1
|
Yan L, Li J, Yang Y, Zhang X, Zhang C. Old drug, new use: Recent advances for G-CSF. Cytokine 2024; 184:156759. [PMID: 39293182 DOI: 10.1016/j.cyto.2024.156759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Granulocyte colony-stimulating factor (G-CSF), also known as colony-stimulating factor 3 (CSF3), is a proinflammatory cytokine that primarily stimulates the survival, proliferation, differentiation and function of neutrophil granulocyte progenitor cells and mature neutrophils. Over the past years, G-CSF has mainly been used to cure patients with neutropenia and as a part of chemotherapy to induct the remission for refractory/relapse leukemia. Recent studies showed that C-CSF can been used as condition regimens and as a part of preventive methods after allogeneic transplantation to improve the survival of patients and also has immunoregulation, and has promote or inhibit the proliferation of solid tumors. Therefore, in this review, we firstly describe the structure for G-CSF. Then its functions and mechanism were reviewed including the neutrophil mobilization, differentiation, migration, and inhibiting apoptosis of neutrophils, and its immunoregulation. Finally, the clinical applications were further discussed.
Collapse
Affiliation(s)
- Lun Yan
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing 400037 China; Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing 400037 China; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400037 China
| | - Jing Li
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing 400037 China; Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing 400037 China; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400037 China
| | - Yang Yang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing 400037 China; Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing 400037 China; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400037 China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing 400037 China; Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing 400037 China; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400037 China.
| | - Cheng Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing 400037 China; Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing 400037 China; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400037 China.
| |
Collapse
|
2
|
Wang H, Wang Y, Hao L, Liu X, Zhang J, Yao P, Liu D, Wang R. Treatment for a primary multidrug-resistant B-cell acute lymphoblastic leukemia patient carrying a SSBP2-CSF1R fusion gene: a case report. Front Oncol 2023; 13:1291570. [PMID: 38107066 PMCID: PMC10723836 DOI: 10.3389/fonc.2023.1291570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023] Open
Abstract
SSBP2-CSF1R is an important biomarker for clinical diagnosis and prognosis of Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL). This case report presents a pediatric Ph-like ALL patient carrying the SSBP2-CSF1R fusion gene. The patient was resistant to most conventional chemotherapy regimens and to dasatinib, an inhibitor that has been reported to have a therapeutic effect on SSBP2-CSF1R fusion Ph-like ALL, as she remained minimal residual disease (MRD) positive (detection by flow cytometry) and SSBP2-CSF1R fusion gene (detection by RT-PCR) positive after five rounds of such regimens. We thus conducted a large-scale in vitro screening to assess the sensitivity of the patient's leukemic cells to anti-cancer drugs. Based on the susceptibility results, we chose to combine cytarabine, homoharringtonine, dexamethasone, fludarabine, vindesine, and epirubicin for treatment. Clinical results showed that after a course of treatment, both MRD and SSBP2-CSF1R fusion gene turned negative, and there was no recurrence during an 18-month follow-up. In conclusion, our study suggests that the SSBP2-CSF1R fusion gene may be an important biomarker of primary drug resistance in Ph-like ALL, and indicate that the combination of cytarabine, homoharringtonine, dexamethasone, fludarabine, vindesine, and epirubicin can achieve optimal therapeutic results in this category of patients.
Collapse
Affiliation(s)
- Huan Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yujiao Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Liangchun Hao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xuan Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jihong Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Pin Yao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Danping Liu
- Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Runan Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Novel Insights into the Role of Kras in Myeloid Differentiation: Engaging with Wnt/β-Catenin Signaling. Cells 2023; 12:cells12020322. [PMID: 36672256 PMCID: PMC9857056 DOI: 10.3390/cells12020322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Cells of the HL-60 myeloid leukemia cell line can be differentiated into neutrophil-like cells by treatment with dimethyl sulfoxide (DMSO). The molecular mechanisms involved in this differentiation process, however, remain unclear. This review focuses on the differentiation of HL-60 cells. Although the Ras proteins, a group of small GTP-binding proteins, are ubiquitously expressed and highly homologous, each has specific molecular functions. Kras was shown to be essential for normal mouse development, whereas Hras and Nras are not. Kras knockout mice develop profound hematopoietic defects, indicating that Kras is required for hematopoiesis in adults. The Wnt/β-catenin signaling pathway plays a crucial role in regulating the homeostasis of hematopoietic cells. The protein β-catenin is a key player in the Wnt/β-catenin signaling pathway. A great deal of evidence shows that the Wnt/β-catenin signaling pathway is deregulated in malignant tumors, including hematological malignancies. Wild-type Kras acts as a tumor suppressor during DMSO-induced differentiation of HL-60 cells. Upon DMSO treatment, Kras translocates to the plasma membrane, and its activity is enhanced. Inhibition of Kras attenuates CD11b expression. DMSO also elevates levels of GSK3β phosphorylation, resulting in the release of unphosphorylated β-catenin from the β-catenin destruction complex and its accumulation in the cytoplasm. The accumulated β-catenin subsequently translocates into the nucleus. Inhibition of Kras attenuates Lef/Tcf-sensitive transcription activity. Thus, upon treatment of HL-60 cells with DMSO, wild-type Kras reacts with the Wnt/β-catenin pathway, thereby regulating the granulocytic differentiation of HL-60 cells. Wild-type Kras and the Wnt/β-catenin signaling pathway are activated sequentially, increasing the levels of expression of C/EBPα, C/EBPε, and granulocyte colony-stimulating factor (G-CSF) receptor.
Collapse
|
4
|
Al-Amer OM, Oyouni AAA, Alshehri MA, Alasmari A, Alzahrani OR, Aljohani SAS, Alasmael N, Theyab A, Algahtani M, Al Sadoun H, Alsharif KF, Hamad A, Abdali WA, Hawasawi YM. Association of SNPs within TMPRSS6 and BMP2 genes with iron deficiency status in Saudi Arabia. PLoS One 2021; 16:e0257895. [PMID: 34780475 PMCID: PMC8592490 DOI: 10.1371/journal.pone.0257895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 09/13/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Globally, iron-deficiency anemia (IDA) remains a major health obstacle. This health condition has been identified in 47% of pre-school students (aged 0 to 5 years), 42% of pregnant females, and 30% of non-pregnant females (aged 15 to 50 years) worldwide according to the WHO. Environmental and genetic factors play a crucial role in the development of IDA; genetic testing has revealed the association of a number of polymorphisms with iron status and serum ferritin. AIM The current study aims to reveal the association of TMPRSS6 rs141312 and BMP2 rs235756 with the iron status of females in Saudi Arabia. METHODS A cohort of 108 female university students aged 18-25 years was randomly selected to participate: 50 healthy and 58 classified as iron deficient. A 3-5 mL sample of blood was collected from each one and analyzed based on hematological and biochemical iron status followed by genotyping by PCR. RESULTS The genotype distribution of TMPRSS6 rs141312 was 8% (TT), 88% (TC) and 4% (CC) in the healthy group compared with 3.45% (TT), 89.66% (TC) and 6.89% (CC) in the iron-deficient group (P = 0.492), an insignificant difference in the allelic distribution. The genotype distribution of BMP2 rs235756 was 8% (TT), 90% (TC) and 2% (CC) in the healthy group compared with 3.45% (TT), 82.76% (TC) and 13.79% (CC) in iron-deficient group (P = 0.050) and was significantly associated with decreased ferritin status (P = 0.050). In addition, TMPRSS6 rs141312 is significantly (P<0.001) associated with dominant genotypes (TC+CC) and increased risk of IDA while BMP2 rs235756 is significantly (P<0.026) associated with recessive homozygote CC genotypes and increased risk of IDA. CONCLUSION Our finding potentially helps in the early prediction of iron deficiency in females through the genetic testing.
Collapse
Affiliation(s)
- Osama M. Al-Amer
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Atif Abdulwahab A. Oyouni
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Mohammed Ali Alshehri
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Abdulrahman Alasmari
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Othman R. Alzahrani
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Saad Ali S. Aljohani
- Department of Basic Medical Sciences, Faculty of Medicine, Alrayan Colleges, Almadinah Almunawarah, Kingdom of Saudi Arabia
| | - Noura Alasmael
- King Abdullah University for Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Abdulrahman Theyab
- Department of Laboratory Medicine, Security Forces Hospital, Mecca, Kingdom of Saudi Arabia
| | - Mohammad Algahtani
- Department of Laboratory Medicine, Security Forces Hospital, Mecca, Kingdom of Saudi Arabia
| | - Hadeel Al Sadoun
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Kingdom of Saudi Arabia
| | - Abdullah Hamad
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Wed A. Abdali
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia
| | - Yousef MohammedRabaa Hawasawi
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia
- College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Theyab A, Algahtani M, Alsharif KF, Hawsawi YM, Alghamdi A, Alghamdi A, Akinwale J. New insight into the mechanism of granulocyte colony-stimulating factor (G-CSF) that induces the mobilization of neutrophils. ACTA ACUST UNITED AC 2021; 26:628-636. [PMID: 34494505 DOI: 10.1080/16078454.2021.1965725] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the past 20 years, granulocyte colony-stimulating factor (G-CSF) has driven the attention of researchers as a therapeutic agent for curing patients suffering from neutropenia. Despite the successful use of G-CSF, it currently requires daily injections, which are inconvenient, expensive, and distressing for children. Therefore, an alternative strategy for using G-CSF for treatment is needed. Understanding the G-CSF structure, expression, mechanism of action, and how it induces neutrophils mobilization is crucial to producing promising cancer therapy. The ability of G-CSF to mobilize hematopoietic stem cells from the bone marrow into the blood circulation was consequently exploited and altered the practice of hematopoietic stem cell transplantation. This is the motivation for the current review, which sheds light on the history of G-CSF and then focuses on the mechanism of action upon binding to its receptor (G-CSFR) and how that had led to the stimulation of neutrophils mobilization. The findings of this review show new insight into the mechanism of G-CSF that induces neutrophils mobilization. Thus, Understanding the G-CSF will provide a more effective treatment for all neutropenia patients.
Collapse
Affiliation(s)
- Abdulrahman Theyab
- Department of Laboratory Medicine, Security Forces Hospital, Mecca, Saudi Arabia
| | - Mohammad Algahtani
- Department of Laboratory Medicine, Security Forces Hospital, Mecca, Saudi Arabia
| | - Khalaf F Alsharif
- Department of Clinical Laboratory Science, Collage of Applied Medical Science, Taif University, Saudi Arabia
| | - Yousef M Hawsawi
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Abdulaziz Alghamdi
- Department of internal medicine, Security Forces Hospital, Mecca, Saudi Arabia
| | | | - Jude Akinwale
- Discovery - Protein Production at Crescendo Biologics Limited, Cambridge, England, United Kingdom
| |
Collapse
|
6
|
Alzahrani FA, Hawsawi YM, Altayeb HN, Alsiwiehri NO, Alzahrani OR, Alatwi HE, Al‐Amer OM, Alomar S, Mansour L. In silico modeling of the interaction between TEX19 and LIRE1, and analysis of TEX19 gene missense SNPs. Mol Genet Genomic Med 2021; 9:e1707. [PMID: 34036740 PMCID: PMC8372073 DOI: 10.1002/mgg3.1707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/19/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Testis expressed 19 (TEX19) is a specific human stem cell gene identified as cancer-testis antigen (CTA), which emerged as a potential therapeutic drug target. TEX19.1, a mouse paralog of human TEX19, can interact with LINE-1 retrotransposable element ORF1 protein (LIRE1) and subsequently restrict mobilization of LINE-1 elements in the genome. AIM This study aimed to predict the interaction of TEX19 with LIRE1 and analyze TEX19 missense polymorphisms. TEX19 model was generated using I-TASSER and the interaction between TEX19 and LIRE1 was studied using the HADDOCK software. METHODS The stability of the docking formed complex was studied through the molecular dynamic simulation using GROMACS. Missense SNPs (n=102) of TEX19 were screened for their potential effects on protein structure and function using different software. RESULTS Outcomes of this study revealed amino acids that potentially stabilize the predicted interaction interface between TEX19 and LIRE1. Of these SNPs, 37 were predicted to play a probably damaging role for the protein, three of them (F35S, P61R, and E55L) located at the binding site of LIRE1 and could disturb this binding affinity. CONCLUSION This information can be verified by further in vitro and in vivo experimentations and could be exploited for potential therapeutic targets.
Collapse
Affiliation(s)
- Faisal A. Alzahrani
- Department of BiochemistryFaculty of ScienceEmbryonic Stem Cell UnitKing Fahad Center for Medical ResearchKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Yousef MohammedRabaa Hawsawi
- Research Center at King Faisal Specialist Hospital and Research CenterJeddahSaudi Arabia
- College of MedicineAl‐Faisal UniversityRiyadhSaudi Arabia
| | - Hisham N. Altayeb
- Department of BiochemistryFaculty of ScienceEmbryonic Stem Cell UnitKing Fahad Center for Medical ResearchKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Naif O. Alsiwiehri
- Department of Clinical Laboratory ScienceFaculty of Applied Medical ScienceTaif UniversityTaifSaudi Arabia
| | - Othman R. Alzahrani
- Department of BiologyFaculty of SciencesUniversity of TabukTabukSaudi Arabia
- Genome and Biotechnology UnitFaculty of ScienceUniversity of TabukTabukSaudi Arabia
| | - Hanan E. Alatwi
- Department of BiologyFaculty of SciencesUniversity of TabukTabukSaudi Arabia
- Genome and Biotechnology UnitFaculty of ScienceUniversity of TabukTabukSaudi Arabia
| | - Osama M. Al‐Amer
- Genome and Biotechnology UnitFaculty of ScienceUniversity of TabukTabukSaudi Arabia
- Department of Medical Laboratory TechnologyFaculty of Applied Medical SciencesUniversity of TaboukTabukSaudi Arabia
| | - Suliman Alomar
- Doping Research ChairDepartment of ZoologyCollege of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Lamjed Mansour
- Doping Research ChairDepartment of ZoologyCollege of ScienceKing Saud UniversityRiyadhSaudi Arabia
- Department of ZoologyCollege of ScienceKing Saud UniversityRiyadhSaudi Arabia
| |
Collapse
|
7
|
Barnawi I, Hawsawi Y, Dash P, Oyouni AAA, Mustafa SK, Hussien NA, Al-Amer O, Alomar S, Mansour L. Nitric Oxide Synthase Potentiates the Resistance of Cancer Cell Lines to Anticancer Chemotherapeutics. Anticancer Agents Med Chem 2021; 22:1397-1406. [PMID: 34165414 DOI: 10.2174/1871520621666210623094526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Despite the advancement in the fields of medical science and molecular biology, cancer is still the leading cause of death worldwide. Chemotherapy is a choice for treatment; however, the acquisition of chemo-resistance is a major impediment to cancer management. Many mechanisms have been postulated regarding the acquisition of chemo-resistance in breast cancer the impact on cellular signaling and the induction of apoptosis in tumour cells. The mechanism of the apoptotic mutation of p53 and bcl-2 proteins is commonly associated with increased resistance to apoptosis and, therein, to chemotherapy. OBJECTIVES The current study was aimed to investigate A172 and MDA-MB-231 cancer cells' sensitivity against chemotherapeutic drugs, including cisplatin, doxorubicin, and paclitaxel with different doses. Moreover, it estimates the resistance of cancer cells by evaluating nitric oxide synthase (NOS) expression and evaluate its correlation with the expression profile proteins of the apoptosis regulating Bcl-2 family. METHODS Dose-dependent sensitivity to cisplatin, doxorubicin, or paclitaxel was evaluated on spheroid cultured A172 and MDA-MB-231 cells lines as measured by time-lapse microscopy over a 72h period. Expressions of two nitric oxides (NO) synthases isoforms (iNOS, eNOS), anti-apoptotic (Bcl-2, phospho-Bcl-2, Mcl-1, and Bcl-xL), and pro-apoptotic (BID, Bim, Bok, Bad, Puma, and Bax) were evaluated by Western blot. The effect of NO modulation on anti- and pro-apoptotic molecule expression was also studied using Western blot. RESULT A172 cells show more resistance to chemotherapy drugs than MDA-MB-231 cancer cells. Therefore, they need higher doses for apoptosis. Resistance of gliomas might be returned to the higher significant expression of endothelial eNOS expression. It was clear that there is not a significant effect of NO modulation on the expression of pro-and anti-apoptotic proteins on both cell lines. CONCLUSION The present work provides a putative mechanism for the acquisition of drug resistance in breast cancer and glioma, which might be significant for clinical outcomes.
Collapse
Affiliation(s)
- Ibrahim Barnawi
- Department of Biology, Faculty of Sciences, University of Taiba, Madina, Saudi Arabia
| | - Yousef Hawsawi
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah 21499, P.O. Box 40047, Saudi Arabia
| | - Philip Dash
- University of Reading Faculty of Life Sciences, school of science, Reading, Reading, United Kingdom
| | | | - Syed Khalid Mustafa
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Nahed A Hussien
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Osama Al-Amer
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Suliman Alomar
- Doping Research Chair, Department of Zoology, College of Science, King Saud University PO. Box: 2455, Riyadh, 11451, Saudi Arabia
| | - Lamjed Mansour
- Doping Research Chair, Department of Zoology, College of Science, King Saud University PO. Box: 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
8
|
Norvilas R, Dirse V, Semaskeviciene R, Mickeviciute O, Gineikiene E, Stoskus M, Vaitkeviciene G, Rascon J, Griskevicius L. Low incidence of ABL-class and JAK-STAT signaling pathway alterations in uniformly treated pediatric and adult B-cell acute lymphoblastic leukemia patients using MRD risk-directed approach - a population-based study. BMC Cancer 2021; 21:326. [PMID: 33781217 PMCID: PMC8006339 DOI: 10.1186/s12885-020-07781-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/30/2020] [Indexed: 12/01/2022] Open
Abstract
Background ABL-class and JAK-STAT signaling pathway activating alterations have been associated with both a poor post-induction minimal residual disease (MRD) response and an inferior outcome in B-cell acute lymphoblastic leukemia (B-ALL). However, in most of the studies patients received non-uniform treatment. Methods We performed a population-based analysis of 160 (122 pediatric and 38 adult) Lithuanian BCR-ABL1-negative B-ALL patients who had been uniformly treated according to MRD-directed NOPHO ALL-2008 protocol. Targeted RNA sequencing and FISH analysis were performed in cases without canonical B-ALL genomic alterations (high hyperdiploids and low hypodiploids included). Results We identified ABL-class fusions in 3/160 (1.9%) B-ALL patients, and exclusively in adults (p = 0.003). JAK-STAT pathway fusions were present in 4/160 (2.5%) cases. Of note, P2RY8-CRLF2 fusion was absent in both pediatric and adult B-ALL cases. Patients with ABL-class or JAK-STAT pathway fusions had a poor MRD response and were assigned to the higher risk groups, and had an inferior event-free survival (EFS) / overall survival (OS) compared to patients without these fusions. In a multivariate analysis, positivity for ABL-class and JAK-STAT fusions was a risk factor for worse EFS (p = 0.046) but not for OS (p = 0.278) in adults. Conclusions We report a low overall frequency of ABL-class and JAK-STAT fusions and the absence of P2RY8-CRLF2 gene fusion in the Lithuanian BCR-ABL1 negative B-ALL cohort. Future (larger) studies are warranted to confirm an inferior event-free survival of ABL-class/JAK-STAT fusion-positive adult patients in MRD-directed protocols. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-020-07781-6.
Collapse
Affiliation(s)
- Rimvydas Norvilas
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania. .,Department of Experimental, Preventive and Clinical Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
| | - Vaidas Dirse
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania.,Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania
| | - Ruta Semaskeviciene
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Orinta Mickeviciute
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Egle Gineikiene
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Mindaugas Stoskus
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Goda Vaitkeviciene
- Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania.,Center for Pediatric Oncology and Hematology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Jelena Rascon
- Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania.,Center for Pediatric Oncology and Hematology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Laimonas Griskevicius
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania.,Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
9
|
Al-Amer O, Hawasawi Y, Oyouni AAA, Alshehri M, Alasmari A, Alzahrani O, Aljohani SAS. Study the association of transmembrane serine protease 6 gene polymorphisms with iron deficiency status in Saudi Arabia. Gene 2020; 751:144767. [PMID: 32422234 DOI: 10.1016/j.gene.2020.144767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Intheclinical setting, iron deficiencyanaemia(IDA) represents a majorglobalhealthconcern. This health condition is reported in 30% of non-pregnant women, 42% of pregnant women (aged 15-50 years), 12.7% of men (15 years or older) and in 47% of preschool children (aged 0 to 5 years). Several genetic polymorphisms associated with iron status havebeen identified by using genome-wide association studies. AIM This study aimed to identify the functional polymorphismsrs855791 and rs2111833 in the transmembrane serine protease 6 (TMPRSS6) gene in female university students with IDA inthe Kingdom of Saudi Arabia. METHODS About 108 female students, aged from 18 to 25 years, were randomly selected and included to this study. Fifty-eightparticipants were iron deficient, and fifty participants were healthy. Blood samples were collected from all participants andassessed based on theirhaematologicaland biochemical iron status indices. Genotyping was carried out byusing PCR. RESULTS The genotype distribution oftheTMPRSS6rs855791 region in female studentsfromTabuk University,northern Saudi Arabia,was0% (CC), 77.6% (CT) and 22.4% (TT) in the iron-deficient students compared to 2% (CC), 96% (CT) and 2% (TT) in the healthy students,indicating significant differences in the allelic distribution betweentheiron-deficient group andthehealthy group. The genotype distribution of theTMPRSS6rs2111833 polymorphism was 8.6% (GG), 89.7% (GA) and 1.7% (AA) inthe iron-deficient students compared to 6% (GG), 92% (GA) and 2% (AA) in the healthy students,respectively,showing no differences between the iron-deficient group andthehealthy group in allelic distribution. CONCLUSION Our data demonstrated that theTMPRSS6 polymorphism rs855791 is significantly associated with decreased iron status, whereasTMPRSS6 polymorphismrs2111833 is not linked with iron deficiency status in female university students innorthern Saudi Arabia.
Collapse
Affiliation(s)
- Osama Al-Amer
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia; Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia.
| | - Yousef Hawasawi
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah 21499, P.O. Box 40047, Saudi Arabia; College of Medicine, Al-Faisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Atif Abdulwahab A Oyouni
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia; Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammed Alshehri
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia; Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdulrahman Alasmari
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia; Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Othman Alzahrani
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia; Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Saad Ali S Aljohani
- Department of Basic Medical Sciences, Faculty of Medicine, Alrayan Colleges, Almadinah Almunawarah, Saudi Arabia
| |
Collapse
|
10
|
El Fakih R, Savani B, Mohty M, Aljurf M. Hematopoietic Cell Transplant Consideration for Philadelphia Chromosome–Like Acute Lymphoblastic Leukemia Patients. Biol Blood Marrow Transplant 2020; 26:e16-e20. [DOI: 10.1016/j.bbmt.2019.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/10/2019] [Accepted: 08/14/2019] [Indexed: 01/06/2023]
|
11
|
Jain S, Abraham A. BCR-ABL1-like B-Acute Lymphoblastic Leukemia/Lymphoma: A Comprehensive Review. Arch Pathol Lab Med 2019; 144:150-155. [PMID: 31644323 DOI: 10.5858/arpa.2019-0194-ra] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT.— In the 2016 update of the World Health Organization (WHO) classification of hematopoietic neoplasms, BCR-ABL1-like B-acute lymphoblastic leukemia/lymphoma (B-ALL) is added as a new provisional entity that lacks the BCR-ABL1 translocation but shows a pattern of gene expression very similar to that seen in B-ALL with BCR-ABL1. OBJECTIVE.— To review the kinase-activating alterations and the diagnostic approach for BCR-ABL1-like B-ALL. DATA SOURCES.— We provide a comprehensive review of BCR-ABL1-like B-ALL based on recent literature and the 2016 update of the World Health Organization classification of hematopoietic neoplasms. CONCLUSIONS.— Several types of kinase-activating alterations (fusions or mutations) are identified in BCR-ABL1-like B-ALL. The main categories are alterations in the ABL class family of genes, encompassing ABL1, ABL2, PDGFRB, PDGFRA (rare), and colony-stimulating factor 1 receptor (CSF1R) fusions, or the JAK2 class family of genes, encompassing alterations in JAK2, CRLF2, EPOR, and other genes in this pathway. These alterations determine the sensitivity to tyrosine kinase inhibitors. As a wide variety of genomic alterations are included in this category, the diagnosis of BCR-ABL1-like B-ALL is extremely complex. Stepwise algorithms and comprehensive unbiased testing are the 2 ways to approach the diagnosis of BCR-ABL1-like B-ALL.
Collapse
Affiliation(s)
- Sarika Jain
- From the Department of Pathology, University of Mississippi Medical Center, Jackson
| | - Anu Abraham
- From the Department of Pathology, University of Mississippi Medical Center, Jackson
| |
Collapse
|
12
|
Simioni C, Bergamini F, Ferioli M, Rimondi E, Caruso L, Neri LM. New biomarkers and therapeutic strategies in acute lymphoblastic leukemias: Recent advances. Hematol Oncol 2019; 38:22-33. [PMID: 31487068 DOI: 10.1002/hon.2678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/28/2022]
Abstract
Acute lymphoblastic leukemia (ALL) represents a heterogeneous group of hematologic malignancies, and it is normally characterized by an aberrant proliferation of immature lymphoid cells. Moreover, dysregulation of multiple signaling pathways that normally regulate cellular transcription, growth, translation, and proliferation is frequently encountered in this malignancy. ALL is the most frequent tumor in childhood, and adult ALL patients still correlate with poor survival. This review focuses on modern therapies in ALL that move beyond standard chemotherapy, with a particular emphasis on immunotherapeutic approaches as new treatment strategies. Bi-specific T-cell Engagers (BiTE) antibodies, the chimeric antigen receptor (CAR)-T cells, or CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats [CRISPR]-associated nuclease 9) represent other new innovative approaches for this disease. Target and tailored therapy could make the difference in previously untreatable cases, i.e., precision and personalized medicine. Clinical trials will help to select the most efficient novel therapies in ALL management and to integrate them with existing treatments to achieve durable cures.
Collapse
Affiliation(s)
- Carolina Simioni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fabio Bergamini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Martina Ferioli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Erika Rimondi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,LTTA-Electron Microscopy Center, University of Ferrara, Ferrara, Italy
| | - Lorenzo Caruso
- Department of Biomedical and Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,LTTA-Electron Microscopy Center, University of Ferrara, Ferrara, Italy
| |
Collapse
|
13
|
Targeting mTOR in Acute Lymphoblastic Leukemia. Cells 2019; 8:cells8020190. [PMID: 30795552 PMCID: PMC6406494 DOI: 10.3390/cells8020190] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/12/2019] [Accepted: 02/16/2019] [Indexed: 12/12/2022] Open
Abstract
Acute Lymphoblastic Leukemia (ALL) is an aggressive hematologic disorder and constitutes approximately 25% of cancer diagnoses among children and teenagers. Pediatric patients have a favourable prognosis, with 5-years overall survival rates near 90%, while adult ALL still correlates with poorer survival. However, during the past few decades, the therapeutic outcome of adult ALL was significantly ameliorated, mainly due to intensive pediatric-based protocols of chemotherapy. Mammalian (or mechanistic) target of rapamycin (mTOR) is a conserved serine/threonine kinase belonging to the phosphatidylinositol 3-kinase (PI3K)-related kinase family (PIKK) and resides in two distinct signalling complexes named mTORC1, involved in mRNA translation and protein synthesis and mTORC2 that controls cell survival and migration. Moreover, both complexes are remarkably involved in metabolism regulation. Growing evidence reports that mTOR dysregulation is related to metastatic potential, cell proliferation and angiogenesis and given that PI3K/Akt/mTOR network activation is often associated with poor prognosis and chemoresistance in ALL, there is a constant need to discover novel inhibitors for ALL treatment. Here, the current knowledge of mTOR signalling and the development of anti-mTOR compounds are documented, reporting the most relevant results from both preclinical and clinical studies in ALL that have contributed significantly into their efficacy or failure.
Collapse
|