1
|
Baykal S, Voldoire M, Desterke C, Sorel N, Cayssials E, Johnson-Ansah H, Guerci-Bresler A, Bennaceur-Griscelli A, Chomel JC, Turhan AG. ENOX2 NADH Oxidase: A BCR-ABL1-Dependent Cell Surface and Secreted Redox Protein in Chronic Myeloid Leukemia. Turk J Haematol 2023; 40:101-117. [PMID: 37026766 PMCID: PMC10240159 DOI: 10.4274/tjh.galenos.2023.2022-0339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 04/06/2023] [Indexed: 04/08/2023] Open
Abstract
Objective Chronic myeloid leukemia (CML) is a disease caused by the acquisition of BCR-ABL1 fusion in hematopoietic stem cells. In this study, we focus on the oncofetal ENOX2 protein as a potential secretable biomarker in CML. Materials and Methods We used cell culture, western blot, quantitative RT-PCR, ELISA, transcriptome analyses, and bioinformatics techniques to investigate ENOX2 mRNA and protein expression. Results Western blot analyses of UT-7 and TET-inducible Ba/F3 cell lines demonstrated the upregulation of the ENOX2 protein. BCR-ABL1 was found to induce ENOX2 overexpression in a kinase-dependent manner. We confirmed increased ENOX2 mRNA expression in a cohort of CML patients at diagnosis. In a series of CML patients, ELISA assays showed a highly significant increase of ENOX2 protein levels in the plasma of patients with CML compared to controls. Reanalyzing the transcriptomic dataset confirmed ENOX2 mRNA overexpression in the chronic phase of the disease. Bioinformatic analyses identified several genes whose mRNA expressions were positively correlated with ENOX2 in the context of BCR-ABL1. Some of them encode proteins involved in cellular functions compatible with the growth deregulation observed in CML. Conclusion Our results highlight the upregulation of a secreted redox protein in a BCR-ABL1-dependent manner in CML. The data presented here suggest that ENOX2, through its transcriptional mechanism, plays a significant role in BCR-ABL1 leukemogenesis.
Collapse
Affiliation(s)
- Seda Baykal
- İzmir Biomedicine and Genome Center, İzmir, Türkiye
- Dokuz Eylül University Faculty of Medicine, Department of Medical Biology, İzmir, Türkiye
| | - Maud Voldoire
- CHD La Roche-sur-Yon-Service de Médecine Onco-Hématologie, La Roche-sur-Yon, Pays de la Loire, France
| | - Christophe Desterke
- Université Paris-Saclay BU Kremlin-Bicêtre-Faculté de Médecine, Le Kremlin-Bicetre, Île-de-France
| | - Nathalie Sorel
- CHU Poitiers-Service de Cancérologie Biologique, Poitiers, France
| | - Emilie Cayssials
- CHU Poitiers-Service d’Oncologie Hématologique et Thérapie Cellulaire, Poitiers, France
| | | | | | | | | | - Ali G. Turhan
- Paris-Saclay University-Service d'hematologie, Hopital Bicetre, Paris, Villejuif, France
| |
Collapse
|
2
|
Murai Y, Jo U, Murai J, Fukuda S, Takebe N, Pommier Y. Schlafen 11 expression in human acute leukemia cells with gain-of-function mutations in the interferon-JAK signaling pathway. iScience 2021; 24:103173. [PMID: 34693224 PMCID: PMC8517841 DOI: 10.1016/j.isci.2021.103173] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/16/2021] [Accepted: 09/22/2021] [Indexed: 12/28/2022] Open
Abstract
Schlafen11 (SLFN11) is referred to as interferon (IFN)-inducible. Based on cancer genomic databases, we identified human acute myeloid and lymphoblastic leukemia cells with gain-of-function mutations in the Janus kinase (JAK) family as exhibiting high SLFN11 expression. In these cells, the clinical JAK inhibitors cerdulatinib, ruxolitinib, and tofacitinib reduced SLFN11 expression, but IFN did not further induce SLFN11 despite phosphorylated STAT1. We provide evidence that suppression of SLFN11 by JAK inhibitors is caused by inactivation of the non-canonical IFN pathway controlled by AKT and ERK. Accordingly, the AKT and ERK inhibitors MK-2206 and SCH77284 suppressed SLFN11 expression. Both also suppressed the E26 transformation-specific (ETS)-family genes ETS-1 and FLI-1 that act as transcription factors for SLFN11. Moreover, SLFN11 expression was inhibited by the ETS inhibitor TK216. Our study reveals that SLFN11 expression is regulated via the JAK, AKT and ERK, and ETS axis. Pharmacological suppression of SLFN11 warrants future studies.
Collapse
Affiliation(s)
- Yasuhisa Murai
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ukhyun Jo
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Junko Murai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Shinsaku Fukuda
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Naoko Takebe
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
- Developmental Therapeutics Branch and Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
3
|
Lu T, Cao J, Zou F, Li X, Wang A, Wang W, Liang H, Liu Q, Hu C, Chen C, Hu Z, Wang W, Li L, Ge J, Shen Y, Ren T, Liu J, Xia R, Liu Q. Discovery of a highly potent kinase inhibitor capable of overcoming multiple imatinib-resistant ABL mutants for chronic myeloid leukemia (CML). Eur J Pharmacol 2021; 897:173944. [PMID: 33581133 DOI: 10.1016/j.ejphar.2021.173944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 11/29/2022]
Abstract
As the critical driving force for chronic myeloid leukemia (CML), BCR gene fused ABL kinase has been extensively explored as a validated target of drug discovery. Although imatinib has achieved tremendous success as the first-line treatment for CML, the long-term application ultimately leads to resistance, primarily via various acquired mutations occurring in the BCR-ABL kinase. Although dasatinib and nilotinib have been approved as second-line therapies that could overcome some of these mutants, the most prevalent gatekeeper T315I mutant remains unconquered. Here, we report a novel type II kinase inhibitor, CHMFL-48, that potently inhibits the wild-type BCR-ABL (wt) kinase as well as a panel of imatinib-resistant mutants, including T315I, F317L, E255K, Y253F, and M351T. CHMFL-48 displayed great inhibitory activity against ABL wt (IC50: 1 nM, 70-fold better than imatinib) and the ABL T315I mutant (IC50: 0.8 nM, over 10,000-fold better than imatinib) in a biochemical assay and potently blocked the autophosphorylation of BCR-ABL wt and BCR-ABL mutants in a cellular context, which further affected downstream signalling mediators, including signal transducer and activator of transcription 5 (STAT5) and CRK like proto-oncogene (CRKL), and led to the cell cycle progression blockage as well as apoptosis induction. CHMFL-48 also exhibited great anti-leukemic efficacies in vivo in K562 cells and p210-T315I-transformed BaF3 cell-inoculated murine models. This discovery extended the pharmacological diversity of BCR-ABL kinase inhibitors and provided more potential options for anti-CML therapies.
Collapse
Affiliation(s)
- Tingting Lu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, PR China
| | - Jiangyan Cao
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Fengming Zou
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Xixiang Li
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Aoli Wang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Wenliang Wang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Huamin Liang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Qingwang Liu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Chen Hu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Cheng Chen
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Zhenquan Hu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Wenchao Wang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Lili Li
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, PR China
| | - Jian Ge
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, PR China
| | - Yang Shen
- The First Hospital of Jiaxing, 1882 Zhonghuan South Rd, Jiaxing, Zhejiang, 314000, PR China
| | - Tao Ren
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Ruixiang Xia
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, PR China.
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, PR China; Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China.
| |
Collapse
|
4
|
Zhong J, Zhang J, Yu X, Zhang X, Dian L. Olmutinib Reverses Doxorubicin Resistance in ETS1-Overexpressing Leukemia Cells. Med Sci Monit 2020; 26:e924922. [PMID: 32830792 PMCID: PMC7466836 DOI: 10.12659/msm.924922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Drug resistance is a major problem in the treatment of leukemia with doxorubicin (Dox), and the erythroblastosis virus E26 oncogene homolog 1 (ETS1) gene is associated with drug resistance. Olmutinib is a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) reported to play a role in reversing multidrug resistance (MDR) in cancer cells. The objective of this study was to investigate whether olmutinib could reverse Dox resistance in leukemia cells overexpressing ETS1. MATERIAL AND METHODS Human chronic myelogenous leukemia cell line K562 and its Dox-resistant cell line K562/ADR were used. Western blot and qPCR detected the expression of ETS1 and ABCB1. Cell proliferation was measured by cell counting kit-8 and methyl thiazolyl tetrazolium. Cell apoptosis was observed by western blot and flow cytometry. A nude mice K562/ADR xenograft model was used to investigate the inhibitory effects of olmutinib on tumor growth in vivo. RESULTS The mRNA and protein expressions of ETS1 and ABCB1 were up-regulated in Dox-resistant leukemia cell line K562/ADR. We overexpressed ETS1 in both cell lines, finding that olmutinib inhibited the cell viability of K562 and K562/ADR in a concentration-dependent manner. The cytotoxicity of Dox to EST1-overexpressing K562/ADR cells was enhanced by olmutinib. Olmutinib also promoted apoptosis of K562 and K562/ADR cells compared with Dox treatment alone. In vivo, olmutinib enhanced the inhibitory effects of Dox on ETS1-overexpressing K562/ADR cell xenograft growth. CONCLUSIONS Our results suggest that the novel EGFR TKI olmutinib enhances the sensitivity of ETS1-overexpressing leukemia cells to Dox.
Collapse
Affiliation(s)
- Jiansheng Zhong
- Department of Hematology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Jinli Zhang
- Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Xiaoyang Yu
- Department of Clinical Laboratory, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Xing Zhang
- Department of Hematology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Linping Dian
- Department of Hematology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|