1
|
Kandasamy K, Johana NB, Tan LG, Tan Y, Yeo JSL, Yusof NNB, Li Z, Koh J, Ginhoux F, Chan JKY, Choolani M, Mattar CNZ. Maternal dendritic cells influence fetal allograft response following murine in-utero hematopoietic stem cell transplantation. Stem Cell Res Ther 2023; 14:136. [PMID: 37226255 DOI: 10.1186/s13287-023-03366-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/05/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Intrauterine hematopoietic stem cell transplantation (IUT), potentially curative in congenital haematological disease, is often inhibited by deleterious immune responses to donor cells resulting in subtherapeutic donor cell chimerism (DCC). Microchimerism of maternal immune cells (MMc) trafficked into transplanted recipients across the placenta may directly influence donor-specific alloresponsiveness, limiting DCC. We hypothesized that dendritic cells (DC) among trafficked MMc influence the development of tolerogenic or immunogenic responses towards donor cells, and investigated if maternal DC-depletion reduced recipient alloresponsiveness and enhanced DCC. METHODS Using transgenic CD11c.DTR (C57BL/6) female mice enabled transient maternal DC-depletion with a single dose of diphtheria toxin (DT). CD11c.DTR females and BALB/c males were cross-mated, producing hybrid pups. IUT was performed at E14 following maternal DT administration 24 h prior. Bone marrow-derived mononuclear cells were transplanted, obtained from semi-allogenic BALB/c (paternal-derived; pIUT), C57BL/6 (maternal-derived; mIUT), or fully allogenic (aIUT) C3H donor mice. Recipient F1 pups were analyzed for DCC, while maternal and IUT-recipient immune cell profile and reactivity were examined via mixed lymphocyte reactivity functional assays. T- and B-cell receptor repertoire diversity in maternal and recipient cells were examined following donor cell exposure. RESULTS DCC was highest and MMc was lowest following pIUT. In contrast, aIUT recipients had the lowest DCC and the highest MMc. In groups that were not DC-depleted, maternal cells trafficked post-IUT displayed reduced TCR & BCR clonotype diversity, while clonotype diversity was restored when dams were DC-depleted. Additionally, recipients displayed increased expression of regulatory T-cells and immune-inhibitory proteins, with reduced proinflammatory cytokine and donor-specific antibody production. DC-depletion did not impact initial donor chimerism. Postnatal transplantation without immunosuppression of paternal donor cells did not increase DCC in pIUT recipients; however there were no donor-specific antibody production or immune cell changes. CONCLUSIONS Though maternal DC depletion did not improve DCC, we show for the first time that MMc influences donor-specific alloresponsiveness, possibly by expanding alloreactive clonotypes, and depleting maternal DC promotes and maintains acquired tolerance to donor cells independent of DCC, presenting a novel approach to enhancing donor cell tolerance following IUT. This may have value when planning repeat HSC transplantations to treat haemoglobinopathies.
Collapse
Affiliation(s)
- Karthikeyan Kandasamy
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | | | - Lay Geok Tan
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore
- Department of Obstetrics and Gynaecology, National University Health System, National University Hospital, Singapore, Singapore
| | - Yvonne Tan
- Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Julie Su Li Yeo
- Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Nur Nazneen Binte Yusof
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Zhihui Li
- Genome Research Informatics and Data Science Platform, Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Jiayu Koh
- Genome Research Informatics and Data Science Platform, Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, The Academia, Singapore, Singapore
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jerry K Y Chan
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore
- Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Mahesh Choolani
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore
- Department of Obstetrics and Gynaecology, National University Health System, National University Hospital, Singapore, Singapore
| | - Citra N Z Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore.
- Department of Obstetrics and Gynaecology, National University Health System, National University Hospital, Singapore, Singapore.
| |
Collapse
|
2
|
Mattar CNZ, Chan JKY, Choolani M. Gene modification therapies for hereditary diseases in the fetus. Prenat Diagn 2023; 43:674-686. [PMID: 36965009 PMCID: PMC10946994 DOI: 10.1002/pd.6347] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/27/2023]
Abstract
Proof-of-principle disease models have demonstrated the feasibility of an intrauterine gene modification therapy (in utero gene therapy (IUGT)) approach to hereditary diseases as diverse as coagulation disorders, haemoglobinopathies, neurogenetic disorders, congenital metabolic, and pulmonary diseases. Gene addition, which requires the delivery of an integrating or episomal transgene to the target cell nucleus to be transcribed, and gene editing, where the mutation is corrected within the gene of origin, have both been used successfully to increase normal protein production in a bid to reverse or arrest pathology in utero. While most experimental models have employed lentiviral, adenoviral, and adeno-associated viral vectors engineered to efficiently enter target cells, newer models have also demonstrated the applicability of non-viral lipid nanoparticles. Amelioration of pathology is dependent primarily on achieving sustained therapeutic transgene expression, silencing of transgene expression, production of neutralising antibodies, the dilutional effect of the recipient's growth on the mass of transduced cells, and the degree of pre-existing cellular damage. Safety assessment of any IUGT strategy will require long-term postnatal surveillance of both the fetal recipient and the maternal bystander for cell and genome toxicity, oncogenic potential, immune-responsiveness, and germline mutation. In this review, we discuss advances in the field and the push toward clinical translation of IUGT.
Collapse
Affiliation(s)
- Citra N. Z. Mattar
- Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- National University Health SystemsSingaporeSingapore
| | - Jerry K. Y. Chan
- KK Women's and Children's HospitalSingaporeSingapore
- Duke‐NUS Medical SchoolSingaporeSingapore
| | - Mahesh Choolani
- Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- National University Health SystemsSingaporeSingapore
| |
Collapse
|
3
|
Lederer CW, Koniali L, Buerki-Thurnherr T, Papasavva PL, La Grutta S, Licari A, Staud F, Bonifazi D, Kleanthous M. Catching Them Early: Framework Parameters and Progress for Prenatal and Childhood Application of Advanced Therapies. Pharmaceutics 2022; 14:pharmaceutics14040793. [PMID: 35456627 PMCID: PMC9031205 DOI: 10.3390/pharmaceutics14040793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 01/19/2023] Open
Abstract
Advanced therapy medicinal products (ATMPs) are medicines for human use based on genes, cells or tissue engineering. After clear successes in adults, the nascent technology now sees increasing pediatric application. For many still untreatable disorders with pre- or perinatal onset, timely intervention is simply indispensable; thus, prenatal and pediatric applications of ATMPs hold great promise for curative treatments. Moreover, for most inherited disorders, early ATMP application may substantially improve efficiency, economy and accessibility compared with application in adults. Vindicating this notion, initial data for cell-based ATMPs show better cell yields, success rates and corrections of disease parameters for younger patients, in addition to reduced overall cell and vector requirements, illustrating that early application may resolve key obstacles to the widespread application of ATMPs for inherited disorders. Here, we provide a selective review of the latest ATMP developments for prenatal, perinatal and pediatric use, with special emphasis on its comparison with ATMPs for adults. Taken together, we provide a perspective on the enormous potential and key framework parameters of clinical prenatal and pediatric ATMP application.
Collapse
Affiliation(s)
- Carsten W. Lederer
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
- Correspondence: ; Tel.: +357-22-392764
| | - Lola Koniali
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
| | - Tina Buerki-Thurnherr
- Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland;
| | - Panayiota L. Papasavva
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
| | - Stefania La Grutta
- Institute of Translational Pharmacology, IFT National Research Council, 90146 Palermo, Italy;
| | - Amelia Licari
- Pediatric Clinic, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy;
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, 50005 Hradec Králové, Czech Republic;
| | - Donato Bonifazi
- Consorzio per Valutazioni Biologiche e Farmacologiche (CVBF) and European Paediatric Translational Research Infrastructure (EPTRI), 70122 Bari, Italy;
| | - Marina Kleanthous
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
| |
Collapse
|
4
|
Mattar CNZ, Labude MK, Lee TN, Lai PS. Ethical considerations of preconception and prenatal gene modification in the embryo and fetus. Hum Reprod 2021; 36:3018-3027. [PMID: 34665851 DOI: 10.1093/humrep/deab222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
The National Academies of Sciences and Medicine 2020 consensus statement advocates the reinstatement of research in preconception heritable human genome editing (HHGE), despite the ethical concerns that have been voiced about interventions in the germline, and outlines criteria for its eventual clinical application to address monogenic disorders. However, the statement does not give adequate consideration to alternative technologies. Importantly, it omits comparison to fetal gene therapy (FGT), which involves gene modification applied prenatally to the developing fetus and which is better researched and less ethically contentious. While both technologies are applicable to the same monogenic diseases causing significant prenatal or early childhood morbidity, the benefits and risks of HHGE are distinct from FGT though there are important overlaps. FGT has the current advantage of a wealth of robust preclinical data, while HHGE is nascent technology and its feasibility for specific diseases still requires scientific proof. The ethical concerns surrounding each are unique and deserving of further discussion, as there are compelling arguments supporting research and eventual clinical translation of both technologies. In this Opinion, we consider HHGE and FGT through technical and ethical lenses, applying common ethical principles to provide a sense of their feasibility and acceptability. Currently, FGT is in a more advanced position for clinical translation and may be less ethically contentious than HHGE, so it deserves to be considered as an alternative therapy in further discussions on HHGE implementation.
Collapse
Affiliation(s)
- Citra Nurfarah Zaini Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Obstetrics and Gynaecology, National University Health System, Singapore, Singapore
| | - Markus Klaus Labude
- Science, Health and Policy-Relevant Ethics in Singapore (SHAPES) Initiative, Centre for Biomedical Ethics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Timothy Nicholas Lee
- Science, Health and Policy-Relevant Ethics in Singapore (SHAPES) Initiative, Centre for Biomedical Ethics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
5
|
Kandasamy K, Tan LG, B Johana N, Tan YW, Foo W, Yeo JSL, Ravikumar V, Ginhoux F, Choolani M, Chan JKY, Mattar CNZ. Maternal microchimerism and cell-mediated immune-modulation enhance engraftment following semi-allogenic intrauterine transplantation. FASEB J 2021; 35:e21413. [PMID: 33570785 DOI: 10.1096/fj.202002185rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/04/2021] [Accepted: 01/20/2021] [Indexed: 11/11/2022]
Abstract
Successful intrauterine hematopoietic cell transplantation (IUT) for congenital hemoglobinopathies is hampered by maternal alloresponsiveness. We investigate these interactions in semi-allogenic murine IUT. E14 fetuses (B6 females × BALB/c males) were each treated with 5E+6 maternal (B6) or paternal (BALB/c) bone marrow cells and serially monitored for chimerism (>1% engraftment), trafficked maternal immune cells, and immune responsiveness to donor cells. A total of 41.0% of maternal IUT recipients (mIUT) were chimeras (mean donor chimerism 3.0 ± 1.3%) versus 75.0% of paternal IUT recipients (pIUT, 3.6 ± 1.1%). Chimeras showed higher maternal microchimerism of CD4, CD8, and CD19 than non-chimeras. These maternal cells showed minimal responsiveness to B6 or BALB/c stimulation. To interrogate tolerance, mIUT were injected postnatally with 5E+6 B6 cells/pup; pIUT received BALB/c cells. IUT-treated pups showed no changes in trafficked maternal or fetal immune cell levels compared to controls. Donor-specific IgM and IgG were expressed by 1%-3% of recipients. mIUT splenocytes showed greater proliferation of regulatory T cells (Treg) upon BALB/c stimulation, while B6 stimulation upregulated the pro-inflammatory cytokines more than BALB/c. pIUT splenocytes produced identical Treg and cytokine responses to BALB/c and B6 cells, with higher Treg activity and lower pro-inflammatory cytokine expression upon exposure to BALB/c. In contrast, naïve fetal splenocytes demonstrated greater alloresponsiveness to BALB/c compared to B6 cells. Thus pIUT, associated with increased maternal cell trafficking, modulates fetal Treg, and cytokine responsiveness to donor cells more efficiently than mIUT, resulting in improved engraftment. Paternal donor cells may be considered alternatively to maternal donor cells for intrauterine and postnatal transplantation to induce tolerance and maintain engraftment.
Collapse
Affiliation(s)
- Karthikeyan Kandasamy
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lay Geok Tan
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Obstetrics and Gynaecology, National University Hospital, National University Health System, Singapore, Singapore
| | - Nuryanti B Johana
- Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Yi Wan Tan
- Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Wanling Foo
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Julie S L Yeo
- Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Vikashini Ravikumar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Mahesh Choolani
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Obstetrics and Gynaecology, National University Hospital, National University Health System, Singapore, Singapore
| | - Jerry K Y Chan
- Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Citra N Z Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Obstetrics and Gynaecology, National University Hospital, National University Health System, Singapore, Singapore
| |
Collapse
|
6
|
Lazow SP, Kycia I, Labuz DF, Zurakowski D, Fauza DO. Fetal hematogenous routing of a donor hematopoietic stem cell line in a healthy syngeneic model of transamniotic stem cell therapy. J Pediatr Surg 2021; 56:1233-1236. [PMID: 33771370 DOI: 10.1016/j.jpedsurg.2021.02.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/05/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND/PURPOSE In utero administration of hematopoietic stem cells (HSCs) has a variety of actual or potential clinical applications but is hindered by invasive, morbid administration techniques. We sought to determine whether donor HSCs could reach the fetal circulation after simple intra-amniotic delivery in a syngeneic rat model of transamniotic stem cell therapy (TRASCET). METHODS Pregnant Lewis rat dams underwent volume-matched intra-amniotic injections in all fetuses (n = 90) on gestational day 17 (E17; term=E21-22) of a suspension of commercially available syngeneic Lewis rat HSCs labeled with luciferase (n = 37 fetuses) or an acellular suspension of recombinant luciferase (n = 53). HSC phenotype was confirmed by flow cytometry. Fetuses were euthanized at term for screening of luciferase activity at select anatomical sites. Statistical comparisons were by Fisher's exact test. RESULTS Among survivors (47/90; 52.2%), donor HSCs were identified selectively in the placenta (p = 0.003), umbilical cord (p < 0.001), bone marrow (p < 0.001), thymus (p = 0.009), bowel (p = 0.003), kidney (p = 0.022), and skin (p < 0.001) when compared with acellular luciferase controls. CONCLUSIONS Donor hematopoietic stem cells undergo hematogenous routing and can reach the fetal bone marrow after simple intra-amniotic delivery in a syngeneic rat model. Transamniotic stem cell therapy may become a practicable, minimally invasive strategy for the prenatal administration of these cells.
Collapse
Affiliation(s)
- Stefanie P Lazow
- Department of Surgery, Boston Children's Hospital/ Harvard Medical School, Boston, MA 02115, USA
| | - Ina Kycia
- Department of Surgery, Boston Children's Hospital/ Harvard Medical School, Boston, MA 02115, USA
| | - Daniel F Labuz
- Department of Surgery, Boston Children's Hospital/ Harvard Medical School, Boston, MA 02115, USA
| | - David Zurakowski
- Department of Surgery, Boston Children's Hospital/ Harvard Medical School, Boston, MA 02115, USA
| | - Dario O Fauza
- Department of Surgery, Boston Children's Hospital/ Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Tai-MacArthur S, Lombardi G, Shangaris P. The Theoretical Basis of In Utero Hematopoietic Stem Cell Transplantation and Its Use in the Treatment of Blood Disorders. Stem Cells Dev 2021; 30:49-58. [PMID: 33280478 DOI: 10.1089/scd.2020.0181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Since its conception, prenatal therapy has been successful in correction of mainly anatomical defects, although the range of application has been limited. Research into minimally invasive fetal surgery techniques and prenatal molecular diagnostics has facilitated the development of in utero stem cell transplantation (IUT)-a method of delivering healthy stem cells to the early gestation fetus with the hope of engraftment, proliferation, and migration to the appropriate hematopoietic compartment. An area of application that shows promise is the treatment of hematopoietic disorders like hemoglobinopathies. The therapeutic rationale of IUT with hematopoietic stem cells (HSCs) is based on the proposed advantages the fetal environment offers based on its unique physiology. These advantages include the immature immune system facilitating the development of donor-specific tolerance, the natural migration of endogenous hematopoietic cells providing space for homing and engraftment of donor cells, and the fetal environment providing HSCs with the same opportunity to survive and proliferate regardless of their origin (donor or host). Maternal immune tolerance to the fetus and placenta also implies that the maternal environment could be accepting of donor cells. In theory, the fetus is a perfect recipient for stem cell transplant. Clinically, however, IUT is yet to see widespread success calling into question these assumptions of fetal physiology. This review aims to discuss and evaluate research surrounding these key assumptions and the clinical success of IUT in the treatment of thalassemia.
Collapse
Affiliation(s)
- Sarah Tai-MacArthur
- School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, United Kingdom
| | - Giovanna Lombardi
- Immunoregulation Laboratory, School of Immunology, Microbial Sciences, and Faculty of Life Sciences and Medicine, King's College London, United Kingdom
| | - Panicos Shangaris
- Immunoregulation Laboratory, School of Immunology, Microbial Sciences, and Faculty of Life Sciences and Medicine, King's College London, United Kingdom.,School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, United Kingdom
| |
Collapse
|
8
|
Cyclosporine H Improves the Multi-Vector Lentiviral Transduction of Murine Haematopoietic Progenitors and Stem Cells. Sci Rep 2020; 10:1812. [PMID: 32020016 PMCID: PMC7000727 DOI: 10.1038/s41598-020-58724-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/13/2020] [Indexed: 01/14/2023] Open
Abstract
Haematopoietic stem cells (HSCs) have the potential for lifetime production of blood and immune cells. The introduction of transgenes into HSCs is important for basic research, as well as for multiple clinical applications, because HSC transplantation is an already established procedure. Recently, a major advancement has been reported in the use of cyclosporine H (CsH), which can significantly enhance the lentivirus (LV) transduction of human haematopoietic stem and progenitor cells (HSPCs). In this study, we employed CsH for LV transduction of murine HSCs and defined haematopoietic progenitors, confirming previous findings in more specific subsets of primitive haematopoietic cells. Our data confirm increased efficiencies, in agreement with the published data. We further experimented with the transduction with the simultaneous use of several vectors. The use of CsH yielded an even more robust increase in rates of multi-vector infection than the increase for a single-vector. CsH was reported to reduce the innate resistance mechanism against LV infection. We indeed found that additional pretreatment could increase the efficiency of transduction, in agreement with the originally reported results. Our data also suggest that CsH does not reduce the efficiency of transplantation into immune-competent hosts or the differentiation of HSCs while enhancing stable long-term expression in vivo. This new additive will surely help many studies in animal models and might be very useful for the development of novel HSC gene therapy approaches.
Collapse
|
9
|
Mattar CNZ, Tan YW, Johana N, Biswas A, Tan LG, Choolani M, Bakkour S, Johnson M, Chan JKY, Flake AW. Fetoscopic versus Ultrasound-Guided Intravascular Delivery of Maternal Bone Marrow Cells in Fetal Macaques: A Technical Model for Intrauterine Haemopoietic Cell Transplantation. Fetal Diagn Ther 2019; 46:175-186. [PMID: 30661073 DOI: 10.1159/000493791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/14/2018] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Significant limitations with existing treatments for major haemoglobinopathies motivate the development of effective intrauterine therapy. We assessed the feasibility of fetoscopic and ultrasound-guided intrauterine haemopoietic cell transplantation (IUHCT) in macaque fetuses in early gestation when haemopoietic and immunological ontogeny is anticipated to enable long-term donor cell engraftment. MATERIAL AND METHODS Fluorescent-labelled bone marrow-derived mononuclear cells from 10 pregnant Macaca fascicularis were injected into their fetuses at E71-114 (18.9-170.0E+6 cells/fetus) by fetoscopic intravenous (n = 7) or ultrasound (US)-guided intracardiac injections, with sacrifice at 24 h to examine donor-cell distribution. RESULTS Operating times ranged from 35 to 118 min. Chorionic membrane tenting and intrachorionic haemorrhage were observed only with fetoscopy (n = 2). Labelled cells were stereoscopically visualised in lung, spleen, liver, and placenta. Donor-cell chimerism was highest in liver, spleen, and heart by flow cytometry, placenta by unique polymorphism qPCR, and was undetected in blood. Chimerism was 2-3 log-fold lower in individual organs by qPCR than by flow cytometry. DISCUSSION Both fetoscopic and US-guided IUHCT were technically feasible, but fetoscopy caused more intraoperative complications in our pilot series. The discrepancy in chimerism detection predicts the challenges in long-term surveillance of donor-cell chimerism. Further studies of long-term outcomes in the non-human primate are valuable for the development of clinical protocols for IUHCT.
Collapse
Affiliation(s)
- Citra N Z Mattar
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yi-Wan Tan
- Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Nuryanti Johana
- Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Arijit Biswas
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lay-Geok Tan
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mahesh Choolani
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sonia Bakkour
- Blood Systems Research Institute, San Francisco, California, USA
| | - Mark Johnson
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jerry K Y Chan
- Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore, .,Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore, Singapore,
| | - Alan W Flake
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|