF1 alterations are present in approximately 15% of childhood ALL, rise in prevalence among adults with ALL and become highly enriched within kinase-driven ALL. A cumulating body of literature has highlighted the adverse prognostic impact of IKZF1 alterations in both Philadelphia chromosome (Ph)-negative and Ph-driven ALL. IKZF1 alterations thus emerge as an important prognostic biomarker in ALL. This article aims to provide a state-of-the-art review focusing on the prognostic clinical relevance of IKZF1 alterations in ALL, as well as current and future therapeutic strategies targeting IKZF1-altered ALL.
Collapse
Affiliation(s)
- Stephanie Vairy
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, CHU Sainte-Justine, Montréal, Québec, Canada
| | - Thai Hoa Tran
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, CHU Sainte-Justine, Montréal, Québec, Canada.
| |
Collapse
|
18
|
Upfront Treatment Influences the Composition of Genetic Alterations in Relapsed Pediatric B-Cell Precursor Acute Lymphoblastic Leukemia. Hemasphere 2020; 4:e318. [PMID: 32072138 PMCID: PMC7000475 DOI: 10.1097/hs9.0000000000000318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/29/2019] [Accepted: 10/24/2019] [Indexed: 12/16/2022] Open
Abstract
Supplemental Digital Content is available in the text Genomic alterations in relapsed B-cell precursor acute lymphoblastic leukemia (BCP-ALL) may provide insight into the role of specific genomic events in relapse development. Along this line, comparisons between the spectrum of alterations in relapses that arise in different upfront treatment protocols may provide valuable information on the association between the tumor genome, protocol components and outcome. Here, we performed a comprehensive characterization of relapsed BCP-ALL cases that developed in the context of 3 completed Dutch upfront studies, ALL8, ALL9, and ALL10. In total, 123 pediatric BCP-ALL relapses and 77 paired samples from primary diagnosis were analyzed for alterations in 22 recurrently affected genes. We found pronounced differences in relapse alterations between the 3 studies. Specifically, CREBBP mutations were observed predominantly in relapses after treatment with ALL8 and ALL10 which, in the latter group, were all detected in medium risk-treated patients. IKZF1 alterations were enriched 2.2-fold (p = 0.01) and 2.9-fold (p < 0.001) in ALL8 and ALL9 relapses compared to diagnosis, respectively, whereas no significant enrichment was found for relapses that were observed after treatment with ALL10. Furthermore, IKZF1 deletions were more frequently preserved from a major clone at diagnosis in relapses after ALL9 compared to relapses after ALL8 and ALL10 (p = 0.03). These data are in line with previous studies showing that the prognostic value of IKZF1 deletions differs between upfront protocols and is particularly strong in the ALL9 regimen. In conclusion, our data reveal a correlation between upfront treatment and the genetic composition of relapsed BCP-ALL.
Collapse
|
19
|
Aberuyi N, Rahgozar S, Ghodousi ES, Ghaedi K. Drug Resistance Biomarkers and Their Clinical Applications in Childhood Acute Lymphoblastic Leukemia. Front Oncol 2020; 9:1496. [PMID: 32010613 PMCID: PMC6978753 DOI: 10.3389/fonc.2019.01496] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
Biomarkers are biological molecules found in body fluids or tissues, which can be considered as indications of a normal or abnormal process, or of a condition or disease. There are various types of biomarkers based on their application and molecular alterations. Treatment-sensitivity or drug resistance biomarkers include prognostic and predictive molecules with utmost importance in selecting appropriate treatment protocols and improving survival rates. Acute lymphoblastic leukemia (ALL) is the most prevalent hematological malignancy diagnosed in children with nearly 80% cure rate. Despite the favorable survival rates of childhood ALL (chALL), resistance to chemotherapeutic agents and, as a consequence, a dismal prognosis develops in a significant number of patients. Therefore, there are urgent needs to have robust, sensitive, and disease-specific molecular prognostic and predictive biomarkers, which could allow better risk classification and then better clinical results. In this article, we review the currently known drug resistance biomarkers, including somatic or germ line nucleic acids, epigenetic alterations, protein expressions and metabolic variations. Moreover, biomarkers with potential clinical applications are discussed.
Collapse
Affiliation(s)
- Narges Aberuyi
- Division of Cellular and Molecular Biology, Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Soheila Rahgozar
- Division of Cellular and Molecular Biology, Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Elaheh Sadat Ghodousi
- Division of Cellular and Molecular Biology, Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Kamran Ghaedi
- Division of Cellular and Molecular Biology, Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| |
Collapse
|
20
|
|
21
|
Brennan L, Narendran A. Cancer Stem Cells in the Development of Novel Therapeutics for Refractory Pediatric Leukemia. Stem Cells Dev 2019; 28:1277-1287. [PMID: 31364487 DOI: 10.1089/scd.2019.0035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although treatment strategies for pediatric leukemia have improved overall survival rates in the recent past, relapse rates in certain subgroups such as infant leukemia remain unacceptably high. Despite undergoing extensive chemotherapy designed to target the rapidly proliferating leukemia cells, many of these children experience relapse. In refractory leukemia, the existence of cell populations with stemness characteristics, termed leukemia stem cells (LSCs), which remain quiescent and subsequently replenish the blast population, has been described. A significant body of evidence exists, derived largely from xenograft models of adult acute myeloid leukemia, to support the idea that LSCs may play a fundamental role in refractory disease. In addition, clinical studies have also linked LSCs with increased minimal residual disease, higher relapse rate, and decreased survival rates in these patients. Recently, a number of reports have addressed effective ways to utilize new-generation genomic sequencing and transcriptomic analyses to identify targeted therapeutic agents aimed at LSCs, while sparing normal hematopoietic stem cells. These data underscore the value of timely translation of knowledge from adult studies to the unique molecular and physiological characteristics seen in pediatric leukemia. We aim to summarize this article in the rapidly expanding field of stem cell biology in hematopoietic malignancies, focusing particularly on relevant preclinical models and novel targeted therapeutics, and their applicability to childhood leukemia.
Collapse
Affiliation(s)
| | - Aru Narendran
- Division of Pediatric Hematology, Oncology and Transplant, POETIC Laboratory for Novel Therapeutics Discovery in Pediatric Oncology, Alberta Children's Hospital, Calgary, Canada
| |
Collapse
|
22
|
Han Q, Ma J, Gu Y, Song H, Kapadia M, Kawasawa YI, Dovat S, Song C, Ge Z. RAG1 high expression associated with IKZF1 dysfunction in adult B-cell acute lymphoblastic leukemia. J Cancer 2019; 10:3842-3850. [PMID: 31333801 PMCID: PMC6636280 DOI: 10.7150/jca.33989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/30/2019] [Indexed: 12/13/2022] Open
Abstract
The recombination mediated by recombination activating gene (RAG) is not only the dominant mutational process but also the predominant driver of oncogenic genomic rearrangement in acute lymphoblastic leukemia (ALL). It is further responsible for leukemic clonal evolution. In this study, significant RAG1 increase is observed in the subsets of B-ALL patients, and high expression of RAG1 is observed to be correlated with high proliferation markers. IKZF1-encoded protein, IKAROS, directly binds to the RAG1 promoter and regulates RAG1 expression in leukemic cells. CK2 inhibitor by increasing IKAROS activity significantly suppresses RAG1 expression in ALL in an IKAROS-dependent manner. Patients with IKZF1 deletion have significantly higher expression of RAG1 compared to that without IKZF1 deletion. CK2 inhibitor treatment also results in an increase in IKZF1 binding to the RAG1 promoter and suppression of RAG1 expression in primary ALL cells. Taken together, these results demonstrate that RAG1 high expression is associated with high proliferation markers in B-ALL. Our data for the first time proved that RAG1 expression is directly suppressed by IKAROS. Our results also reveal drive oncogenesis of B-ALL is driven by high expression of RAG1 with IKAROS dysfunction together, which have significance in an integrated prognostic model for adult ALL.
Collapse
Affiliation(s)
- Qi Han
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Institute of Hematology Southeast University,Nanjing 210009, China.,International Cooperative Leukemia Group and International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Jinlong Ma
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Institute of Hematology Southeast University,Nanjing 210009, China.,International Cooperative Leukemia Group and International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Yan Gu
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Institute of Hematology Southeast University,Nanjing 210009, China.,International Cooperative Leukemia Group and International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Huihui Song
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Institute of Hematology Southeast University,Nanjing 210009, China.,International Cooperative Leukemia Group and International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Malika Kapadia
- Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA17033, USA
| | - Yuka Imamura Kawasawa
- International Cooperative Leukemia Group and International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China.,Genome Sciences and Bioinformatics Core Facility, Institute for Personalized Medicine, Penn State College of Medicine, Hershey, PA17033, USA
| | - Sinisa Dovat
- International Cooperative Leukemia Group and International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China.,Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA17033, USA
| | - Chunhua Song
- International Cooperative Leukemia Group and International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China.,Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA17033, USA
| | - Zheng Ge
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Institute of Hematology Southeast University,Nanjing 210009, China.,International Cooperative Leukemia Group and International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| |
Collapse
|
23
|
Gaudichon J, Jakobczyk H, Debaize L, Cousin E, Galibert MD, Troadec MB, Gandemer V. Mechanisms of extramedullary relapse in acute lymphoblastic leukemia: Reconciling biological concepts and clinical issues. Blood Rev 2019; 36:40-56. [PMID: 31010660 DOI: 10.1016/j.blre.2019.04.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 04/03/2019] [Accepted: 04/15/2019] [Indexed: 12/17/2022]
Abstract
Long-term survival rates in childhood acute lymphoblastic leukemia (ALL) are currently above 85% due to huge improvements in treatment. However, 15-20% of children still experience relapses. Relapses can either occur in the bone marrow or at extramedullary sites, such as gonads or the central nervous system (CNS), formerly referred to as ALL-blast sanctuaries. The reason why ALL cells migrate to and stay in these sites is still unclear. In this review, we have attempted to assemble the evidence concerning the microenvironmental factors that could explain why ALL cells reside in such sites. We present criteria that make extramedullary leukemia niches and solid tumor metastatic niches comparable. Indeed, considering extramedullary leukemias as metastases could be a useful approach for proposing more effective treatments. In this context, we conclude with several examples of potential niche-based therapies which could be successfully added to current treatments of ALL.
Collapse
Affiliation(s)
- Jérémie Gaudichon
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France; Pediatric Hematology and Oncology Department, University Hospital, Caen, France.
| | - Hélène Jakobczyk
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France
| | - Lydie Debaize
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France
| | - Elie Cousin
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France; Pediatric Hematology Department, University Hospital, Rennes, France
| | - Marie-Dominique Galibert
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France.
| | - Marie-Bérengère Troadec
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France
| | - Virginie Gandemer
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France; Pediatric Hematology Department, University Hospital, Rennes, France.
| |
Collapse
|
24
|
Ayón-Pérez MF, Pimentel-Gutiérrez HJ, Durán-Avelar MDJ, Vibanco-Pérez N, Pérez-Peraza VM, Pérez-González ÓA, Barrientos-Ríos R, Santillán-Ávila CF, Zambrano-Zaragoza JF, Agraz-Cibrián JM, Gutiérrez-Franco J, Vázquez-Reyes A. IKZF1 Gene Deletion in Pediatric Patients Diagnosed with Acute Lymphoblastic Leukemia in Mexico. Cytogenet Genome Res 2019; 158:10-16. [DOI: 10.1159/000499641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2019] [Indexed: 11/19/2022] Open
Abstract
The IKZF1 gene is formed by 8 exons and encodes IKAROS, a transcription factor that regulates the expression of genes that control cell cycle progression and cell survival. In general, 15-20% of the patients with preB acute lymphoblastic leukemia (preB ALL) harbor IKZF1 deletions, and the frequency of these deletions increases in BCR-ABL1 or Ph-like subgroups. These deletions have been associated with poor treatment response and the risk of relapse. The aim of this descriptive study was to determine the frequency of IKZF1 deletions and the success of an induction therapy response in Mexican pediatric patients diagnosed with preB ALL in 2 hospitals from 2017 to August 2018. Thirty-six bone marrow samples from patients at the Instituto Nacional de Pediatría in Mexico City and the Centro Estatal de Cancerología in Tepic were analyzed. The IKZF1 deletion was identified by MLPA using the SALSA MLPA P335 ALL-IKZF1 probemix. Deletions of at least 1 IKZF1 exon were observed in 7/34 samples (20.6%): 3 with 1 exon deleted; 1 with 2 exons, 1 with 5 exons, 1 with 6 exons, and 1 patient with a complete IKZF1 deletion. This study was descriptive in nature; we calculated the frequency of the IKZF1 gene deletion in a Mexican pediatric population with preB ALL as 20.6%.
Collapse
|
25
|
Feedforward regulation of Myc coordinates lineage-specific with housekeeping gene expression during B cell progenitor cell differentiation. PLoS Biol 2019; 17:e2006506. [PMID: 30978178 PMCID: PMC6481923 DOI: 10.1371/journal.pbio.2006506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 04/24/2019] [Accepted: 03/16/2019] [Indexed: 12/18/2022] Open
Abstract
The differentiation of self-renewing progenitor cells requires not only the regulation of lineage- and developmental stage–specific genes but also the coordinated adaptation of housekeeping functions from a metabolically active, proliferative state toward quiescence. How metabolic and cell-cycle states are coordinated with the regulation of cell type–specific genes is an important question, because dissociation between differentiation, cell cycle, and metabolic states is a hallmark of cancer. Here, we use a model system to systematically identify key transcriptional regulators of Ikaros-dependent B cell–progenitor differentiation. We find that the coordinated regulation of housekeeping functions and tissue-specific gene expression requires a feedforward circuit whereby Ikaros down-regulates the expression of Myc. Our findings show how coordination between differentiation and housekeeping states can be achieved by interconnected regulators. Similar principles likely coordinate differentiation and housekeeping functions during progenitor cell differentiation in other cell lineages. The human body is made from billions of cells comprizing many specialized cell types. All of these cells ultimately come from a single fertilized oocyte in a process that has two key features: proliferation, which expands cell numbers, and differentiation, which diversifies cell types. Here, we have examined the transition from proliferation to differentiation using B lymphocytes as an example. We find that the transition from proliferation to differentiation involves changes in the expression of genes, which can be categorized into cell-type–specific genes and broadly expressed “housekeeping” genes. The expression of many housekeeping genes is controlled by the gene regulatory factor Myc, whereas the expression of many B lymphocyte–specific genes is controlled by the Ikaros family of gene regulatory proteins. Myc is repressed by Ikaros, which means that changes in housekeeping and tissue-specific gene expression are coordinated during the transition from proliferation to differentiation.
Collapse
|
26
|
Mallory N, Pierro J, Raetz E, Carroll WL. The potential of precision medicine for childhood acute lymphoblastic leukemia: opportunities and challenges. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2018. [DOI: 10.1080/23808993.2018.1547108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Nicole Mallory
- Perlmutter Cancer Center and Division of Pediatric Hematology/Oncology, Department of Pediatrics, NYU Langone Health, New York, NY, USA
| | - Joanna Pierro
- Perlmutter Cancer Center and Division of Pediatric Hematology/Oncology, Department of Pediatrics, NYU Langone Health, New York, NY, USA
| | - Elizabeth Raetz
- Perlmutter Cancer Center and Division of Pediatric Hematology/Oncology, Department of Pediatrics, NYU Langone Health, New York, NY, USA
| | - William L. Carroll
- Perlmutter Cancer Center and Division of Pediatric Hematology/Oncology, Department of Pediatrics, NYU Langone Health, New York, NY, USA
| |
Collapse
|
27
|
Yeoh AEJ, Lu Y, Chin WHN, Chiew EKH, Lim EH, Li Z, Kham SKY, Chan YH, Abdullah WA, Lin HP, Chan LL, Lam JCM, Tan PL, Quah TC, Tan AM, Ariffin H. Intensifying Treatment of Childhood B-Lymphoblastic Leukemia With IKZF1 Deletion Reduces Relapse and Improves Overall Survival: Results of Malaysia-Singapore ALL 2010 Study. J Clin Oncol 2018; 36:2726-2735. [PMID: 30044693 DOI: 10.1200/jco.2018.78.3050] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Purpose Although IKZF1 deletion ( IKZF1del) confers a higher risk of relapse in childhood B-cell acute lymphoblastic leukemia (B-ALL), it is uncertain whether treatment intensification will reverse this risk and improve outcomes. The Malaysia-Singapore ALL 2010 study (MS2010) prospectively upgraded the risk assignment of patients with IKZF1del to the next highest level and added imatinib to the treatment of all patients with BCR- ABL1 fusion. Patients and Methods In total, 823 patients with B-ALL treated in the Malyasia-Singapore ALL 2003 study (MS2003; n = 507) and MS2010 (n = 316) were screened for IKZF1del using the multiplex ligation-dependent probe amplification assay. The impact of IKZF1del on the 5-year cumulative incidence of relapse (CIR) was compared between the two studies. Results Patient characteristics were similar in both cohorts, including IKZF1del frequencies (59 of 410 [14.4%] v 50 of 275 [18.2%]; P = .2). In MS2003, where IKZF1del was not used in risk assignment, IKZF1del conferred a significantly higher 5-year CIR (30.4% v 8.1%; P = 8.7 × 10-7), particularly in the intermediate-risk group who lacked high-risk features (25.0% v 7.5%; P = .01). For patients with BCR-ABL1-negative disease, IKZF1del conferred a higher 5-year CIR (20.5% v 8.0%; P = .01). In MS2010, the 5-year CIR of patients with IKZF1del significantly decreased to 13.5% ( P = .05) and no longer showed a significant difference in patients with BCR-ABL1-negative disease (11.4% v 4.4%; P = .09). The 5-year overall survival for patients with IKZF1del improved from 69.6% in MS2003 to 91.6% in MS2010 ( P = .007). Conclusion Intensifying therapy for childhood B-ALL with IKZF1del significantly reduced the risk of relapse and improved overall survival. Incorporating IKZF1del screening significantly improved treatment outcomes in contemporary ALL therapy.
Collapse
Affiliation(s)
- Allen Eng Juh Yeoh
- Allen Eng Juh Yeoh, Yi Lu, Winnie Hui Ni Chin, Edwynn Kean Hui Chiew, Evelyn Huizi Lim, Zhenhua Li, Shirley Kow Yin Kham, Yiong Huak Chan, Poh Lin Tan, and Thuan Chong Quah, National University of Singapore; Allen Eng Juh Yeoh, Edwynn Kean Hui Chiew, Poh Lin Tan, and Thuan Chong Quah, National University Health System; Joyce Ching Mei Lam and Ah Moy Tan, KK Women's & Children's Hospital, Singapore; Wan Ariffin Abdullah and Hany Ariffin, University of Malaya, Kuala Lumpur; and Hai Peng Lin and Lee Lee Chan, Sime Darby Medical Centre Subang Jaya, Subang Jaya, Malaysia
| | - Yi Lu
- Allen Eng Juh Yeoh, Yi Lu, Winnie Hui Ni Chin, Edwynn Kean Hui Chiew, Evelyn Huizi Lim, Zhenhua Li, Shirley Kow Yin Kham, Yiong Huak Chan, Poh Lin Tan, and Thuan Chong Quah, National University of Singapore; Allen Eng Juh Yeoh, Edwynn Kean Hui Chiew, Poh Lin Tan, and Thuan Chong Quah, National University Health System; Joyce Ching Mei Lam and Ah Moy Tan, KK Women's & Children's Hospital, Singapore; Wan Ariffin Abdullah and Hany Ariffin, University of Malaya, Kuala Lumpur; and Hai Peng Lin and Lee Lee Chan, Sime Darby Medical Centre Subang Jaya, Subang Jaya, Malaysia
| | - Winnie Hui Ni Chin
- Allen Eng Juh Yeoh, Yi Lu, Winnie Hui Ni Chin, Edwynn Kean Hui Chiew, Evelyn Huizi Lim, Zhenhua Li, Shirley Kow Yin Kham, Yiong Huak Chan, Poh Lin Tan, and Thuan Chong Quah, National University of Singapore; Allen Eng Juh Yeoh, Edwynn Kean Hui Chiew, Poh Lin Tan, and Thuan Chong Quah, National University Health System; Joyce Ching Mei Lam and Ah Moy Tan, KK Women's & Children's Hospital, Singapore; Wan Ariffin Abdullah and Hany Ariffin, University of Malaya, Kuala Lumpur; and Hai Peng Lin and Lee Lee Chan, Sime Darby Medical Centre Subang Jaya, Subang Jaya, Malaysia
| | - Edwynn Kean Hui Chiew
- Allen Eng Juh Yeoh, Yi Lu, Winnie Hui Ni Chin, Edwynn Kean Hui Chiew, Evelyn Huizi Lim, Zhenhua Li, Shirley Kow Yin Kham, Yiong Huak Chan, Poh Lin Tan, and Thuan Chong Quah, National University of Singapore; Allen Eng Juh Yeoh, Edwynn Kean Hui Chiew, Poh Lin Tan, and Thuan Chong Quah, National University Health System; Joyce Ching Mei Lam and Ah Moy Tan, KK Women's & Children's Hospital, Singapore; Wan Ariffin Abdullah and Hany Ariffin, University of Malaya, Kuala Lumpur; and Hai Peng Lin and Lee Lee Chan, Sime Darby Medical Centre Subang Jaya, Subang Jaya, Malaysia
| | - Evelyn Huizi Lim
- Allen Eng Juh Yeoh, Yi Lu, Winnie Hui Ni Chin, Edwynn Kean Hui Chiew, Evelyn Huizi Lim, Zhenhua Li, Shirley Kow Yin Kham, Yiong Huak Chan, Poh Lin Tan, and Thuan Chong Quah, National University of Singapore; Allen Eng Juh Yeoh, Edwynn Kean Hui Chiew, Poh Lin Tan, and Thuan Chong Quah, National University Health System; Joyce Ching Mei Lam and Ah Moy Tan, KK Women's & Children's Hospital, Singapore; Wan Ariffin Abdullah and Hany Ariffin, University of Malaya, Kuala Lumpur; and Hai Peng Lin and Lee Lee Chan, Sime Darby Medical Centre Subang Jaya, Subang Jaya, Malaysia
| | - Zhenhua Li
- Allen Eng Juh Yeoh, Yi Lu, Winnie Hui Ni Chin, Edwynn Kean Hui Chiew, Evelyn Huizi Lim, Zhenhua Li, Shirley Kow Yin Kham, Yiong Huak Chan, Poh Lin Tan, and Thuan Chong Quah, National University of Singapore; Allen Eng Juh Yeoh, Edwynn Kean Hui Chiew, Poh Lin Tan, and Thuan Chong Quah, National University Health System; Joyce Ching Mei Lam and Ah Moy Tan, KK Women's & Children's Hospital, Singapore; Wan Ariffin Abdullah and Hany Ariffin, University of Malaya, Kuala Lumpur; and Hai Peng Lin and Lee Lee Chan, Sime Darby Medical Centre Subang Jaya, Subang Jaya, Malaysia
| | - Shirley Kow Yin Kham
- Allen Eng Juh Yeoh, Yi Lu, Winnie Hui Ni Chin, Edwynn Kean Hui Chiew, Evelyn Huizi Lim, Zhenhua Li, Shirley Kow Yin Kham, Yiong Huak Chan, Poh Lin Tan, and Thuan Chong Quah, National University of Singapore; Allen Eng Juh Yeoh, Edwynn Kean Hui Chiew, Poh Lin Tan, and Thuan Chong Quah, National University Health System; Joyce Ching Mei Lam and Ah Moy Tan, KK Women's & Children's Hospital, Singapore; Wan Ariffin Abdullah and Hany Ariffin, University of Malaya, Kuala Lumpur; and Hai Peng Lin and Lee Lee Chan, Sime Darby Medical Centre Subang Jaya, Subang Jaya, Malaysia
| | - Yiong Huak Chan
- Allen Eng Juh Yeoh, Yi Lu, Winnie Hui Ni Chin, Edwynn Kean Hui Chiew, Evelyn Huizi Lim, Zhenhua Li, Shirley Kow Yin Kham, Yiong Huak Chan, Poh Lin Tan, and Thuan Chong Quah, National University of Singapore; Allen Eng Juh Yeoh, Edwynn Kean Hui Chiew, Poh Lin Tan, and Thuan Chong Quah, National University Health System; Joyce Ching Mei Lam and Ah Moy Tan, KK Women's & Children's Hospital, Singapore; Wan Ariffin Abdullah and Hany Ariffin, University of Malaya, Kuala Lumpur; and Hai Peng Lin and Lee Lee Chan, Sime Darby Medical Centre Subang Jaya, Subang Jaya, Malaysia
| | - Wan Ariffin Abdullah
- Allen Eng Juh Yeoh, Yi Lu, Winnie Hui Ni Chin, Edwynn Kean Hui Chiew, Evelyn Huizi Lim, Zhenhua Li, Shirley Kow Yin Kham, Yiong Huak Chan, Poh Lin Tan, and Thuan Chong Quah, National University of Singapore; Allen Eng Juh Yeoh, Edwynn Kean Hui Chiew, Poh Lin Tan, and Thuan Chong Quah, National University Health System; Joyce Ching Mei Lam and Ah Moy Tan, KK Women's & Children's Hospital, Singapore; Wan Ariffin Abdullah and Hany Ariffin, University of Malaya, Kuala Lumpur; and Hai Peng Lin and Lee Lee Chan, Sime Darby Medical Centre Subang Jaya, Subang Jaya, Malaysia
| | - Hai Peng Lin
- Allen Eng Juh Yeoh, Yi Lu, Winnie Hui Ni Chin, Edwynn Kean Hui Chiew, Evelyn Huizi Lim, Zhenhua Li, Shirley Kow Yin Kham, Yiong Huak Chan, Poh Lin Tan, and Thuan Chong Quah, National University of Singapore; Allen Eng Juh Yeoh, Edwynn Kean Hui Chiew, Poh Lin Tan, and Thuan Chong Quah, National University Health System; Joyce Ching Mei Lam and Ah Moy Tan, KK Women's & Children's Hospital, Singapore; Wan Ariffin Abdullah and Hany Ariffin, University of Malaya, Kuala Lumpur; and Hai Peng Lin and Lee Lee Chan, Sime Darby Medical Centre Subang Jaya, Subang Jaya, Malaysia
| | - Lee Lee Chan
- Allen Eng Juh Yeoh, Yi Lu, Winnie Hui Ni Chin, Edwynn Kean Hui Chiew, Evelyn Huizi Lim, Zhenhua Li, Shirley Kow Yin Kham, Yiong Huak Chan, Poh Lin Tan, and Thuan Chong Quah, National University of Singapore; Allen Eng Juh Yeoh, Edwynn Kean Hui Chiew, Poh Lin Tan, and Thuan Chong Quah, National University Health System; Joyce Ching Mei Lam and Ah Moy Tan, KK Women's & Children's Hospital, Singapore; Wan Ariffin Abdullah and Hany Ariffin, University of Malaya, Kuala Lumpur; and Hai Peng Lin and Lee Lee Chan, Sime Darby Medical Centre Subang Jaya, Subang Jaya, Malaysia
| | - Joyce Ching Mei Lam
- Allen Eng Juh Yeoh, Yi Lu, Winnie Hui Ni Chin, Edwynn Kean Hui Chiew, Evelyn Huizi Lim, Zhenhua Li, Shirley Kow Yin Kham, Yiong Huak Chan, Poh Lin Tan, and Thuan Chong Quah, National University of Singapore; Allen Eng Juh Yeoh, Edwynn Kean Hui Chiew, Poh Lin Tan, and Thuan Chong Quah, National University Health System; Joyce Ching Mei Lam and Ah Moy Tan, KK Women's & Children's Hospital, Singapore; Wan Ariffin Abdullah and Hany Ariffin, University of Malaya, Kuala Lumpur; and Hai Peng Lin and Lee Lee Chan, Sime Darby Medical Centre Subang Jaya, Subang Jaya, Malaysia
| | - Poh Lin Tan
- Allen Eng Juh Yeoh, Yi Lu, Winnie Hui Ni Chin, Edwynn Kean Hui Chiew, Evelyn Huizi Lim, Zhenhua Li, Shirley Kow Yin Kham, Yiong Huak Chan, Poh Lin Tan, and Thuan Chong Quah, National University of Singapore; Allen Eng Juh Yeoh, Edwynn Kean Hui Chiew, Poh Lin Tan, and Thuan Chong Quah, National University Health System; Joyce Ching Mei Lam and Ah Moy Tan, KK Women's & Children's Hospital, Singapore; Wan Ariffin Abdullah and Hany Ariffin, University of Malaya, Kuala Lumpur; and Hai Peng Lin and Lee Lee Chan, Sime Darby Medical Centre Subang Jaya, Subang Jaya, Malaysia
| | - Thuan Chong Quah
- Allen Eng Juh Yeoh, Yi Lu, Winnie Hui Ni Chin, Edwynn Kean Hui Chiew, Evelyn Huizi Lim, Zhenhua Li, Shirley Kow Yin Kham, Yiong Huak Chan, Poh Lin Tan, and Thuan Chong Quah, National University of Singapore; Allen Eng Juh Yeoh, Edwynn Kean Hui Chiew, Poh Lin Tan, and Thuan Chong Quah, National University Health System; Joyce Ching Mei Lam and Ah Moy Tan, KK Women's & Children's Hospital, Singapore; Wan Ariffin Abdullah and Hany Ariffin, University of Malaya, Kuala Lumpur; and Hai Peng Lin and Lee Lee Chan, Sime Darby Medical Centre Subang Jaya, Subang Jaya, Malaysia
| | - Ah Moy Tan
- Allen Eng Juh Yeoh, Yi Lu, Winnie Hui Ni Chin, Edwynn Kean Hui Chiew, Evelyn Huizi Lim, Zhenhua Li, Shirley Kow Yin Kham, Yiong Huak Chan, Poh Lin Tan, and Thuan Chong Quah, National University of Singapore; Allen Eng Juh Yeoh, Edwynn Kean Hui Chiew, Poh Lin Tan, and Thuan Chong Quah, National University Health System; Joyce Ching Mei Lam and Ah Moy Tan, KK Women's & Children's Hospital, Singapore; Wan Ariffin Abdullah and Hany Ariffin, University of Malaya, Kuala Lumpur; and Hai Peng Lin and Lee Lee Chan, Sime Darby Medical Centre Subang Jaya, Subang Jaya, Malaysia
| | - Hany Ariffin
- Allen Eng Juh Yeoh, Yi Lu, Winnie Hui Ni Chin, Edwynn Kean Hui Chiew, Evelyn Huizi Lim, Zhenhua Li, Shirley Kow Yin Kham, Yiong Huak Chan, Poh Lin Tan, and Thuan Chong Quah, National University of Singapore; Allen Eng Juh Yeoh, Edwynn Kean Hui Chiew, Poh Lin Tan, and Thuan Chong Quah, National University Health System; Joyce Ching Mei Lam and Ah Moy Tan, KK Women's & Children's Hospital, Singapore; Wan Ariffin Abdullah and Hany Ariffin, University of Malaya, Kuala Lumpur; and Hai Peng Lin and Lee Lee Chan, Sime Darby Medical Centre Subang Jaya, Subang Jaya, Malaysia
| |
Collapse
|
28
|
Khan M, Siddiqi R, Tran TH. Philadelphia chromosome-like acute lymphoblastic leukemia: A review of the genetic basis, clinical features, and therapeutic options. Semin Hematol 2018; 55:235-241. [PMID: 30502852 DOI: 10.1053/j.seminhematol.2018.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 04/12/2018] [Accepted: 05/06/2018] [Indexed: 12/21/2022]
Abstract
Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) is a recently identified high-risk subtype of B-lineage ALL (B-ALL), characterized by a gene expression profile similar to that of Philadelphia-positive (Ph+) ALL, but without the hallmark BCR-ABL1 oncoprotein. Ph-like ALL represents approximately 15% of childhood ALL and its frequency rises with age, peaking among adolescents, and young adults with B-ALL. This subtype is associated with adverse clinical features, persistence of minimal residual disease, and a poor prognosis despite modern chemotherapy regimens. While Ph-like ALL lacks the BCR-ABL1 fusion, it is characterized by a diverse spectrum of kinase fusions and cytokine receptor gene rearrangements that may be similarly amenable to molecularly targeted therapies. While survival rates for childhood ALL have drastically improved with intensive conventional chemotherapy, Ph-like ALL represents a novel paradigm of precision medicine in ALL. This review aims to provide a comprehensive review of the clinical picture and genetic basis of Ph-like ALL and to illustrate how these findings can translate into tailored targeted therapies with the hopes of improving the outcomes of Ph-like ALL patients.
Collapse
Affiliation(s)
- Maliha Khan
- Division of Hematology, Leukemia Program, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Rabbia Siddiqi
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Thai Hoa Tran
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada.
| |
Collapse
|
29
|
Abstract
IKZF1 plays an essential role in lymphopoiesis, and somatic IKZF1 variants in acute lymphoblastic leukemia (ALL) are associated with poor prognosis. In this issue of Cancer Cell, Churchman et al. add to the list of leukemia predisposition genes with the identification and characterization of germline IKZF1 variants in childhood ALL.
Collapse
Affiliation(s)
- Junne Kamihara
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Akiko Shimamura
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
30
|
Ge Z, Gu Y, Han Q, Sloane J, Ge Q, Gao G, Ma J, Song H, Hu J, Chen B, Dovat S, Song C. Plant homeodomain finger protein 2 as a novel IKAROS target in acute lymphoblastic leukemia. Epigenomics 2017; 10:59-69. [PMID: 28994305 DOI: 10.2217/epi-2017-0092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIM Clinical significance of plant homeodomain finger 2 (PHF2) expressions is explored in acute lymphoblastic leukemia (ALL) patients. METHODS mRNA level was examined by qPCR. The retroviral gene expression, shRNA knockdown and chromatin-immunoprecipitation are used to observe IKAROS regulation on PHF2 transcription. RESULTS PHF2 expression is significantly reduced in subsets of ALL patients, and PHF2 low expression correlates with leukemia cell proliferation and an elevation of several poor prognostic markers in B-cell ALL. IKAROS directly promotes PHF2 expression and patients with IKAROS deletion have significantly lower PHF2 expression. Casein kinase II (CK2) inhibitor significantly promotes PHF2 expression in an IKAROS-dependent manner, and casein kinase II inhibitor treatment also results in an increase of PHF2 expression and enrichment of IKAROS and H3K4me3 at PHF2 promoter in primary cells. CONCLUSION Our results demonstrate that the IKAROS promotes PHF2 expression, and suggest that PHF2 low expression works with the IKAROS gene deletion to drive oncogenesis of ALL.
Collapse
Affiliation(s)
- Zheng Ge
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Southeast University Institute of Hematology, Nanjing 210009, China.,International Cooperative Leukemia Group & International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Yan Gu
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Southeast University Institute of Hematology, Nanjing 210009, China
| | - Qi Han
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Justin Sloane
- Department of Obstetrics & Gynecology, Abington Jefferson-Health, Abington, PA 19001, USA.,Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA 17033, USA
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Goufeng Gao
- Department of Pathology & Laboratory Medicine, University of California-Davis Medical Center, Sacramento, CA 95817, USA
| | - Jinlong Ma
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Southeast University Institute of Hematology, Nanjing 210009, China.,International Cooperative Leukemia Group & International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Huihui Song
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Southeast University Institute of Hematology, Nanjing 210009, China
| | - Jiaojiao Hu
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Southeast University Institute of Hematology, Nanjing 210009, China.,International Cooperative Leukemia Group & International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Baoan Chen
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Southeast University Institute of Hematology, Nanjing 210009, China.,International Cooperative Leukemia Group & International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Sinisa Dovat
- International Cooperative Leukemia Group & International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China.,Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA 17033, USA
| | - Chunhua Song
- International Cooperative Leukemia Group & International Cooperative Laboratory of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China.,Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA 17033, USA
| |
Collapse
|
31
|
Deregulation of kinase signaling and lymphoid development in EBF1-PDGFRB ALL leukemogenesis. Leukemia 2017; 32:38-48. [PMID: 28555080 PMCID: PMC5709252 DOI: 10.1038/leu.2017.166] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/10/2017] [Accepted: 05/17/2017] [Indexed: 01/06/2023]
Abstract
The chimeric fusion oncogene early B-cell factor 1-platelet-derived growth factor receptor-β (EBF1-PDGFRB) is a recurrent lesion observed in Philadelphia-like B-acute lymphoblastic leukemia (B-ALL) and is associated with particularly poor prognosis. While it is understood that this fusion activates tyrosine kinase signaling, the mechanisms of transformation and importance of perturbation of EBF1 activity remain unknown. EBF1 is a nuclear transcription factor required for normal B-lineage specification, commitment and development. Conversely, PDGFRB is a receptor tyrosine kinase that is normally repressed in lymphocytes, yet PDGFRB remains a common fusion partner in leukemias. Here, we demonstrate that the EBF1-PDGFRB fusion results in loss of EBF1 function, multimerization and autophosphorylation of the fusion protein, activation of signal transducer and activator of transcription 5 (STAT5) signaling and gain of interleukin-7 (IL-7)-independent cell proliferation. Deregulation and loss of EBF1 function is critically dependent on the nuclear export activity of the transmembrane (TM) domain of PDGFRB. Deletion of the TM domain partially rescues EBF1 function and restores IL-7 dependence, without requiring kinase inhibition. Moreover, we demonstrate that EBF1-PDGFRB synergizes with loss of IKAROS function in a fully penetrant B-ALL in vivo. Thus, we establish that EBF1-PDGFRB is sufficient to drive leukemogenesis through TM-dependent loss of transcription factor function, increased proliferation and synergy with additional genetic insults including loss of IKAROS function.
Collapse
|